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Summary

A higher-order numerical model for compositional two-phase flow in fractured media is presented in this paper. The simulation of hori-
zontal and deviated wells is incorporated in the formation using unstructured grids. All commonly used types of finite elements are
accounted for in the algorithm: quadrangular and triangular elements in 2D, and hexahedra, prisms and tetrahedra elements in 3D.

The fracture crossflow equilibrium (FCFE) approach is applied to model the flow exchange between the fractures and the matrix.
FCFE is combined with the hybridized form of the mass conservative mixed finite element (MHFE) and the higher-order discontinuous
Galerkin (DG) method. A computer-aided design (CAD) interface is developed that connects the mesh generator to the CAD software.
The interface allows to design, mesh, and incorporate horizontal and deviated wells into the higher-order simulator. The algorithm
allows flow simulation in fractures in all ranges of permeability values as opposed to the embedded discrete fracture matrix (EDFM)
approach where low permeable fractures affect the accuracy of the results. The efficiency, accuracy, and strengths of the model are
demonstrated in comparison to alternatives including the embedded discrete fracture approach in different examples. Detailed incorpo-
ration of complex wells is presented in this work.

Introduction

A substantial amount of the hydrocarbon reserves is in the naturally fractured reservoirs. Efficient exploitation of these reservoirs is
facilitated using compositional reservoir simulators that have accuracy and computational efficiency.

Modeling of fractured reservoirs is challenging because fractures impose a large range of spatial properties. In addition, fractures
may make the geometry more complex. Different approximations have been made in the literature to model fractured reservoirs
(Bastian et al. 2000; Bogdanov et al. 2003; Geiger et al. 2004; Martin et al. 2005; Hoteit and Firoozabadi 2008; Reiter et al. 2012;
Zidane and Firoozabadi 2014, 2015, 2017; Makedonska et al. 2015; Abushaikhaa et al. 2015; Ahmed et al. 2015a; Bahrainian and
Daneh 2014; Chen et al. 2015; Hyman et al. 2015; Nejati et al. 2015). Structured grids may not describe various geometrical complex-
ities. Unstructured gridding is the method of choice to describe complex fractured porous media (Heinemann et al. 1991; Naccache
1997; Karypis and Kumar 1998; Beckner et al. 2001, 2006; Usadi et al. 2007; Liu et al. 2009).

The numerical approaches in fractured reservoir simulation are broadly divided into two categories: continuous representations as in
dual-porosity (DP)/dual-permeability (DK) models (Barenblatt et al. 1960; Warren and Root 1963; Kazemi and Gilman 1969, 1992;
Kazemi et al. 1976; Kazemi and Merrill 1979; Gilman and Kazemi 1983; Quandalle and Sabathier 1989; Sarda et al. 2002; Lu et al.
2008; Fung and Du 2016; Ozkaya 2017) and discrete representations in the form of discrete fracture/discrete matrix model (DFDM or
DFM) (Thomas et al. 1983; Haggerty and Gorelick 1995; Kim and Deo 2000; Di Donato et al. 2004; Karimi-Fard et al. 2004; Martin
et al. 2005; Reichenberger et al. 2006; Matthai et al. 2007a, 2007b; Gouze et al. 2008; Hoteit and Firoozabadi 2008; Geiger et al. 2009;
Unsal et al. 2010; Nick and Matthai 2011; Sandve et al. 2012; Geiger et al. 2013; Schmid et al. 2013; Jiang and Younis 2016).

One variant of the DFM approach is the EDFM. The EDFM approach was first proposed by Lee et al. (2001) and later adopted by Li
and Lee (2008), Hajibeygi et al. (2011), Moinfar et al. (2014), and Yan et al. (2016). In this work, we refer to EDFM and DFM as sepa-
rate entities. In the DFM models, the matrix domain is discretized to describe the fracture positions. The matrix grid cells conform to
the fracture elements. The matrix—fracture exchange fluxes are modeled explicitly (Hui et al. 2018).

In the EDFM models, the fracture elements are embedded in the matrix grid cells, and virtual grids are created to represent the frac-
tures (Yu et al. 2017). Four types of connections are considered in the EDFM models: flow between matrix grid cells and the fracture
elements, flow between fracture elements within one fracture, flow between intersecting fracture elements, and flow between fractures
and the well (Yu et al. 2017). In EDFM, a structured Cartesian grid may be used even if the fractures have different orientations. This
will allow the EDFM model to be implemented in finite difference (FD) simulators. EDFM enables the modeling of irregular fracture
geometry in Cartesian grids, but in case of high-saturation contrast, an adaptive grid refinement is required which affects the efficiency
(Jiang and Younis 2016; Hui et al. 2018). To overcome the limitations of the DP models, a hybrid model that combines DP and EDFM
has been proposed (Amir and Sun 2017; Weirong et al. 2017).

Unstructured grids have gained popularity in flow modeling and simulation (Aavatsmark et al. 1998, 2010; Edwards and Zheng 2010;
Lamine and Edwards 2010; Moortgat and Firoozabadi 2016) with many advantages over the Cartesian grids. These include the ease to
simulate fractured reservoirs in which fractures have different orientations and incorporation of deviated wells (DWs) in the domain.

In this work, we use the DFM concept as in the past. Our algorithm includes the commonly used finite elements (FEs) in 2D and 3D,
namely, quadrangular and triangular elements in 2D and hexahedral, prismatic, and tetrahedral elements (structured and unstructured)
in 3D. The fracture aperture is assumed to be small compared to the matrix scale (Noorishad and Mehran 1982; Granet et al. 1998;
Martin et al. 2005; Hoteit and Firoozabadi 2005). The fractures are, therefore, represented by a lower dimension compared to the
dimension in the matrix domain. We apply the FCFE approach in our DFM mode (Zidane and Firoozbadi 2017). In FCFE, we assume a
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constant pressure across the fracture width. This alleviates the need for small elements in the matrix domain near the fractures. The frac-
tures are represented by the edges of the FEs in FCFE. This makes FCFE readily applicable to unstructured grids in 2D and 3D.

