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a b s t r a c t

Phase-split computations in an isolated system, which in general may be defined as one where the total
internal energy (U), volume (V), and the number of moles (N ¼ N1;N2;…;Nn) of the components are fixed
at some specified set of values, involves the determination of the temperature (T), pressure (P), plus the
amount and composition of the various phases that constitute the system. A simpler, but analogous
problem is one where T, P, and N are specified instead. In TPN space, one may first perform a stability
analysis to determine whether the system is stable, meaning whether at equilibrium it will split up into
multiple phases or remain in single phase. If the single-phase state is unstable, the stability analysis
reliably provides a good set of initial guesses in the subsequent phase-split computations. In UVN space,
however, we demonstrate that the stability analysis (which is the main subject of our earlier study [1])
may not in general provide good enough initial guesses; we offer alternative strategies for setting up
good initial guesses. Furthermore, we show that a combination of successive substitution iteration (SSI)
and Newton's method—two iterative methods that are prevalent in the literature in TPN space—facilitates
a robust and efficient algorithm for phase-split computations in isolated systems. This combination has
so far not been applied in UVN space.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

Hydrodynamic simulations of materials in isolated vessels [2e7]
may require efficient and robust phase-split computations of an n-
componentmixturewith given internal energy (U), volume (V), and
number of moles (N ¼ N1;N2;…;Nn). The specification of UVN fully
defines the thermodynamic state of the system and corresponds to
a microcanonical-ensemble description of an isolated system. All
the other thermodynamic properties of the system, such as the
temperature and pressure, should be computable in principle. Such
computations are often challenging, partly because the stability
analysis, which is used to determine the phase stability of the
system (whether it will exist in multiple phases or in single phase),
exhibits subtleties in UVN space that we explain in more detail later
in this study. These subtleties are not present in the analogous, but
earch Institute, Palo Alto, CA,

oozabadi).
much more well-studied TPN space (isothermal–isobaric
ensemble) [8e14] where the temperature (T), pressure (P), and
moles (N) are specified instead. InUVN space, the objective is to find
not only the amounts and compositions of the phases that consti-
tute the mixture (just like in TPN space), but the temperature and
the pressure as well.

In a recent paper [1], we have presented an efficient and robust
algorithm for stability analysis in isolated systems. That study il-
lustrates the algorithm in mixtures that can either split up into two
phases or remain as a single-phase mixture. If the single-phase
state is deemed to be unstable relative to the two-phase state,
which implies that the two-phase state has a higher entropy, one
may perform the phase-split computations described in this study
to find the equilibrium state of the two-phase mixture. The basic
idea behind the stability analysis is to investigate if the introduction
of an infinitesimal amount of a second phase increases the entropy
of the total system compared to the single-phase scenario. If it does,
then the equilibrium state for the given set of UVN is a two-phase
state whose properties may be found by performing the phase-
split computations, which entail iteratively solving for the
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temperature, pressure, and mole numbers of the two phases using
an appropriate equation of state. The stability analysis is connected
to the subsequent phase-split computations through the fact that
the former may be used to seed the latter with a set of initial
guesses.

As a brief aside, we note that a third commonly studied speci-
fication is TVN space, which corresponds to the canonical ensemble.
It may be thought as being intermediate in complexity between the
TPN and UVN spaces. Although TVN is generally simpler than UVN
(temperature being easier to work with than internal energy), the
two spaces do share a commonality: the initial guesses provided by
the stability analysis for the TVN or UVN phase-split computations
may not necessarily be reliable, which is unlike in TPN, where the
initial guesses almost always guarantee convergence of the phase-
split computations. This is an important distinction that we have
alluded to above, and that we will explain in more detail later in
this study. The reason why TVN or UVN space differs from TPN in
this sense is because in TPN, the temperature and pressure remain
fixed regardless of the phase amounts, and there are no constraints
on V or U that must be satisfied. In contrast, in TVN or UVN, a good
initial guess must be provided for the relative phase amounts since
the phase amounts are used to satisfy the constraint on the total
volume V. (In UVN space, the phase amounts are also used in the
constraint on the total energy U.) The difficulty is that the stability
analysis cannot provide information about phase amounts since it
considers only infinitesimal perturbations, as we have explained
above. Although there has been some discussion on initial guesses
[15,16], this specific issue of the potential inadequacy of the sta-
bility analysis in providing suitable initial guesses for the phase-
split computations has not been brought up in TVN space (nor in
UVN space), to the best of our knowledge. Part of the reason may be
because previous TVN studies focus on either the stability analysis
[17,18] or the phase-split computations [19] without necessarily
connecting these two parts together, or they may be more focused
on the development of the underlying numerical methods [20e23].
One of the goals of our study is to make this contrast between TPN
and UVN spaces more explicit, especially since this issue has not
been discussed at length in the latter.

There is a limited number of published algorithms on the UVN
space. Most authors rely on Newton's method or modifications
along various constraints to facilitate convergence. Saha and Carroll
in an early paper [4] have set the stage for later works on UVN
phase-split computations. The authors set up the problem as the
conventional TPN phase-split computation. The first step includes
the estimation of mixture critical volume and pseudocritical tem-
perature to obtain initial guesses for T and P. Then a TPN phase-split
computation is implemented to find the total internal energy and
volume of the split two-phase mixture. The temperature and
pressure are updated using specific formulations until the total
internal energy and volume of the two-phase mixture match the
specified U and V, respectively. Three examples presented in Saha
and Carroll reveal that a large number of phase-split computations
(iterations) are required in the TPN-space loop.

In a later study, Michelsen [24] introduces a general framework
to perform phase-split computations in various spaces, including
the UVN space. He proposes two approaches: one is a nested
optimization approach where a TPN phase-split computation is
solved in the inner loop, and the outer loop updates T and P. The
other one is based on a modified objective function without con-
straints. He states the second approach does not guarantee a
maximum of entropy. Castier [25] has proposed a method for direct
maximization of entropy. His approach involves adding or
removing phases as needed during the computations. He reports
negative pressures (and also imaginary numbers) in some com-
putations. Because of these numerical deficiencies, he employs a
nested loop, in which the pressure and temperature are updated in
the outer loop. In the inner loop, he uses a TPN phase-split
computation to obtain phase amounts and compositions to
compute the internal energies and volumes. In the computation of
T and P, the step size is controlled by Newton's method. Castier
emphasizes the maximization of entropy, but Newton's method
and reduction of step size do not guarantee convergence. The
unphysical behavior (negative pressures, imaginary numbers, and
negative heat capacities) exhibited in some of the examples are
interpreted to be related to convergence issues. His phase addition
and removal procedures are computationally expensive. Quadratic
convergence in Newton's method is expected to lead to conver-
gence in few iterations [10]. More recently, Arendsen and Versteeg
[26] have formulated the problem in terms of T, P, and individual
phase compositions, and phase amounts. There is no report on the
efficiency of the method and no rigorous validation is presented.

