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Problems of interest in hydrogeology and hydrocarbon resources involve complex heteroge-
neous geological formations. Such domains are most accurately represented in reservoir 
simulations by unstructured computational grids. Finite element methods accurately 
describe flow on unstructured meshes with complex geometries, and their flexible 
formulation allows implementation on different grid types. In this work, we consider 
for the first time the challenging problem of fully compositional three-phase flow in 3D 
unstructured grids, discretized by any combination of tetrahedra, prisms, and hexahedra. 
We employ a mass conserving mixed hybrid finite element (MHFE) method to solve 
for the pressure and flux fields. The transport equations are approximated with a 
higher-order vertex-based discontinuous Galerkin (DG) discretization. We show that this 
approach outperforms a face-based implementation of the same polynomial order. These 
methods are well suited for heterogeneous and fractured reservoirs, because they provide 
globally continuous pressure and flux fields, while allowing for sharp discontinuities in 
compositions and saturations. The higher-order accuracy improves the modeling of strongly 
non-linear flow, such as gravitational and viscous fingering. We review the literature 
on unstructured reservoir simulation models, and present many examples that consider 
gravity depletion, water flooding, and gas injection in oil saturated reservoirs. We study 
convergence rates, mesh sensitivity, and demonstrate the wide applicability of our chosen 
finite element methods for challenging multiphase flow problems in geometrically complex 
subsurface media.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Subsurface geological formations generally have complex geometries that require highly flexible meshing for accurate 
representation. Structured (or logically Cartesian) grids may not accurately describe many subsurface problems in hydroge-
ology and the recovery of hydrocarbon resources. They are also not well suited to model radial flow near wells, and results 
from commercial simulators may not converge in the near-well region [1].
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The most commonly used numerical method to model flow on structured grids is the finite difference (FD) approach, 
while finite volume (FV) methods are usually adopted for unstructured grids. In their lowest-order form, both assume 
element-wise constant scalar variables (such as saturations) and use a two-point flux approximation (TPFA) to compute 
vectors (fluxes) from (pressure) gradients between two points. It is well known that such lowest-order approximations suffer 
from excessive numerical dispersion, and grid sensitivity. The former can be reduced through ‘brute force’ by significantly 
refining the mesh, which is made more feasible by the development of massively parallelized simulators in the industry 
[2]. However, sufficient mesh refinement is often not feasible when modeling flow in field-scale hydrocarbon reservoirs 
or aquifers. Grid sensitivity cannot be resolved by mesh refinement. Specifically, it is well known that the TPFA may not 
converge unless the grid is K -orthogonal [3,4]. Recently, significant improvements have been made to the FV approach, 
for instance to accommodate the full permeability tensor [5–13] and fractures [14–16]. To improve FD flux computations 
on general grids and with tensor permeability, the multipoint flux approximation (MPFA) was introduced. In MPFA, fluxes 
are reconstructed from the pressures in multiple surrounding elements [17–21,6,22,23], similar to the stencil of a standard 
continuous Galerkin discretization. Several flavors of MPFA have been proposed since the original version [23,24,8,9,24–26]. 
MPFA has been compared to the Vertex Approximate Gradient scheme [27] and to BDM1 space under numerical quadrature 
[24,25].

The last category of numerical flow models rely on finite elements (FE). FE are the method of choice in many disciplines 
in science and engineering that involve unstructured grids. The FE methods that we adopt in this work are motivated by 
two essential physical properties of flow through porous media: 1) pressures and fluxes are continuous, even across layers 
and fractures, while 2) fluid properties are often discontinuous across phase boundaries, fractures, and layers.

In light of the latter realization, we adopt the discontinuous Galerkin (DG) method for the mass transport update. DG is 
strictly mass conserving at the element level. In higher-order DG, compositions or saturations can be updated at all vertices 
or faces and the values can be discontinuous across faces. This is particularly useful in fractured or layered reservoirs. In this 
work, we employ a multi-linear DG approximation as a compromise between higher-order convergence versus the number 
of phase-split computations that have to be carried out at each degree-of-freedom. Many flavors of DG have been analyzed 
in terms of error estimates and convergence properties, and it is hard to do justice to the full scope of this work (the 
following papers provide an overview of pioneering and recents efforts in the analysis of DG methods: [28–52]).

We use a mixed-hybrid finite element (MHFE) to satisfy the second aforementioned physical property: that both pres-
sure and flux fields are continuous everywhere. MHFE simultaneously and to the same order of accuracy solves for globally 
continuous pressure and flux fields [53,54,33,55–57]. The high accuracy in the velocity field in highly heterogeneous and/or 
anisotropic domains is the main attraction of the MHFE method. Computing the pressures on element faces is also con-
venient when modeling capillarity and fractured reservoirs. Unlike some FE methods, the MHFE-DG combination is strictly 
mass conserving at the element level.