In addition to fractures, multiphase flow in vertical and horizontal wells is of general interest in subsurface formation flows. In many
cases, the wellbore is deviated and, in some cases, highly inclined (Stanlsav et al. 1990). DWs increase the reservoir reach and improve
deliverability (Ghahri et al. 2011). Wellbore deviation adds more complexity to multiphase flow modeling (Hasan and Kabir 1988).
Various studies have been conducted to study the pressure drop and flow patterns in inclined tubes and DWs (Beggs and Brill 1973;
Barnea et al. 1985; Hasan and Kabir 1988; Stanlsav et al. 1990). There is an extensive use of DWs with high deviation ramps in some
formations. The hole deviation could exceed 70°, and the ramp lengths may reach more than 3000 m (Escaron 1983; Kruger 2007).
There is a need for reservoir simulation of complex wells and accurate production forecast.

Well modeling is traditionally accomplished through an idealization by Dirac line sources (Aziz and Settari 1979). The flow rate in
well elements is calculated through the transmissibility terms on the basis of effective mobility. The pressure gradient used in modeling
of flow around the well is the pressure difference between the bottomhole pressure and the average pressure in the gridblock. Collins
et al. (1992) presented a model to simulate wellbore dynamics. Nghiem et al. (1992) discussed the important factors that influence the
simulation of DWs and horizontal wells. They used a line sink model. In a DP simulator, Sanchez et al. (1992) showed that in naturally
fractured reservoirs, the high-inclined wells improve oil production performance. Sanchez et al. (1992) simulated a well with a 55°
inclination angle to show increased production performance compared to a vertical well. In a recent study (Artus et al. 2017), the well
is modeled by 3D unstructured grids in a reservoir discretized with 2.5D Voronoi grids. In order to capture the well trajectory (Artus
et al. 2017), the gridblocks intercepting the well trajectory are removed from the 2.5D grids and filled with finer 3D grids constrained to
well geometry. We follow a similar technique, but 3D grids are used in the whole domain to alleviate using finer grids in the wellbore.

In our previous work, we have applied the FCFE approach in single-phase flow (Zidane and Firoozabadi 2014) and then extended
the approach to compositional two-phase flow in 2D structured grids (Zidane and Firoozbadi 2017). In this work, we apply our FCFE
approach to compositional two-phase flow in fully 3D unstructured grids. In addition, we present the first implementation of horizontal
and deviated fractured wells in our higher-order numerical model. We discretize the wellbore with unstructured grids in 3D, and readily
match the well geometry with the reservoir matrix domain. To overcome the computational cost of the small well elements, we remove
the well gridblocks from the domain and redistribute the well flow rate across the interfaces of the well elements. In this work, we
neglect the flow mechanics inside the wellbore, and we only consider the effect on the reservoir flow behavior. The wellbore hydraulics
affect the inflow profile near wellbore region and can be studied separately. The use of fully unstructured grids in 3D in our model
avoids the limitation imposed by pillar-type FEs as prismatic or Voronoi grids. A full description of well implementation in our model
will be discussed in Appendix A.

The rest of this paper is organized as follows: We provide a general description of the model and the differential equations
describing the flow in fractured porous media in the FCFE concept. Then, we present a brief overview of the numerical discretization in
the matrix and the fracture network. This is followed by five numerical examples to demonstrate the strengths of our proposed algorithm
and the ease with which one can incorporate complex wells in a higher-order simulator.

Model Description

We briefly outline the essence of the algorithm as follows:

e The fluxes in the matrix domain and the fracture network are calculated by the RTO hybridized MHFE (Younes et al. 2013, 2015;
Huggenberger et al. 2015; Moortgat and Firoozabadi 2016). The MHFE method is used to avoid the complexity and numerical
oscillations that could be produced from the two-point flux approximation (TPFA) and the multipoint flux approximation
(MPFA). Later, MPFA implementations do not suffer from the induced oscillations (Aavatsmark et al. 2010; Edwards and Zheng
2010; Lamine and Edwards 2010; Sandve et al. 2012). In MHFE, the traces of pressure at the element interfaces and the pressure
at the cell centers are calculated. The MHFE is a natural choice for implementation in unstructured gridding (Darlow et al. 1984;
Mosé et al. 1994; Hoteit and Firoozabdi 2008; Ackerer and Younes 2008; Younes et al. 2011, 2014, 2015; Zidane et al. 2012,
2014a, 2014b; Zidane and Firoozabadi 2018a, 2018b). The effect of capillary pressure is not included in this work. This is justified
by the low interfacial tension (IFT) in compositional two-phase (oil and gas) flow at high pressure.

e The mass balance equations in the matrix domain are discretized using the mass conservative DG method coupled with a slope
limiter to remove the nonphysical oscillations (Chavent and Jaftré 1986; Hoteit et al. 2004). The degrees of freedom in DG are the
number of nodes at the element level. In addition, DG is a convenient method to capture the discontinuities in phase composition
at the element interfaces. In the fracture network, the finite volume (FV) method is used.

e The traces of the pressure are implicitly calculated at the interfaces in both matrix and fractures. An implicit time scheme is also
used to solve for the molar densities of all components in the fracture network. In the matrix domain, an explicit time scheme is
used to update the molar densities.

e Quadrangular and triangular elements are used in 2D and hexahedral, prismatic, and tetrahedral elements in 3D.

e The algorithm includes an interface to CAD software and to tetgen (Si 2011) to design and generate complicated domain geome-
tries, fractures, and DWs. The details of well implementation are presented in Appendix A.

e L ocal thermodynamic equilibrium and phase stability are implemented (Li and Firoozabadi 2012). The phase and volumetric
behavior are described by the Peng—Robinson equation of state (EOS) (Peng and Robinson 1976).