In recent studies, Paterson et al. [27] extend the modified RAND
algorithm [14] to phase-split problems in UVN space by adapting
their algorithm for TPN phase-split computations. Their modified
RAND algorithm in TPN space involves solving a matrix equation to
minimize the total Gibbs energy of a multiphase, multicomponent
mixture subject to the constraints that the mole numbers cannot be
negative. They state that an advantage of the algorithm is that they
can achieve quadratic convergence as in the traditional Newton-
based methods, but their matrix does not become singular when
a phase amount or the moles of a particular component in a certain
phase goes to zero. The computational-cost analysis suggests that
modified RAND may be more expensive than traditional methods
for two-phase mixtures, but may become more efficient for mix-
tures composed of four or more phases. In UVN space, they are able
to largely follow the same approach as in the TPN phase-split
computations, with one difference being that their matrix equa-
tion now seeks to maximize the entropy instead of minimizing the
Gibbs energy. This involves the introduction of internal energy- and
volume-balance constraints that increase the rank of the matrix
equation by two compared to the TPN case. The two extra equations
are used to solve for two additional unknowns: the temperature
and the pressure. Some additional steps are taken to improve the
robustness; most notably, if a certain number of iterations is
exceeded, the nested optimization approach developed by
Michelsen [24] is followed instead. It is reported that the phase-
split computations in UVN space take on average about 1.5 times
the number of iterations in the phase-split computations as in TPN
space and that a few of the examples exceeded the iteration
threshold to switch to the nested optimization approach
mentioned above. Paterson et al. report that the number of itera-
tions required for convergence is generally 10 or less for most
conditions of the three examples in their study. It can take up to
about 40 iterations for a particular example (a three-component
mixture near the critical point).

Smejkal and Miky�ska [28] present a comprehensive paper on
the subject. The authors provide a systematic approach in which
they first formulate the stability analysis and then the phase-split
computations. They use a Newton-based method for the solution
of the nonlinear algebraic equations. Both line search and a modi-
fied Cholesky decomposition are implemented to help conver-
gence. The stability analysis is performed in energy-density and
molar-density space, while the phase-split computations are in
UVN space. To use the stability analysis results as initial guesses for
the phase-split computations, Smejkal and Miky�ska assume an
initial volume for the trial phase. The initial volume must satisfy a
condition that the initial two-phase mixture has higher entropy
than the given single-phase. Starting with the total volume of the
system, they keep halving this value until a volume that satisfies
this requirement is found. This initial setup can be computationally
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expensive because the stability analysis assumes the volume of the
trial phase is negligible. Smejkal and Miky�ska choose mole
numbers as one of the independent variables. However, experience
(Example 5.6 in Firoozabadi [29]) in the TPN space shows that this
choice of variables may lead to numerical divergence for states that
lie close to phase boundaries. This problem can be alleviated by
using equilibrium ratios (partition coefficients) instead. Recently
Smejkal and Miky�ska [30] present a general formulation for phase-
behavior computations in various spaces by direct minimization or
maximization of thermodynamic functions. The algorithm in UVN
space is the same as Smejkal and Miky�ska [28]. They find that
phase-split computations in TPN space require more iterations than
those in UVN space, which does not agree with the conclusions
drawn by Paterson et al. [27].

In this work, we present our algorithms for phase-split com-
putations in UVN space. In various TPN examples, Li and Firoozabadi
[10] have found that a sequential combination of two iterative
techniques—successive substitution iteration (SSI) and Newton's
method—are more robust and efficient than relying on Newton's
method alonewhen the two-technique approach is supplied with a
good set of initial guesses. In this approach, a soft (large) tolerance
(e.g., 10�5) is assigned to the SSI method to obtain approximate
solutions, and these are then used as initial guesses for the sub-
sequent Newton's method, which requires a much tighter tolerance
(e.g., 10�8) to achieve convergence. SSI allows one to get reasonably
close to the final solution in a fairly robust manner, and it provides a
good starting point for the more efficient, but less robust Newton's
method to converge quickly (in a small number of iterations) to the
final solution. We employ a similar combination of the SSI method
followed by Newton's method to improve the efficiency and
robustness of the computations in UVN space. Moreover, we
formulate our phase-split computation in terms of equilibrium
ratios (also called partition coefficients) to avoid numerical issues
with division by vanishingly small mole numbers near phase
boundaries. Perhaps equally as important, this work also introduces
a general strategy for using the results of the stability analysis as
initial guesses in the phase-split computations and possibly sup-
plementing themwith additional guesses if those from the stability
analysis are not effective.

The rest of this paper is structured as follows. Section 2 presents
the formulation of phase-split computations. Section 3 outlines a
general strategy for setting up initial guesses for the phase-split
computations that utilize results from the stability analysis, as well
as an alternative prescription for setting up the initial guesses when
the stability analysis results are not adequate for this purpose. We
follow this with a description of the numerical procedure for the SSI
and Newton's methods. Section 4 demonstrates our algorithm with
the same examples presented in our earlier work on the stability
analysis [1]. We conclude with a summary of our main findings.
2. Formulation of the phase-split computations

If the stability analysis [1] determines that the original single
phase is unstable, we assume that the mixture will split into two
phases. The phase-split computations that we discuss here repre-
sent a general numerical procedure for using the equation of state
we have chosen to describe our system to find the thermodynamic
state of the two split phases. This involves calculating the internal
energy, volume, amount, and composition of each phase, plus the
temperature and pressure corresponding to the given UVN.