A comparison between MFE and MPFA was presented in Matringe et al. [24] for single-phase incompressible flow without 
gravity. Hoteit and Firoozabadi [58] and [59] compared MHFE-DG to the traditional TPFA-FD approach in a commercial 
simulator, and to an equal-order MUSCL FV scheme, respectively. Both MPFA [60] and MHFE [61] flux approximations have 
been presented on unstructured 3D grids for two-phase incompressible flow. However, to the best of our knowledge, neither 
method has been investigated for unstructured 3D grids and (EOS-based) compositional and compressible multiphase flow 
with gravity, which is the subject of this work. We emphasize that the latter problem is governed by a different set of 
equations which involve the highly non-linear total compressibility and total partial molar volumes of multicomponent 
multiphase mixtures.

Based on this discussion, we adopt an implicit-pressure–explicit-composition (IMPEC) scheme with a higher-order DG 
explicit mass transport update and a MHFE implicit pressure and flux update. This MHFE-DG scheme was explored for 
single-phase compressible compositional flow in fractured media in Hoteit and Firoozabadi [58], and generalized to two-
phase compositional flow in homogeneous [62] and fractured domains [63], all on structured 2D grids; and to two-phase 
immiscible and incompressible flow with capillarity on 3D unstructured grids in [64]. More recently, MHFE-DG has been 
applied to problems of increasing complexity and non-linearity: three-phase flow with an immiscible aqueous phase [65], 
three fully compositional multicomponent hydrocarbon phases or two hydrocarbon phases and a compositional aqueous 
phase modeled by the cubic-plus-association (CPA) equation-of-state (EOS) [66,67]. Fickian diffusion, three-phase capillarity, 
and discrete fractures were modeled in 3D in Moortgat et al. [68], Moortgat and Firoozabadi [69,70].

Our past studies of compositional multiphase flow have been restricted to structured grids. The objective of this work 
is to unleash the full potential of our FE methods by moving to unstructured grids and allowing for all types of commonly 
used elements: triangles and quadrilaterals in 2D, and hexahedra, prisms, and tetrahedra in 3D. One other improvement is 
that we consider vertex-based DG discretizations rather than face-based (which requires a different slope-limiter [53,64]). 
The superiority of this approach is demonstrated in one of the numerical examples.

We briefly summarize our mathematical fractional flow formulation in Section 2. In Section 3 we discuss the MHFE-DG 
implementation on unstructured grids. The numerical experiments in Section 4 are a main focus of this work. First, we 
model the recovery of hydrocarbon energy resources by three important processes (gravity depletion, water flooding, and 
compositional CO2 injection) from a 3D reservoir discretized by 5 different structured and unstructured hexahedral, pris-
matic and tetrahedra grids. This example shows that we obtain the same results irrespective of grid-types for a wide range 
of multiphase processes that exhibit counter-current flow and phase behavior. Other sets of examples investigate grid sensi-
tivity, anisotropic domains, and the convergence properties of the MHFE-DG method on structured and unstructured grids. 
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The last example considers realistic petrophysical properties from the benchmark ‘SPE Tenth Comparative Solution Project’ 
[71], and ‘Egg Model’ [72,73]. We end with a brief summary of our findings.

2. Mathematical model

2.1. Fluid and formation description and notation

We consider multicomponent multiphase flow through porous media. The porous medium is characterized by an ab-
solute permeability tensor K, porosity φ, tortuosity τ , and formation compressibility Cr . The fluid mixtures consist of nc
components, labeled by index i, and each species can transfer between up to three phases α = α1, α2, α3. The overall molar 
density of species i in the mixture is ci = czi in terms of the overall molar density c and overall molar composition zi . 
Similarly, ci,α = cαxi,α is the molar density of species i in phase α, and cα and xi,α are the phase molar density and com-
position. Molar and mass densities (ρα ) are related through the molar weights Mi : ρα = cα

∑
i Mi xi,α . Phase saturations are 

indicated by Sα .
Phase compositions xi,α and molar fractions are found from phase stability analyses and phase split computations, based 

on a given total composition zi , temperature T and pressure p. The phase-splits are based on the Peng–Robinson (PR) EOS 
[74] for hydrocarbon phases, and a cubic-plus-association (CPA) EOS [67] for mixtures that contain polar component such 
as water. The basic algorithm is described in Appendix A.