Mathematical Model

For completeness, the main equations that govern the compositional multiphase flow in fractured media are presented in this section.
The governing equations in the matrix domain and the fractures are treated separately.

Matrix Domain. In compressible two-phase flow, the mass transport equations for component 7 in an n.-component mixture are given by

¢65:[+V' (anxi_,xva> =F, i=1,..,n In QX (0,T), « (1)
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where ¢ denotes the porosity; v, is the velocity of Phase o; ¢ is the overall molar density of the mixture; z; and F; are the overall mole
fraction and the sink/source term of Component i in the mixture, respectively; ¢, is the molar density of Phase o; x; , is the mole fraction
of Component i in Phase o; Q is the computational domain; 7 denotes the simulation time; and 7, is the number of components. We
neglect diffusion in Eq. 1.

The velocity of Phase « is given by Darcy’s law:

Kk,
Vy = f'u—(Vp —0,8) = =2 K(Vp = p,8), 0 =10,8 (3)

o

where K is the absolute permeability; k., u,, and p, are the relative permeability, dynamic viscosity, and mass density of Phase o,
respectively, with 1, = k,/t,; p is the pressure; and g is the gravitational acceleration. We use the method from Lohrenz et al. (1964)
to describe the phase viscosities.

The pressure equation on the basis of the total volume balance is given by (Acs et al. 1985; Watts 1986)

¢Cr + ZV AV (Z CaXivyVQ() = nzl Vl'Fi, .................................................... (4)

where C, is the total compressibility and V; is the total partial molar volume of Component i (Firoozabadi 2015).

The phase equilibrium calculation is on the basis of initial guess from stability analysis. The minimum Gibbs free energy is war-
ranted. From the local thermodynamic equilibrium, the equality of the fugacities of each component in the two phases (oil and gas) is
given as follows:

Foi(T,p,%i0) =foi(T,p,Xjg), T=1,n0; J=1,.ne— 10 oo (5)

Fracture Network. In the fracture elements, the mass balance equations are given by

ECM:« y — v/:’)] 3 L T (6)

v, is the velocity across the fracture width and v/ is the velocity in the direction of fracture length.
The pressure equation in the fractures is given by

¢C, + ZV {V D aia(va— w;)} - F[} 0. (7)

The above equations are integrated along the fracture width.

dez;
G+ V-

Discretization

We briefly describe the discretization of the flow and transport equations in the following. The total velocity is discretized in the MHFE
method. The flux at each interface is evaluated as a function of the traces of the pressure at the interface and the pressure at the center
of each FE as follows:

gk .E = UK EPK — Z ﬁK,E,E’tpK,E’ — VK,E' ......................................................... (8)
E'e0K

The coefficients ok £, Bk g > and y - depend on the geometry of the element; the details of the MHFE formulation can be found in
previous studies (Chavent et al. 1990; Brezzi and Fortin 1991; Chavent and Roberts 1991; Mosé et al. 1994).
The FV integration of the pressure equation in the matrix domain gives

¢|K|c, +ZV,K ZZJHJ (V+Gy) mp—Fig|[=0. (9)
o EeOK

And in the fracture network, we obtain

Ze J Z CoXiafs(V+Gy) -1
ne o
¢C,|k| + Z Vik ¢ S0, (10)
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To discretize the mass balance equations, the DG method is used in the matrix domain and the FV method in the fracture network.
In DG, the mass balance equations are multiplied by a shape function and integrated over each matrix element K; this gives

ocz;
J — ok T Z JZ CoXigVa)MEPK | — ‘[Z(cax,-,avu)V(pK’j = JF:'<P1<,_/ ................................... (11)
’ K
The FV integration over the mass balance equations in the fractures gives
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For the temporal discretization, an explicit time scheme is used in the matrix and an implicit time scheme in the fractures. a::r, in
the above equation denotes the exchange flux of Component i in Phase « between the fracture and the adjacent matrix elements.

When multiple fractures intersect (Fig. 1), the upstream value at the interface is evaluated using a combination of the conservation
of mass and Kirchhoff’s law (Ahmed et al. 2015b; Zidane and Firoozabadi 2017).

Fig. 1—Fracture intersection in 3D; red arrows show flow directions.

Numerical Examples

We present five numerical examples. In these examples, the components in the petroleum fluids vary from 2 to 8 in 2D and 3D domains.
An Intel® Core™-i5 PC, with 3-GHz central processing unit (CPU) and 4-GB RAM, is used in all runs.

Example 1: Quarter of Five Spot and Comparison with Finite Element-Finite Volume. In this example, the effect of mesh refine-
ment is examined in triangular elements in a quarter of a five spot with the fractures presented by Geiger et al. (2009). The domain con-
tains 12 interconnected fractures as shown in Fig. 2. The matrix domain has a permeability of 100 md and 20% porosity. The fracture
permeability is 1000 darcies. CO, is injected into the formation saturated with an equimolar mixture of ethane and propane. Injection
and production wells are located at the origin and the diagonally opposite corner, respectively. Similar to Geiger et al. (2009), six differ-
ent levels of mesh refinements are used. We show in Fig. 2 the different meshes with the number of elements in each mesh. The effect
of mesh refinement is evaluated by computing the L* norm of error of gas saturation assuming the fine grid solution to be exact. We
compare the L? norm of error in our model with the finite element—finite volume (FEFV) model presented in Geiger et al. (2009). The
type of flow (compositional two-phase) in our model is different from the black oil model used in Geiger et al. (2009). However, com-
paring the L norm of gas saturation in both models may give a picture on the overall performance in terms of number of elements. For
simplicity, we evaluate the L? norm of error as a function of the relative FE area (i.c., area of FE divided by total area of the domain).
As shown in Fig. 3, the L* norm of error of the gas saturation in our model is less than that in FEFV model for all levels of refinement.
Material balance error (in terms of number of moles) is within a range of 107" in this example and will be discussed in more detail later.