As a starting point, we use the fact that the total internal energy,
volume, and mole numbers are fixed at U*, V*, N* ¼ ðN*

1;N
*
2;…;N*

nÞ,
respectively, where n is the number of components. The problem
may be expressed in terms of the following n þ 2 constraints:
U* �U1 � U2 ¼ 0; (1)

V* � V1 � V2 ¼ 0; (2)

N*
i ¼Ni1 þ Ni2 ð i¼1;2; :::; nÞ; (3)

in which the subscripts 1, 2 refer to the individual phases. Let us
denote the entropy of phase 1 as S1 ¼ S1ðU1;V1;N1Þ, in which N1 ¼
ðN11;N21;…;Nn1Þ. Similarly, we have S2 ¼ S2ðU2;V2;N2Þ, in which
N2 ¼ ðN12;N22;…;Nn2Þ for phase 2. The objective of the phase-split
computations is to find the equilibrium state of the two-phase
mixture that satisfies the constraints in Eqs. (1)–(3) and maxi-
mizes the total entropy S* ¼ S1 þ S2. It can be shown [31e33] that a
set of necessary but not sufficient conditions for S* to be a
maximum are

T1 � T2 ¼ 0; (4)

P1 � P2 ¼ 0; (5)

mi1 ¼mi2 ði¼1;2; :::;nÞ; (6)

where m ¼ ðm1;m2; :::;mnÞ are the chemical potentials. The n þ 2
equations in (4)–(6) represent conditions for thermal, mechanical,
and phase equilibrium, respectively. If all the three sets of condi-
tions are satisfied, then the two-phase mixture is said to be in
thermodynamic equilibrium. Equilibrium requires the chemical
potential of each component i, as well as the temperature and
pressure, to be the same across both phases. The 2n þ 4 equations
in (1)–(6) comprise the basic set of equations that are solved in the
phase-split computations to find the 2n þ 4 variables in U1;V1;N1
and U2;V2;N2.

Before proceeding further, we transform the equations in (1)–
(6) to an alternative but equivalent set that allows for a numerically
robust formulation. It has been found from past experience [29,34]
that working directly with themoles can cause numerical problems
when a particular phase becomes very small with negligible
amounts of some components. This issue can be overcome by
formulating the algorithm in terms of a set of surrogate variables: a
mole fraction b ð0� b� 1Þ and a set of equilibrium ratios Ki (also
called partition coefficients) for which i ¼ 1;2; …; n. The former
represents the mole fraction of phase 1, which is the ratio of the
total moles N1 of phase 1 to the total moles N* of the two-phase
mixture:

b¼N1

N* ¼
Pn

i¼1Ni1Pn
i¼1N

*
i

: (7)

It follows that the mole fraction of phase 2 is equal to 1� b ¼
N2=N*. The equilibrium ratio Ki of component i is defined as

Ki ¼
xi1
xi2

ði¼1;2;…; nÞ; (8)

where xi1 ¼ Ni1=N1 and xi2 ¼ Ni2=N2 represent the mole fraction of
component i in phases 1 and 2, respectively. The overall mole
fraction zi ¼ N*

i =
Pn

i¼1N
*
i of component i is known from the given

set of overall mole numbers N*, and it can be expressed in terms of
b, xi1, and xi2 as

zi ¼
N1

N*

Ni1
N1

þN2

N*

Ni2
N2

¼bxi1 þ ð1�bÞxi2 ði¼1;2; …;nÞ: (9)

We may combine Eqs. (8) and (9) and rearrange to yield explicit
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expressions for xi1, and xi2:

xi1 ¼ Kizi
1þ bðKi � 1Þ ði¼1;2; …;nÞ; (10)

xi2 ¼
zi

1þ bðKi � 1Þ ði¼1;2; …;nÞ; (11)

from which one readily obtains Ni1 ¼ N*bxi1 and Ni2 ¼ N*ð1�bÞxi2
for i ¼ 1;2; …; n. We can, therefore, determine the equilibrium
values of the mole numbers N1 ¼ ðN11;N21;…;Nn1Þ and N2 ¼ ðN12;

N22;…;Nn2Þ if we can find b and all Ki for the givenN* ¼ ðN*
1;N

*
2;…;

N*
nÞ.
Let us rewrite the equations in (6) in terms of the set of Ki.

Recalling the definitions of fugacity fi and fugacity coefficient fi
(these are surrogate variables for the chemical potential and are
prevalent in thermodynamic studies on mixtures [1,29,31,32]), the
phase equilibrium conditions in Eq. (6) may be written as

mi1 �mi2 ¼RTln
fi1ðT ;V1;N1Þ
fi2 ðT ;V2;N2Þ

¼RTln
fi1ðT1;V1;N1Þxi1P1
fi2 ðT2;V2;N2Þxi2P2

¼0

ði¼1;2;…;nÞ: (12)

Since constraints for equilibrium given by Eqs. (4) and (5) state
that T1 ¼ T2 and P1 ¼ P2, substituting Eq. (8) into Eq. (12), the phase
equilibrium conditions in Eq. (6) can be expressed in terms of the
equilibrium ratios as

ln Ki � ln
fi2
fi1

¼0 ði¼1;2;…;nÞ: (13)

One can determine the mole fraction b by solving the Rachford–
Rice equation in Eq. (14) below, which may be derived by summing
both Eqs. (10) and (11) over all the components, noting that both of
these sums equal 1, and subtracting them from each other:

Xn
i¼1

ðKi � 1Þzi
1þ bðKi � 1Þ¼0: (14)

We note that it is a simple matter to incorporate the thermal
equilibrium condition in Eq. (4) and the volume constraint in Eq. (2)
if we model our system with pressure-explicit equations of state
(EOS's) since such EOS's, by definition, treat the temperature T and
volume V as independent variables. By solving the set of n þ 3
equations in (1), (5), (14), and (13), we can find the nþ 3 unknowns
T, V2, b, and the set of Ki in which i ¼ 1;2; …; n. The equilibrium
state of the two-phase mixture is then completely specified once
these unknowns have been determined. As we have stated above,
the mole numbers N1 and N2 can be computed from the given N*,
b, and all the equilibrium ratios Ki. In addition, we have V1 ¼ V* �
V2, U1 ¼ U1ðT;V1;N1Þ, and U2 ¼ U2ðT ;V2;N2Þ. An alternative option
when an initial guess for V2 is not available is to replace Eq. (5) with
the volume constraint in Eq. (2) to solve for P and then solve for V1
and V2 with this newly found value of P. As stated in the Intro-
duction, we solve the aforementioned equations with the same
combination of the SSI and Newton's methods that we have used
previously for the stability analysis [1]. The details behind these
numerical techniques form the topic of the next section.
3. Numerical algorithms