In addition to the L* norm of error, the CPU time with different meshes in the FCFE and FEFV models is presented in Table 1. The
large difference in the CPU time shown in Table 1 is partly related to the computational resources available at the time. However, indi-
cations are that our algorithm is faster than the FEFV model. The details of the simulation platform used are provided earlier. For refer-
ence, the gas saturation and the overall mole fraction of CO, at different pore volume injections (PVIs) are shown in Fig. 4. Note that
assigning different permeability values across the normal and the lateral sides of the fractures is readily achieved in our algorithm as
discussed in Appendix B.

Example 2: Comparison with EDFM. A comparison of the proposed algorithm with EDFM approach is presented in this example.
The example is originally reported in Moinfar et al. (2014). A mixture of CO, and CHy is injected in a fractured domain saturated with
a three-component oil. The compositions of the injected and reservoir fluids are presented in Table 2. The domain is shown in Fig. 5.
The injection well is located at one corner and production is at the opposite corner where the pressure is kept constant. The relevant
data are summarized in Table 3. The CPU time in the proposed algorithm for a simulation time of 600 days is 5.1 minutes in an Intel
Core-i5 PC, with 3-GHz CPU and 4-GB RAM. In Moinfar et al. (2014), enough information was not provided on the platform used in
the simulations; therefore, direct comparison of CPU time might not reflect a fair comparison of performance. Moinfar et al. (2014)
report CPU time of 24.6 minutes. In Moinfar et al. (2014), a standard FD modeling was used in a domain that consists of 30 x 15 x 1
matrix grids and 40 fracture grids. In the proposed algorithm, a higher-order discretization model is used. Furthermore, in compositional
modeling, flash calculation is performed at all nodes of each FE in addition to flash calculation at the center of the element. In a hexahe-
dral FE, there are nine flash calculations per FE. Added to the cost of DG and MHFE compared with FD, this demonstrates the effi-
ciency of the proposed algorithm. For reference, the gas saturation at 35% PVI is shown in Fig. 6. Note that the same number of
gridding is used as in Moinfar et al. (2014).

Example 3: Comparison with the EDFM/DPDP Hybrid Model. In this example, a fractured domain is considered that has the same
properties of matrix and fractures as in Weirong et al. (2017) with the difference of CO, injection in propane instead of water injection
in oil. The relevant data are presented in Table 4. The model in Weirong et al. (2017) is a hybrid combination of EDFM and DPDP.
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It is known that the EDFM produces inaccurate results when the fractures permeability is low (Tene et al. 2017; Weirong et al. 2017).
In the proposed algorithm, all range of fracture permeabilities can be simulated. A set of randomly distributed fractures with different
lengths are generated. Impermeable fractures are added to demonstrate this feature in our model. The domain and the fracture network
including the impermeable faults are shown in Fig. 7 (fractures shown in blue and impermeable faults in red). Geometric information
for all fractures and impermeable faults is provided in Appendix C. CO; is injected in the middle of the domain. Production is from the
four corners. Location of the injection and production wells is shown in Fig. 7a; the injection and production wells cross the domain in
all the vertical depths. Simulations were run with different mesh refinements as shown in Table 5, and using a mesh of 41,000 elements
as a reference solution; further refinement did not affect the results. The different meshes are shown in Fig. 8.
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FEFV (Geiger et al. 2009) This Work

Number of Elements CPU (seconds) Number of Elements CPU (seconds)
342 2,076 358 162
734 3,662 714 294
1,502 8,818 1,530 410
3,190 23,989 3,188 741
7,348 98,184 7,362 2,489
14,326 278,501 14,616 5,779
29,132 776,313 30,730 10,805

Table 1—CPU time for different mesh refinements: Example 1.
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Fig. 4—Gas saturation at different PVIs, and the velocity of gas phase at 60% PVI (white vectors): Example 1.

Component Injected Fluid (%) Reservoir Fluid (%)
CO, 98 1
CH,4 2 39
CieHaa 0 60

Table 2—Composition of injected and reservoir fluids (in mole %):
Example 2.
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Fig. 5—Domain with fractures: Example 2.

Parameter

Value

Pressure (bar)
Temperature (K)
Porosity (%)

Matrix permeability (md)
Fracture permeability (md)

69
344
10
1
8-10"

Table 3—Relevant data: Example 2.

[ [ [ I

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

Fig. 6—Gas saturation at 35% PVI: Example 2.

Parameter Value
Matrix permeability (md) 1
Fracture permeability (darcies) 500
Fracture width (ft) 0.0065
Porosity (%) 5
Pressure at the bottom (bar) 25

Temperature (K)

Domain size (ft%)

311
1,000 x 1,000 x 20

Table 4—Relevant data: Example 3.
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Injection well
= = = = Production wells

(a) (b)

Fig. 7—(a) Domain and (b) fractures in blue and faults in red: Example 3.

Number of Number of Number of CPU Time
Mesh Nodes Elements Interfaces (seconds)
Mesh a 804 1,044 3,144 127
Mesh b 1,524 1,876 5,704 285
Mesh c 4,833 6,128 18,540 1,714
Mesh d 7,668 9,828 29,680 2,570
Mesh e 31,944 41,796 125,784 10,285

Table 5—Number of nodes, elements, and interfaces in all meshes: Example 3.

The number of nodes, elements, and interfaces for all meshes is listed in Table 5. The oil recovery in different meshes is shown in
Fig. 9. A good agreement is observed even when a very coarse mesh is used. Note that the fracture network in this example and in
Weirong et al. (2017) is not the same; however, the fracture/matrix permeability ratio is the same. As reported in Weirong et al. (2017),
the CPU time is 4,322 seconds in DFM, 268 seconds in EDFM, and 55 seconds in EDFM-DPDP. In the proposed algorithm, the simula-
tion time is 127 seconds in Mesh a and 10,285 seconds in Mesh e. Weirong et al. (2017) report that the accuracy of EDFM-DPDP is
slightly below the traditional EDFM method. For reference, the oil saturation at 45% PVI is shown in Fig. 10 for both the matrix
domain and the fracture network.

Example 4: Horizontal Well. This example is inspired from Tang et al. (2018) with some changes. The domain size is
1200 x 800 x 100m® and contains one horizontal well crossing the middle of the formation for CO, injection. The injection well of
5% in. diameter has a total length of 800 m with 45° inclination. Four production wells are located at the four corners of the domain.
The domain with the injection and production wells is shown in Fig. 11. CO, is injected at a constant rate of 0.1 PV/yr. The composi-
tion of the initial oil is shown in Table 6. The domain has 11 fractures with 8 crossing the horizontal well as shown in Fig. 11. Relevant
data of the domain are shown in Table 7. Simulations were run with three different mesh refinements varying from 5,000 to 23,000 ele-
ments (Meshes 1-3). The refined mesh of 75,000 elements (Mesh 4) is a reference solution mesh. The reference mesh is used to calcu-
late the relative L norm of error of the gas saturation for the three different meshes. The total number of matrix and fracture elements
is shown in Table 8. Fig. 12 reveals that the error drops to less than 5% for the 23,000-element mesh, an acceptable variation for a com-
plicated problem with fully compositional flow. The CPU time in the aforementioned mesh is 7 hours. Note that the CPU time could be
reduced by coarsening the well geometry as we discuss in Appendix A. Coarsening the well increases the size of the matrix elements
near the well region, thus reduces the CPU time but affects the geometry of the well.

Example 5: Deviated Well. This example is inspired from Artus et al. (2017). The geometry of the boundary is kept the same as that
in Artus et al. (2017); the domain dimensions in this example are 1000 x 1000 x 200 m> (Fig. 13a). The domain includes a DW inclined
at three different angles in 3D with the same well diameter used as in the previous example. Production is performed at constant pres-
sure at the bottom left and right corners of the domain as shown in Fig. 13a. The domain geometry is shown in Fig. 13a, and the well
geometry and initial mesh (see Appendix A for details) are shown in Figs. 13b and 13c, respectively. Fractured and unfractured domains
are studied. The fractures have different shapes and dimensions, and some cross the wellbore. Fig. 14 shows the domain with the frac-
tures. The fractures have different shapes, dimensions, and orientations, and some cross the wellbore. The orientation of the fractures
from vertical is as follows: for quadrangle fractures, the range assigned varies from 0° to 22.5° (randomly), and in circular shape frac-
tures, the range of angles with vertical varies from 22.5° to 45° (randomly). The domain and fracture properties are the same as in
Example 4. Fig. 15 shows the oil recovery with and without fractures, and as expected, the recovery is affected by the fractures. The oil
recovery in the fractured media is 10% less than in unfractured media (to 1.5 PVI). The CPU time for a total of 45,000 elements is
13 hours for fractured media and 10.6 hours for unfractured media. The difference in CPU time between fractured and unfractured
media demonstrates that the simulation of a fractured media in the proposed algorithm is nearly within the same range of unfractured
media. As mentioned earlier, CPU time could be reduced by coarsening the well geometry or adapting a different time discretization
scheme. Depending on the simulation purpose, either one or both options could be implemented. Material balance error is within a
range of 10~'? during the simulation time as shown in Fig. 16.
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(e)

Fig. 8—Different mesh refinements in matrix and fractures (details of all meshes are shown in Table 5): Example 3.
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Fig. 9—Oil recovery with different meshes: Example 3.
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Fig. 10—Oil saturation at 45% PVI in (a) the matrix domain and (b) the fracture network: Example 3.

= == = |njection well

Production well X

Fig. 11—Domain and location of injection and production wells. Horizontal well crossing the fractures is shown by dashed line:
Example 4.

Component Overall Mole Fraction

CO, 0.0086

N2 0.0028

C4 0.4351
CCs 0.1207
C4—Cs 0.0505
Ce—Cro 0.1328
C11—Co4 0.166
Cos+ 0.0735

Table 6—Oil composition: Example 4.
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Property Value

Matrix permeability (md) 100
Porosity (%) 20
Temperature (K) 403.15
Pressure at the bottom (bar) 276
Fracture width (mm) 1
Fracture permeability (md) 10°

Table 7—Domain properties: Example 4.