3.1. Initial guess setup

This section presents our strategy for setting up the initial
guesses for the SSI method in a way that utilizes the results of the
stability analysis. Moreover we describe how to supplement those
results with additional guesses when the stability analysis does not
provide good initial guesses. The inadequacy of the stability anal-
ysis in (sometimes) providing good initial guesses is a particular
complication of UVN space that one does not encounter in TPN
space. As explained in our previous work [1], the stability analysis
determines whether the equilibrium state of a mixture at a given
set of UVN (according to our notation in Section 2, these are fixed at
values U*, V*, and N*, respectively) is a single-phase state or two-
phase state or more. The procedure for the stability analysis is as
follows: we first assume that themixturewill exist as a single phase
and introduce an infinitesimal amount of a second phase, which is
referred to as the trial phase, and examine if the introduction of the
trial phase increases the entropy of the total system. If it does, then
the equilibrium state for the given set of UVN is a two-phase state or
more, and this equilibrium state may be found by solving the
equations presented in Section 2 using a sequential combination of
the SSI method followed by Newton's methods, as described in this
section. The stability analysis provides the molar concentrations c

0

of all the components and the pressure P
0
of the trial phase (the

prime is used to denote properties of this phase), as well as a
temperature Tstability. These quantities may be used as described
below to prepare initial guesses for the SSI method of the phase-
split computations, which converges to within some relatively
large tolerance. Subsequently, the Newton's method uses these
approximate solutions from the SSI method as initial guesses to
produce a set of final solutions that satisfy a much tighter tolerance
criterion.
3.1.1. Initial guesses for equilibrium ratios Kinitial and Knew initial

The equilibrium ratios are defined in Eq. (8). For the initial
guesses of these quantities, we compute the mole fractions of all
the components in the trial phase using the molar concentrations
(c

0
i, which is defined as N

0
i=V

0 and has units of moles per volume)
obtained as part of the converged solution from the stability
analysis:

x
0
i ¼

c
0
iPn

i¼1c
0
i

ði¼1;2; …;nÞ: (15)

We set the initial guess of the equilibrium ratios K initial as

Kinitial
i ¼ x

0
i
zi

ði¼1;2; …;nÞ: (16)

Eq. (16) is a robust and widely used method to setup initial
estimates for equilibrium ratios in phase-split computations in TPN
space [10]. Based on our testing of various problems, the initial
guesses described above for the equilibrium ratios work well for all
the problems in Section 4 except Problem 1. In order to be able to
perform phases-split computations on mixtures like those in
Problem 1, we suggest an alternative set of initial guesses

Knew initial defined as

8>>>>><
>>>>>:

Knew initial
i ¼ 0:99

zi
;

Knew initial
j ¼

�
0:01
n� 1

�

zj
ðjsiÞ:

(17)

Equation (17) is motivated by the suggestion of Michelsen [9]
that the trial phase composition can be initially assumed to be a
pure species. The initial guesses Knew initial implies that the mole
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fraction of one component in the trial phase is 99%, while the other
components equally share the remaining 1%.We suggest the phase-
split computations should be first performed with K initial. If the
K initial does not lead to a converged solution, then Knew initial may
be used.

3.1.2. Initial guess for mole fraction binitial

Similar to phase-split computations in TPN space [10], an initial
value binitial of the mole fraction b may be computed from the
Rachford–Rice equation in (14) using the bisection method once
initial equilibrium ratios are known. Using the initial guess of the
equilibrium ratios mentioned above in Section 3.1.1, binitial will be
very close to 0 because the stability analysis assumes that we have
only an infinitesimal amount of the trial phase. In TPN space, binitial

computed from the RachforddRice equation most often results in
convergence of the algorithm in a reasonable number of iterations.
Convergence is not significantly affected by the choice of binitial

because properties that are strongly influenced by the mole frac-
tion b (i.e., those that depend strongly on the amount of each phase
present), such as the internal energy and volumes of the phases, do
not need to be computed as part of the solution.

In contrast, determining a good initial guess for the mole frac-
tion binitial is a challenge for phase-split computations in UVN space.
Unlike in TPN space, where T and P are specified in advance, T and P
in UVN space are based on the solution of the energy constraint [Eq.
(1)] and volume constraint [Eq. (2)] at each iteration. During the
computations, both the internal energy and the volume of each
split-phase must be computed to examine whether they satisfy
those constraints. Therefore, T and P are strongly dependent on the
value of the mole fraction b at each iteration since T and P are
functions of the individual phase volumes and energies, which are
in turn highly affected by the value of b. An improper initial value
binitial can thus easily lead to unphysical (negative) T and P, resulting
in convergence issues.

It is important to develop a general strategy for evaluating
binitial, which we propose as follows. Because of the small amount of
the trial phase in the stability analysis, we first use an initial guess
of binitial ¼ 0:1. This initial guess works well for most of the cases
we have tried. If binitial ¼ 0:1 leads to a negative value of Tor P at the
initial iteration, various guesses for binitial are then tested in the
range from 0 to 1 with a specified value of increment between each
test. The first binitial that leads to physical T and Pwill be used in the
initial iteration. For problems where the equilibrium state is near a
phase boundary (e.g., Problem 2 in Section 4), a small increment
(0.0001) may be needed, while for other problems (e.g., Problems 1
and 5 in Section 4), we use an increment of 0.01. The value of b in
the following iterations is then updated by solving the Rach-
forddRice equation. If the bk (where k denotes the iteration count)
for k > 1 is not between 0 and 1, or if the bk leads to unphysical Tor
P, then bk at this iteration is set to be equal to the value from the
previous iteration (i.e., we reset bk ¼ bk�1).