Mesh Matrix Elements Fracture Elements
Mesh 1 5,222 812

Mesh 2 14,390 1,473

Mesh 3 23,126 2,189

Mesh 4 76,457 2,516

Table 8—Total number of matrix and fracture elements in different
meshes used: Example 4.
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Fig. 12—Relative L? norm error: Example 4.
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Fig. 13—(a) Domain geometry, (b) well geometry, and (c) well mesh: Example 5.
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Fig. 14—Domain with fractures: Example 5.
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Fig. 15—O0il recovery with and without fractures: Example 5.
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Fig. 16—Variation of material balance error during the simulation: Example 5.
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Conclusions

This paper presents an efficient algorithm for compositional two-phase flow in fractured media with DWs. The model includes all com-
monly used types of FEs in 2D and 3D. The tools developed in the algorithm allow the generation of DWs in complex 3D geometries
with fractures. This feature is a result of the interfaces that has been developed in the CAD framework and coupled to unstructured tet-
rahedrons. The proposed well discretization scheme preserves the shape of the well circumference at the expense of smaller girds in the
immediate well vicinity. The fractures are readily set to impermeable faults due to the implementation of the flux calculation at the
interfaces in 2D and 3D. The proposed algorithm is compared with different approaches with various degrees of complexity. Compari-
son with recent models in DFM and EDFM framework demonstrates the efficiency and accuracy of the proposed algorithm. The work
presented in this paper has set the stage of extension to simulation of hydraulic and CO, fracturing.

Nomenclature

¢ = overall molar density of the mixture
C, = total compressibility
¢, = molar density
E = grid edge
f» = fractional flow function
F; = sink/source term
f»i = fugacity
= gas phase
= gravitational acceleration
component index
relative permeability
grid element
absolute permeability
number of components
ng = outward normal vector
o = oil phase
p = pressure
gk e = total flux across edge E in element K

S NN§~.mm
Il

0,; = matrix—fracture exchange flux
T = temperature
v, = velocity of phase «
vl = velocity across the fracture length
Vi = total partial molar volume
X = mole fraction
z; = overall mole fraction
o = phase index
At = timestep
1, = dynamic viscosity
p,, = mass density
T = simulation time
¢ = porosity
¢x,; = DG basis function

Q) = computational domain
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Appendix A: Well Implementation

Well implementation in our model is by fully unstructured grids. As opposed to prismatic and Voronoi grids, unstructured tetrahedra
can readily describe complex geometries in 3D. One restriction that the well imposes on the simulation model relates to the computa-
tional time. Well diameter could be in the range of few centimeters, when the reservoir is in kilometer scale. Because of the Courant—
Freidrich-Levy (CFL) condition, the size of timestep is, therefore, restricted by the small elements in the immediate well vicinity. The
size of matrix grids near the well region is ensured to be at their maximum allowed size honoring the Delaunay tetrahedralizations.
Coarsening the well geometry allows for larger matrix elements near the well region; however, it affects the well meanders. The well
effect in terms of injection/production is accounted for in the simulation through the boundaries of the well elements that are in contact
with the simulation domain. The well elements are not included in the simulation. When matching the interfaces of the well elements
with the matrix domain, the traces of the pressure are, therefore, evaluated by the MHFE method. Fluxes at the matrix/well interfaces
are treated as boundary condition flux. Imposing the boundary condition at the well/matrix boundary is made possible because well ele-
ments are not part of the simulation domain.
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The well with its inclination is first designed in a CAD platform (Fig. A-la) and then discretized with unstructured tetrahedra
(Fig. A-1b shows cross section of the well with unstructured tetrahedra). The size of matrix finite elements discretized without the well
is kept large (Fig. A-1c), and the accuracy is guaranteed by the higher-order discretization. When including the well, the mesh is gradu-
ally refined near the well region (Fig. A-1d). The triangular interfaces of the tetrahedra elements in the matrix domain should match the
interfaces of the well elements at the same coordinates. In the last step, the well elements are removed from the original mesh, and the
final mesh is then ready for simulation. We note that with this procedure, the effect of the well in the simulation is included by the inter-
faces that match the well wall, and the well rate is distributed along the total number of interfaces for elements at the well-matrix
boundary. In our future investigation in well modeling, the well hydraulics will be taken into consideration.

One advantage of our well modeling approach is the ease to change/adapt the mesh size at the well location. A deviated well
requires more refinement to capture the deviation meanders. With higher refinement, the CPU time is increased for two reasons: (i) the
CFL condition in the matrix domain and (ii) the overall increase in the total number of elements to preserve the well details. To over-
come this limitation, our modeling technique allows using large elements at the well location. Depending on the type of simulation, a
tradeoff should be made between well shape and efficiency. The proposed modeling technique allows to choose a different order of
refinement/coarsening. To demonstrate this capability, we show in Fig. A-2 the mesh in discretization of the well discussed earlier and
in Fig. A-3 different refinements for the same well. Fig. A-3 reveals that the coarser the grids are at the well, the more of its meander
details are lost.

(a)

(b)

(d)

Fig. A-1—(a and b) Discretization mesh of well, size enlarged for clarity; (c) reservoir with the well; and (d) reservoir grids near the well.

Fig. A-2—Well discretization mesh.
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Fig. A-3—Different coarsening levels for the well from (a) the finer mesh to (d) the coarse mesh.

Appendix B: Fractures Anisotropy

One of the features in our model is the ease to assign anisotropic permeability across the normal and lateral sides of the fractures. To
demonstrate this ability, we rerun the simulation of Example 1 in the text by having a normal permeability value of the fractures to be
two orders of magnitude less compared with the lateral side. Note that the fractures are represented by (n — 1) — D in our algorithm;
therefore, having low permeability across the normal side reduces the matrix—fracture exchange significantly. This is due to the negligi-
ble flow from the fracture interface ((n — 2) — D) to the matrix domain (n — D). For reference, we show in Fig. B-1 the gas saturation at
60% PVI for the problem discussed in Example 1 in the text and with the permeability values discussed above.

Fig. B-1—Gas saturation at 60% PVI for anisotropic permeability in the fractures: Example 1 in the text.

Appendix C: Fracture and Impermeable Fault Coordinates

In the following, we provide geometric coordinates in feet for all fractures and impermeable faults of Example 3 in the text. Table C-1
shows the starting and end coordinates for all fractures and impermeable faults. Note that the fractures are vertical extending from top
to bottom of the domain.

X_start Y_start X_end Y_end Description X_start Y_start X_end Y_end Description

755.58 55.78 801.63 25.81 Fracture 767.67 598.84 938.23 882.01 Impermeable fault
688.89 21.6 755.58 55.78 Fracture 642.23 698.87 837.24 771.94 Impermeable fault
755.58 55.78 802.03 79.58 Fracture 27.54 824.82 88.58 706.52 Impermeable fault
495.28 796.57 565.59 876.43 Fracture 37.71 559.58 146.84 731.48 Impermeable fault
588.77 840.43 638.87 863.93 Fracture 47.68 507.43 393.8 470.65 Impermeable fault
638.87 863.93 840.74 958.63 Fracture 423.99 246.72 531.34 393.17 Impermeable fault

Table C-1—Geometric coordinates in feet for all fractures and faults in Example 3.
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X_start Y_start X_end Y_end Description X_start Y_start X_end Y_end Description
549.15 921.76 583.76 889.61 Fracture 557.93 227.59 875.82 296.65 Impermeable fault
583.76 889.61 614.3 861.24 Fracture 737.61 239.56 872.13 180.63 Impermeable fault
583.76 889.61 603.29 897.9 Fracture 402.08 982.71 792.78 953.69 Impermeable fault
589.29 911.27 603.29 897.9 Fracture 375.34 12.83 499.74 80.95 Impermeable fault
603.29 897.9 638.87 863.93 Fracture 957.05 23.55 932.93 2511 Impermeable fault
638.87 863.93 685.23 819.66 Fracture 28.97 54.44 56.23 205.29 Impermeable fault
55.11 913.42 175.86 969.41 Fracture 636.61 913.1 719.2 947.12 Fracture
175.86 969.41 220.14 909.81 Fracture 627.05 774.27 685.23 819.66 Fracture
220.14 909.81 250.21 925.55 Fracture 95.28 546.57 165.59 626.43 Fracture
229.36 946.34 250.21 925.55 Fracture 188.77 590.43 238.87 613.93 Fracture
250.21 925.55 287.8 888.06 Fracture 238.87 613.93 440.74 708.63 Fracture
250.21 925.55 288.88 945.78 Fracture 149.15 671.76 183.76 639.61 Fracture
288.88 945.78 337.95 971.46 Fracture 183.76 639.61 214.3 611.24 Fracture
288.88 945.78 330.7 894.05 Fracture 183.76 639.61 203.29 647.9 Fracture
81.28 871.25 100.44 881.14 Fracture 189.29 661.27 203.29 647.9 Fracture
100.44 881.14 138.88 804.12 Fracture 203.29 647.9 238.87 613.93 Fracture
100.44 881.14 166.41 915.18 Fracture 238.87 613.93 285.23 569.66 Fracture
142.83 931.04 166.41 915.18 Fracture 165.59 626.43 188.77 590.43 Fracture
166.41 915.18 267.73 847.08 Fracture 188.77 590.43 206.09 563.53 Fracture
267.73 847.08 296.95 827.43 Fracture 129.26 532.29 206.09 563.53 Fracture
296.95 827.43 164.1 779.45 Fracture 206.09 563.53 257.14 584.29 Fracture
267.73 847.08 376.91 914.58 Fracture 227.05 524.27 319.1 562.23 Fracture
320.05 828.91 355.58 805.78 Fracture 319.1 562.23 459.62 620.18 Fracture
355.58 805.78 401.63 775.81 Fracture 272.55 608.63 319.1 562.23 Fracture
288.89 771.6 355.58 805.78 Fracture 319.1 562.23 332.31 549.06 Fracture
355.58 805.78 402.03 829.58 Fracture 201.41 690.98 236.61 663.1 Fracture
404.98 867.17 518.12 925.15 Fracture 236.61 663.1 271.82 635.21 Fracture
455.11 663.42 575.86 719.41 Fracture 236.61 663.1 319.2 697.12 Fracture
575.86 719.41 620.14 659.81 Fracture 227.05 524.27 285.23 569.66 Fracture
620.14 659.81 650.21 675.55 Fracture 495.28 296.57 565.59 376.43 Fracture
629.36 696.34 650.21 675.55 Fracture 588.77 340.43 638.87 363.93 Fracture
650.21 675.55 687.8 638.06 Fracture 638.87 363.93 840.74 458.63 Fracture
650.21 675.55 688.88 695.78 Fracture 549.15 421.76 583.76 389.61 Fracture
688.88 695.78 737.95 721.46 Fracture 583.76 389.61 614.3 361.24 Fracture
688.88 695.78 730.7 644.05 Fracture 583.76 389.61 603.29 397.9 Fracture
481.28 621.25 500.44 631.14 Fracture 589.29 411.27 603.29 397.9 Fracture
500.44 631.14 538.88 554.12 Fracture 603.29 397.9 638.87 363.93 Fracture
500.44 631.14 566.41 665.18 Fracture 638.87 363.93 685.23 319.66 Fracture
542.83 681.04 566.41 665.18 Fracture 565.59 376.43 588.77 340.43 Fracture
566.41 665.18 667.73 597.08 Fracture 588.77 340.43 606.09 313.53 Fracture
667.73 597.08 696.95 577.43 Fracture 529.26 282.29 606.09 313.53 Fracture
696.95 577.43 564.1 529.45 Fracture 606.09 313.53 657.14 334.29 Fracture
667.73 597.08 776.91 664.58 Fracture 627.05 274.27 7191 312.23 Fracture
720.05 578.91 755.58 555.78 Fracture 7191 312.23 859.62 370.18 Fracture
755.58 555.78 801.63 525.81 Fracture 672.55 358.63 7191 312.23 Fracture
688.89 521.6 755.58 555.78 Fracture 7191 312.23 732.31 299.06 Fracture
755.58 555.78 802.03 579.58 Fracture 601.41 440.98 636.61 413.1 Fracture
55.11 413.42 175.86 469.41 Fracture 636.61 413.1 671.82 385.21 Fracture
175.86 469.41 220.14 409.81 Fracture 636.61 413.1 719.2 447.12 Fracture
220.14 409.81 250.21 425.55 Fracture 627.05 274.27 685.23 319.66 Fracture
229.36 446.34 250.21 425.55 Fracture 95.28 46.57 165.59 126.43 Fracture
250.21 425.55 287.8 388.06 Fracture 188.77 90.43 238.87 113.93 Fracture