3.1.3. Initial guesses for temperature Tinitial and pressure Pinitial

In Step 2 of the SSI algorithm, we compute Tand P simultaneously
using Newton's method by solving Eqs. (1) and (2). We set Tinitial ¼
Tstability and Pinitial ¼ P

0
as initial guesses for Tand P in the phase-split

computations. Based on our experience, this set of initial guesses will
work in most cases. However, in some problems (e.g., Problems 1
and 5), all the combinations of initial equilibrium ratios (K initial and
Knew initial) and initial mole fraction (binitial) fail to find a positive P
using the initial guesses Tinitial and Pinitial. In that case, we modify
Tinitial by multiplying it by 1.5, 2, or 2.5, computing the pressure that
satisfies Eq. (2) for the corresponding Tinitial, and setting this pressure
as Pinitial. For iterations k > 1, solutions from the previous iteration
are used as initial guesses in the next iteration.
3.2. SSI

In the first iteration of SSI, we use the initial guesses for the
unknowns as explained above in Section 3.1, with most of these
guesses coming directly from the stability analysis. Our proposed
algorithm for stability analysis [1] is formulated in terms of the
energy density and molar density of the trial phase, and thus it
cannot provide an initial guess for the total extensive volumes of
the phases in the phase-split computations. Therefore, the SSI al-
gorithmwill solve Eqs. (1), (2), (13) and (14) [note that we solve (2)
instead of (5); see our explanation for this choice near the end of
Section 2] for the temperature T, pressure P, mole fraction b, and the
set of equilibrium ratios Ki. The SSI method is carried out until
convergence in the 2-norm of the equilibrium ratios is achieved to
within a specified tolerance:

DXðkÞ ¼
���Kðkþ1Þ

i �KðkÞ
i

���< ε; (18)

where DXðkÞ denotes the convergence at iteration k and ε is the SSI
switching tolerance. Once the norm falls below this tolerance, we
assume that we are close to converging to the equilibrium state,
and so we then switch to the more efficient Newton's method,
whose initial guesses are seeded with the approximate solutions
from the SSI method.

In TPN space problems, the equilibrium ratios Ki are updated
according to Eq. (13). But in UVN space, we have found that
updating them in this manner may sometimes cause the SSI
method to diverge. To facilitate the convergence, we introduce a
damping parameter m in the update of Ki so that

Kðkþ1Þ
i ¼

mKðkÞ
i þ fi2

.
fi1

mþ 1
ði¼1;2;…;nÞ: (19)

If the SSI method converges (DXðkÞ <DXðk�1Þ), we set m to zero,
in which case Eq. (19) is equivalent to Eq. (13). If the SSI method
diverges (DXðkÞ >DXðk�1Þ), we instead update the equilibrium ratios
with (19) by first tryingm¼ 1 and continuing to double the value of
m until we find a value such that DXðkÞ is found to be smaller than
DXðk�1Þ. Below is a brief outline of our algorithm:

Determine the initial guesses for the equilibrium ratios Ki, the
phase mole fraction b, the temperature T, and the pressure P
following the strategy in Section 3.1.We then perform the following
steps until Eq. (18) is satisfied:

1. Solve the Rachford–Rice equation in (14) for b by the bisection
method. Update N1 and N2.

2. Find T and P by solving the energy and the volume constraints
simultaneously using Newton's method with the initial guesses
Tinitial and Pinitial. This means that we find T and P such that U* �
U1 � U2 ¼ 0 and V* � V1 � V2 ¼ 0. We compute the derivatives
of V1 and V2 in terms of T and P numerically in this step, e.g.,
dV1=dT ¼ ðV1ðT þDTÞ�V1ðTÞÞ=DT and dV1=dP ¼ ðV1ðP þ DPÞ �
V1ðPÞÞ=DP.

3. Update the set of Ki by evaluating the right side of the phase-
equilibrium conditions in (19).

4. Check for convergence by evaluating (18). If not converged, re-
turn to step 1. Once a specified switching tolerance is met,
proceed to Newton's method scheme described below.
3.3. Newton's method

A general approach for Newton's method is given in this section.
In Newton's method, the initial guesses at the first iteration use the



Table 1
Specifications for Problems 1e4. The given internal energy and volume are denoted
by U and V, respectively. The given total number of moles of component i is labeled
as Ni .

Specifications Problem 1 Problem 2 Problem 3 Problem 4

U ðJÞ �756500:8 �1511407:6 �331083:7 �636468
V ðcm3Þ 52869 4268:1 80258:1 9926:71

NC1
ðmolÞ 10 0:95 15:1 10

NH2S ðmolÞ 90 99:05 84:9 90
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solutions from the SSI method. As an initial guess for volume is
available (unlike the case when forming initial guesses for the SSI
method), we solve Eqs. ((1), (5), (13) and (14) for the variables lnKi,
b, T, and V2. This set of nþ 3 variables (unknowns) are consolidated
into the solution vector X defined as

X¼

2
66666664

lnK1
lnK2
«

lnKn
b
T
V2

3
77777775
: (20)

The unknowns are iteratively updated using Newton's method

Xðkþ1Þ ¼XðkÞ � J�1R; (21)

where k denotes the iteration count. The unknowns XðkÞ at k ¼ 1 are
the initial guesses from the solution of the SSI method. The vector R
represents the residuals of Eqs. ((1), (5), (13) and (14) and is defined
as

R¼

2
666666664

R1
R2
«
Rn

Rnþ1
Rnþ2
Rnþ3

3
777777775
¼

2
6666666666666666666666666664

lnK1 � lnf12 þ lnf11

lnK2 � lnf22 þ lnf21

«

lnKn � lnfn2 þ lnfn1

Xn
i¼1

ziðKi � 1Þ
1þ bðKi � 1Þ

U* � U1 � U2

P1 � P2

3
7777777777777777777777777775

(22)

The Jacobian J is a square matrix of size n þ 3 and is given by

J¼

2
66666666664

vR1
vlnK1

vR1
vlnK2

…

vR1
vlnKn

vR1
vb

vR1
vT

vR1
vV2

vR2
vlnK1

vR2
vlnK2

/
vR2
vlnKn

vR2
vb

vR2
vT

vR2
vV2

« « 1 « « « «

vRnþ3

vlnK1

vRnþ3

vlnK2
…

vRnþ3

vlnKn

vRnþ3

vb

vRnþ3

vT
vRnþ3

vV2

3
77777777775
:

(23)

Newton's method is carried out until convergence in the 2-norm
of the unknowns X falls below a given tolerance. The tolerance for
Newton's method is necessarily much tighter than that for the SSI
method.

Below is a schematic outline of Newton's method algorithm that
follows Step 4 in the SSI algorithm.

5. Let k denote the iteration count of Newton's method. At k ¼ 1,
XðkÞ is the solution from the SSI method.

6. Evaluate Eqs. (22) and (23) to obtain RðkÞ and JðkÞ and update
Xðkþ1Þ by solving Eq. (21).

7. Stop the iterations once the convergence criterion is met (the 2-
norm of Xðkþ1Þ ¼ XðkÞ falls below some chosen threshold).
4. Results

In this work, we demonstrate the phase-split computations in
the same mixtures featured in Problems 1e6 of our study on the
stability analysis [1]. The mixtures in those problems cover a wide
range of diversity in terms of phase-equilibria complexity, chemical
species, and the number of moles. All of the mixtures are modeled
with the well-known PengdRobinson EOS [35], with the EOS pa-
rameters of all the species—including the critical temperature,
critical pressure, acentric factor, correlation coefficients for
computing heat capacities, and binary interaction coefficients—
being the same as those used in the stability analysis paper [1]. We
will not repeat them here for the sake of brevity.

4.1. Binary mixtures of methane (C1) and hydrogen sulfide (H2S)

The first four problems all involve binary, two-phase vapor–
liquid mixtures of methane (C1) and hydrogen sulfide (H2S) at
different UVN specifications. The mixture in Problem 1 is not close
to a phase boundary nor is in the critical region, meaning that it lies
clearly in the two-phase region. Problems 2 and 3 also involve two-
phase mixtures but in both cases, they are in state that lies close to
the phase boundary between the liquid and vapor phases. Finally,
the mixture in Problem 4 is in the near-critical region. The speci-
fications and stability analysis results of Problems 1 to 4 are pre-
sented in Tables 1 and 2, respectively. We prepare the initial
guesses for each problem following the procedure in Section 3.1;
these values are listed in Table 3.

The equilibrium solutions (the results of the phase-split com-
putations) for each of the two phases for all four problems are
presented in Table 4. We label the number of iterations required to
achieve convergence in the form “a þ b”, where a is the number of
iterations required by the SSI method to achieve convergence to
within a tolerance of 10�5, and b is the number of iterations
required by Newton's method to achieve convergence to within a
tolerance of 10�10. Smejkal and Miky�ska [28] report 9, 3, 3, and
5 Newton iterations iterations for their algorithm to converge in
Problems 1e4, respectively. Note that the initial guesses and
stopping criteria that they use are different from ours, and so a
direct comparison between the numerical efficiency of their algo-
rithm and ours cannot be made. The algorithm by Smejkal and
Mikkska relies solely on stability analysis and adjustment of phase
mole fractions. In our algorithm we may change equilibrium ratios
as well as phase mole fractions as discussed above.

The phase-split computations determine the compositions of
the two phases, as well as the temperature and pressure at equi-
librium. Our results are consistent with Castier [25] and Smejkal
and Miky�ska [25,28] in that we converge to the same equilibrium
state as in those studies. Mass densities of the two phases pre-
sented in Table 4 help to indicate which phase is liquid and which is
vapor. The initial guesses for the equilibrium ratios of Problems 2e4
use the set Kinitial described in Section 3.1 (Eq. (16)), which is ob-
tained directly from the properties of the trial phase as determined
by the stability analysis. Initial guesses for other parameters are



Table 2
Results of stability analysis for Problems 1e4. The temperature of the system is T, the
pressure of the trial phase is P

0
, and the concentration of component i in the trial

phase is ci 0 .

Stability analysis Problem 1 Problem 2 Problem 3 Problem 4

T ðKÞ 151:83 291:91 297:84 361:80
P

0 ðMPaÞ 0:60 1:84 2:65 10:10

c
0
C1
ðmol =m�3Þ 104:12 146:18 13:22 1000:68

c
0
H2S

ðmol =m�3Þ 564:35 736:58 1413:64 8459:77

Table 3
Initial guesses for the SSI method of the phase-split computations in Problems 1e4.
Initial guesses for the temperature and pressure are denoted as Tinitial and Pinitial ,
respectively. The initial guess for themole fraction of the trial phase is binitial , and the
initial guess for the equilibrium ratio Ki of component i is defined as the mole
fraction of i in the trial phase divided by that in the overall system (Eqs. (16) and
(17)).

Initial guesses Problem 1 Problem 2 Problem 3 Problem 4

Tinitial ðKÞ 303:66 291:91 297:84 361:80

Pinitial ðMPaÞ 2:51 1:84 2:65 10:10

binitial 0:38 0:0011 0:1 0:1

Kinitial
C1

0:1 17:4309 0:0613 1:0578

Kinitial
H2S

1:1 0:8424 1:1670 0:9936
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also established following the strategy mentioned in that section.
We have explained in Section 3.1 that the stability analysis does not
provide a guess for the amount of the trial phase, but that this is of
no consequence in TPN space since T, P, and the Ki values are in-
dependent of the amount of the trial phase in TPN problems. In UVN
space, when the amount of one phase is small (Problems 2 and 3) or
the mixture is close to the critical region (properties of the vapor
and liquid phases become very similar; see Problem 4), the set
Kinitial also works well. This is reasonable since the mixture
virtually behaves almost like a single-phase system in such situa-
tions. However, the algorithm fails to converge if we use Kinitial as
initial guesses for Problem 1, which as stated above, involves a
mixture that lies well within the two-phase region. In such cases,
the two phases are both present in non-negligible amounts so that
the issue of setting up good initial guesses becomes more compli-
cated. For Problem 1, we use the equilibrium ratios Knew initial

(defined in Eq. (17)) and the modified temperatures (see Section
3.1.3) to set up the initial guesses. Furthermore, we note that in this
example, the temperature and pressure from the stability analysis
(which we have presented in Table 2) are very far from the
Table 4
Results of phase-split computations for Problems 1e4. The equilibrium temperature, pr
denoted by T, P, Ki , and bv , respectively. Ki is defined as the mole fraction of component i i
phase. In addition, the internal energy (U), volume (V), moles of component (Ni), and de

Phase-split results Problem 1 Problem 2

T ðKÞ 298:00 298:00
P ðMPaÞ 2:5 2:5
KC1

16:2084 16:2072
KH2S 0:8569 0:8569
bv 0:6398 0:0013

Liquid Vapor Liquid V
U ðJÞ �544956:2 �211544:6 �1510985:8
V ðcm3Þ 1502:36 51366:64 4165:67 1

NC1
ðmolÞ 0:3357 9:6643 0:9307 0

NH2S ðmolÞ 35:6840 54:3160 98:9417 0

Density ðg= cm3Þ 0:8135 0:0391 0:8135 0
Iterations 14þ 6 12þ 5
equilibrium solutions in Table 4, while this is not the case in
Problems 2e4. This is because the equilibrium state does not lie
close to a phase boundary in Problem 1, while it does in the last
three examples. Problem 1 thus illustrates the fact that the stability
analysis may not necessarily provide good initial guesses for the
phase-split computations. As we have alluded to earlier, this is one
of the complexities of UVN space that one does not encounter in
TPN space.