Table C-1 (continued)—Geometric coordinates in feet for all fractures and faults in Example 3.
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X_start Y_start X_end Y_end Description X_start Y_start X_end Y_end Description

250.21 425.55 288.88 44578 Fracture 238.87 113.93 440.74 208.63 Fracture

288.88 44578 337.95 471.46 Fracture 149.15 171.76 183.76 139.61 Fracture

288.88 44578 330.7 394.05 Fracture 183.76 139.61 214.3 111.24 Fracture

81.28 371.25 100.44 381.14 Fracture 183.76 139.61 203.29 147.9 Fracture

100.44 381.14 138.88 304.12 Fracture 189.29 161.27 203.29 147.9 Fracture

100.44 381.14 166.41 415.18 Fracture 203.29 147.9 238.87 113.93 Fracture

142.83 431.04 166.41 415.18 Fracture 238.87 113.93 285.23 69.66 Fracture

166.41 415.18 267.73 347.08 Fracture 165.59 126.43 188.77 90.43 Fracture

267.73 347.08 296.95 327.43 Fracture 188.77 90.43 206.09 63.53 Fracture

296.95 327.43 164.1 279.45 Fracture 129.26 32.29 206.09 63.53 Fracture

267.73 347.08 376.91 414.58 Fracture 206.09 63.53 257.14 84.29 Fracture

320.05 328.91 355.58 305.78 Fracture 227.05 24.27 3191 62.23 Fracture

355.58 305.78 401.63 275.81 Fracture 3191 62.23 459.62 120.18 Fracture

288.89 271.6 355.58 305.78 Fracture 272.55 108.63 3191 62.23 Fracture

355.58 305.78 402.03 329.58 Fracture 319.1 62.23 332.31 49.06 Fracture

455.11 163.42 575.86 219.41 Fracture 201.41 190.98 236.61 163.1 Fracture

575.86 219.41 620.14 159.81 Fracture 236.61 163.1 271.82 135.21 Fracture

620.14 159.81 650.21 175.55 Fracture 236.61 163.1 319.2 197.12 Fracture

629.36 196.34 650.21 175.55 Fracture 227.05 24.27 285.23 69.66 Fracture

650.21 175.55 687.8 138.06 Fracture 956.58 869.25 876.47 559.61 Fracture

650.21 175.55 688.88 195.78 Fracture 876.47 559.61 865.48 517.11 Fracture

688.88 195.78 737.95 221.46 Fracture 853.3 648.14 876.47 559.61 Fracture

688.88 195.78 730.7 144.05 Fracture 876.47 559.61 935.44 334.26 Fracture

481.28 121.25 500.44 131.14 Fracture 935.44 334.26 954.06 263.11 Fracture

500.44 131.14 538.88 54.12 Fracture 954.06 397.59 935.44 334.26 Fracture

500.44 131.14 566.41 165.18 Fracture 935.44 334.26 847.09 33.79 Fracture

542.83 181.04 566.41 165.18 Fracture 355.93 418.06 755.45 486.22 Fracture

566.41 165.18 667.73 97.08 Fracture 56.06 249.97 501.12 210.17 Fracture

667.73 97.08 696.95 77.43 Fracture 440.74 708.63 459.62 620.18 Fracture

696.95 77.43 564.1 29.45 Fracture 459.62 620.18 461.61 500.18 Fracture

667.73 97.08 776.91 164.58 Fracture 182.49 710 519.3 725 Fracture

720.05 78.91 755.58 55.78 Fracture 355.93 428.06 755.45 486.22 Fracture

565.59 876.43 588.77 840.43 Fracture 110.04 67.01 88.37 212.98 Impermeable fault
588.77 840.43 606.09 813.53 Fracture 121.22 226.95 196 163.39 Impermeable fault
529.26 782.29 606.09 813.53 Fracture 19.49 278.62 56.45 465.52 Impermeable fault
606.09 813.53 657.14 834.29 Fracture 401.1 45412 727.16 490.17 Impermeable fault
627.05 774.27 719.1 812.23 Fracture 448.72 571.74 309.25 501.69 Impermeable fault
719.1 812.23 859.62 870.18 Fracture 477.63 571.74 570.85 488.69 Impermeable fault
672.55 858.63 719.1 812.23 Fracture 839.99 488.88 909.46 334.11 Impermeable fault
719.1 812.23 732.31 799.06 Fracture 947.12 466.44 984.7 828.33 Impermeable fault
601.41 940.98 636.61 913.1 Fracture 786.95 856.7 910.72 929.03 Impermeable fault
636.61 913.1 671.82 885.21 Fracture 845.04 986.19 987.12 903.58 Impermeable fault

Table C-1 (continued)—Geometric coordinates in feet for all fractures and faults in Example 3.
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