Similar to the behavior that we have observed in our stability
analysis [1], the number of iterations depends on the switching and
stopping criteria. Table 5 presents the number of iterations required
for convergence for different choices of tolerance in Problem 3.
Depending on the chosen tolerance, our algorithm needs four or
less Newton iterations to converge. Just like for the stability analysis
[1], the SSI method dramatically improves the robustness of our
phase-split algorithm. We do not obtain a converged solution in
Problem 3 unless we employ the SSI method with a tolerance of
10�5 or tighter. Among the 6 problems presented in this work (4
problems in Section 4.1 and 2 problems in Section 4.2), we are able
to achieve convergence for only 2 of them——Problems 4 and 6,
both of which feature mixtures that are in the near-critical region—
by relying solely on Newton's method. Only for these two problems
are the initial guesses using the solutions of the stability analysis
good enough to allow Newton's method to converge. The remain-
ing four problems require the SSI method as part of the numerical
formulation so that it can seed Newton's method with good initial
guesses.
4.2. Liquefied petroleum gas (LPG) mixtures

Table 6 and Table 7 present the UVN specifications and stability
analysis results, respectively, of two different 6-component LPG
mixtures that we examine in Problems 5 and 6. Both of these are
two-phase, vapordliquid mixtures. In the equilibrium state of
Problem 5, the liquid phase has a higher mole fraction, while the
vapor phase has a higher volume fraction. Like Problem 4, Problem
6 is close to the critical region. Table 8 lists the initial guesses for
phase-split computations, and Table 9 summarizes the equilibrium
phase-split solutions for both problems.

Smejkal and Miky�ska [28] report that their algorithm requires
10 and 5 Newton iterations to converge in Problems 5 and 6,
respectively. We again note that like the case for Problems 1e4, the
initial guesses and stopping criteria in their work are different from
ours. Both Problems 5 and 6 use the Kinitial that are computed from
Eq. (16) as initial guesses for equilibrium ratios in the phase-split
essure, equilibrium ratio of component i, and mole fraction of the vapor phase are
n the vapor phase divided by the mole fraction of the same component in the liquid
nsity of each phase are also presented for completeness.

Problem 3 Problem 4

298:00 362:00
2:5 10:13
16:2087 1:0738
0:8569 0:9922
0:9996 0:6284

apor Liquid Vapor Liquid Vapor
�421:8 �566:8 �330516:9 �245802:7 �390665:3
02:43 1:56 80256:54 3512:56 6414:15
:0193 0:00035 15:0997 3:5514 6:4486
:1083 0:0371 84:8629 33:6088 56:3912
:0391 0:8135 0:0391 0:3425 0:3159

343þ 4 321þ 5



Table 5
The number of iterations required to achieve convergence as a function of the tolerance for the SSI method (the first number in each entry) and Newton's method (the second
number in each entry) in Problem 3. Asmentioned in Section 3.3, the algorithm requires the tolerance for Newton'smethod to be tighter than that for the SSI method; the cases
that do not satisfy the requirement are left blank in this table.

SSI Switching Tolerance Newton 10�2 Newton 10�4 Newton 10�6 Newton 10�8 Newton 10�10

Newton only failure Failure failure failure Failure
10�1 failure Failure failure failure Failure

10�3 Failure failure failure Failure

10�5 343 þ 4 343 þ 4 343 þ 4

10�7 356 þ 2 356 þ 3

10�9 623 þ 2

Table 6
Specifications for Problems 5 and 6. The internal energy and volume are denoted by
U and V, respectively. The total number of moles of component i is labeled as Ni .

Specifications Problem 5 Problem 6

U ðJÞ �16272506:4 24858:2
V ðcm3Þ 479845 289380:3

NC2
ðmolÞ 10:8 10:8

NC3H6
ðmolÞ 360:8 360:8

NC3
ðmolÞ 146:5 146:5

NiC4
ðmolÞ 233 233

NnC4
ðmolÞ 233 233

NnC5
ðmolÞ 15:9 15:9

Table 7
Results of stability analysis for Problems 5 and 6. The temperature of the system is T,
the pressure of the trial phase is P

0
, and the concentration of component i in the trial

phase is ci 0 .

Stability analysis Problem 5 Problem 6

T ðKÞ 122:97 394:54
P

0 ðMPaÞ 5:10� 10�3 4:22

c
0
C2
ðmol =m�3Þ 0:33 46:40

c
0
C3H6

ðmol =m�3Þ 3:10 1738:54

c
0
C3
ðmol =m�3Þ 0:91 718:80

c
0
iC4

ðmol =m�3Þ 0:39 1261:61

c
0
nC4

ðmol =m�3Þ 0:29 1304:72

c
0
nC5

ðmol =m�3Þ 0:0038 101:01

Table 8
Initial guesses of phase-split computations in Problems 5 and 6. The initial tem-
perature of the system is Tinitial , the initial pressure of the system is Pinitial , the initial
mole fraction of the trial phase is binitial , and Kinitial

i is the initial value of the equi-
librium ratio of component i.:

Initial guesses Problem 5 Problem 6

Tinitial ðKÞ 307:42 394:54

Pinitial ðMPaÞ 0:72 4:22

binitial 0:12 0:1

Kinitial
C2

0:1646 0:8309

Kinitial
C3H6

0:5841 0:9318

Kinitial
C3

0:8112 0:9488

Kinitial
iC4

3:0302 1:0471

Kinitial
nC4

3:9866 1:0829

Kinitial
nC5

20:8498 1:2285
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computations. In terms of the initial guesses for temperature Tinitial

and pressure Pinitial, Problem 6 uses solutions that come directly
from the stability analysis (it sets Tinitial ¼ Tstability and Pinitial ¼ P

0 Þ,
while the initial temperature for Problem 5 is modified following
the procedure mentioned in Section 3.1.3. Problem 5 is an example
where the temperature modification may be necessary even when
the equilibrium ratios from the stability analysis appear to provide
a sufficiently good guess for the composition. We report the
number of iterations for Problem 6 in Table 10. Note that Newton's
method alone works for this problem. However, a smaller number
of iterations in Newton's method is needed (there may also be a
potential improvement in the robustness) if it is complemented
with the SSI method. Overall, our algorithm requires 5 or less it-
erations in Newton's method to converge to the final equilibrium
solutions.
5. Conclusions

We have presented a general strategy for two-phase split
computations in UVN space (i.e., for isolated systems). The phase-
split computations are a series of numerical calculations whose
objective is to find the equilibrium state of the system that corre-
sponds to the given UVN. Using an appropriate EOS to calculate the
relevant thermodynamic quantities, the phase-split computations
determine the amounts and compositions of the phases as well as
the temperature and the pressure at equilibrium. By testing our
algorithm in six different mixtures of varying degrees of
complexity, we have found that the stability analysis, which is a
separate series of calculations that precedes the phase-split com-
putations and is described in our earlier work [1], usually provides
reliable initial guesses for the phase-split computations when the
problems are near the critical region or near a phase boundary. In
problems that are not near the critical point or close to a phase
boundary, the initial guesses from the stability analysis may not
necessarily work; we present alternative suggestions for initial
guesses in such cases. Surprisingly this crucial point regarding the
potential shortcoming of the stability analysis in providing good
initial guesses in UVN space has not been brought up in the liter-
ature. Our algorithm is inspired by an approach that has been
demonstrated to work well in TPN space [10], and it involves a two-
technique procedure in which the SSI method and Newton's
method are applied in tandem. Similar to what we have found for
the stability analysis, the sequential combination of these two
iterative techniques is far more robust than relying solely on
Newton's method. By using the approximate solutions of the SSI
method to seed the initial guesses for Newton's method, the latter
converges to within a tight tolerance and requires no more than 6
iterations for all six problems that we have tested. We are currently
working on an extension of this work, which is limited to two-
phase mixtures, to model three-phase systems. Such multiphase
mixtures are ubiquitous in the petrochemical industries [29,34,36],
as well as in other types of systems, such as alloys and eutectic or
peritectic mixtures of large, organic energetic materials [5e7].



Table 9
Results of phase-split computations for Problems 5 and 6. The temperature, pressure, equilibrium ratio of component i, andmole fraction of the vapor phase are denoted by T, P,
Ki , and bv , respectively. The table presents details of each phase at equilibrium, including the internal energy (U), volume (V), moles of each component (Ni), and density. The
number of iterations presented here is in the form “aþ b”, where a is the number of iterations required by the SSI method to achieve convergence towithin a tolerance of 10�5,
and b is the number of iterations required by Newton's method to achieve convergence to within a tolerance of 10�10.

Phase-split results Problem 5 Problem 6

T ðKÞ 300:00 395:00
P ðMPaÞ 0:70 4:23
KC2

4:2801 1:1858
KC3H6

1:5663 1:0672
KC3

1:3434 1:0491
KiC4

0:5803 0:9573
KnC4

0:4257 0:9286
KnC5

0:1404 0:8263
bv 0:1296 0:9203

Liquid Vapor Liquid Vapor
U ðJÞ �15892619:41 �379886:99 �150016:51 174874:71
V ðcm3Þ 78647:6 401197:4 16233:23 273147:07

NC2
ðmolÞ 6:5966 4:2034 0:7353 10:0647

NC3H6
ðmolÞ 292:5742 68:2258 27:0890 333:7110

NC3
ðmolÞ 122:0830 24:4170 11:1742 135:3258

NiC4
ðmolÞ 214:4708 18:5292 19:3343 213:6657

NnC4
ðmolÞ 219:1146 13:8854 19:8809 213:1191

NnC5
ðmolÞ 15:5744 0:3256 1:5088 14:3912

Density ðg= cm3Þ 0:5621 0:0149 0:2490 0:1689
Iterations 6 þ 5 7 þ 3

Table 10
The number of iterations required to achieve convergence as a function of the tolerance in the SSI method (the first number in each entry) and Newton's method (the second
number in each entry) for Problem 6.

SSI Switching Tolerance Newton 10�2 Newton 10�4 Newton 10�6 Newton 10�8 Newton 10�10

Newton only 0 þ 3 0 þ 4 0 þ 4 0 þ 5 0 þ 5
10�1 1 þ 2 1 þ 3 1 þ 4 1 þ 4 1 þ 5

10�3 2 þ 2 2 þ 3 2 þ 3 2 þ 3

10�5 7 þ 2 7 þ 2 7 þ 3

10�7 14 þ 2 14 þ 2

10�9 22 þ 2
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Nomenclature

EOS Equation of state
SSI Successive substitution iteration
c
0
i Molar concentration of component i in the trial phase

from the stability analysis
fi Fugacity of component i
J Jacobian matrix in Newton's method
k Number of iterations
Ki Equilibrium ratio of component i
Kinitial
i Initial guess for the equilibrium ratio of component i

Knew initial
i Additional initial guess for the equilibrium ratio of

component i
m Damping parameter in the update of the equilibrium

ratios Ki
n Number of components
Ni Number of moles of component i
P Pressure
P

0
Pressure of the trial phase from the stability analysis

Pinitial Initial guess for the pressure
R Gas constant
R Residual vector in Newton's method
S Entropy
T Temperature
Tinitial Initial guess for the temperature in the SSI method
Tstability Temperature from the stability analysis
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U Internal energy
V Volume
xi Mole fraction of component i in a phase
X Solution vector in Newton's method
zi Overall mole fraction of component i
b Mole fraction of the trial phase
bv Mole fraction of the vapor phase
binitial Initial guess for the mole fraction of the trial phase
ε Tolerance
mi Chemical potential of component i
fi Fugacity coefficient of component i
DX Convergence of the 2-norm of the equilibrium ratios
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