2.2. Governing equations

In terms of the above definitions of fluid and formation properties, we can write the species transport, or material 
balance, equations as

φ
∂ci

∂t
+ ∇ · Ui = Fi, i = 1, . . . ,nc, (1)

in which Fi represent sinks (production wells) or sources (injection wells) of species i. Ui are the total molar velocities of 
each species i. Ui consists of convective Darcy phase velocities uα and diffusive (species) phase velocities Ji,α :

Ui =
∑

α

(
ci,αuα + f (φ,τ )SαJi,α

)
, i = 1, . . . ,nc . (2)

The factor f (φ, τ ) is a modification from open space diffusion to account for the reduction in available flow paths due to 
rock porosity and tortuosity. In this work, we focus on the MHFE discretization of the Darcy velocity on different types of 
2D and 3D unstructured grids and omit diffusion from the equations for clarity of presentation. Fickian diffusion is modeled 
similar to Moortgat and Firoozabadi [75,76], and is included in the example in Section 4.6.2. Similarly, we refer to [69] for 
a discussion on capillarity and neglect the capillary pressure here in the Darcy relation for the convective phase velocities:

uα = −λαK(∇p − ραg), α = α1, . . . ,α3 (3)

in which g is the gravitational vector and λα = λα(Sα) is the phase mobility.
We use an explicit equation for the pressure field [77,78]:

ζ
∂ p
∂t

+
nc∑

i=1

v̄ i(∇ · Ui − Fi) = 0, (4)

where ζ = φ(Cr + C f ), and C f and v̄ i are, respectively, the total compressibility and total partial molar volumes of the 
three-phase fluid mixture (derived in [66]). We adopt a fractional flow formulation in terms of the total velocity ut :

ut = −λtK (∇p − ρtg) , (5)

in which λt = ∑
α λα and ρt = ∑

α ρα fα with fα = λα/λt the fractional flow functions. The main advantages of the frac-
tional flow formulation are that (5) can be readily inverted in favor of the pressure (λt > 0, while λα ≥ 0), and that we only 
solve directly for one velocity field. More specifically, in the next section we describe our MHFE method to simultaneously 
solve (5) for the total velocity and (4) for the pressure.

The phase velocities are reconstructed from ut by

uα = fα (ut + Gα) , (6)

Gα =
∑

α′
λα′ K(ρα − ρα′)g, (7)

in which the prime notation denotes independent phase indices α and α′ . Gravity (and capillarity) can drive counter-current 
flow, which causes complications in finding the upwind values of λα′ , which were resolved in earlier work [66].
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Fig. 1. Degrees of freedom for MHFE-DG on a triangular grid element K with the following notation: average pressure pK , pressure traces on edges tpE , 
edge fluxes qE and fluid properties at vertices, e.g. phase molar density of component i at node N , cN . Note that the cN are defined inside element K ; the 
corresponding global node has as many discontinuous values cN ′ as elements K ′ sharing the same global node. One neighboring element K ′ is shown to 
illustrated the discontinuous cN across edge E3.

Fig. 2. Degrees of freedom for MHFE-DG on quadrilateral grid elements. Notation as in Fig. 1.

3. MHFE-DG on 3D unstructured grids

In this section we discuss the IMPEC discretization of our mathematical model through higher-order finite element meth-
ods. First, we provide the FE basis (vector) functions for scalar and vector quantities (Section 3.1) and then we summarize 
the MHFE discretization of the velocity (5) and pressure (4) equations (Section 3.2) and species transport (1) (Section 3.3). 
Details have been presented in our earlier work [70]. In these sections we mainly emphasize the coefficient matrices that 
depend on mesh geometry. Appendix B provides the complete expressions for the DG discretization on all grid types.

The domain is discretized by elements K with volume |K |, which have faces E with surface area |E|, such that the 
boundary of K is ∂ K = ∑

E |E|. We label the (local) vertices inside each element by N , and denote the total number of 
elements, faces, and nodes by NK , NE , and NN , respectively. The coordinate vector is defined as x = (x, y, z)T .

3.1. Finite element bases

In FE discretizations, scalars and vectors are decomposed in terms of appropriately defined basis functions ϕ(x) and 
basis vector fields w(x), respectively. Differential equations are put in the weak form by integrating over each grid cell K . 
The number and choice of basis (vector) functions depend on the number of degrees-of-freedom (DOF) associated with 
the order of the method. In our MHFE-DG approach, the scalar state variables are evaluated at the vertices (nodes) by a 
multi-linear DG approximation, while the velocity vector field is evaluated across element faces in the MHFE discretization. 
The corresponding DOF are illustrated in Figs. 1–5.

Note that while for a continuous higher-order method, such as continuous Galerkin, a single value is updated for each 
vertex in the domain, for our discontinuous Galerkin method the DOF are the nodes inside each element and properties can 
be discontinuous across edges. This means that for hexahedra, for instance, eight values (e.g. for compositions) are updated 
at each vertex, one for each of the eight elements sharing that vertex. Physically, this is a desirable feature when discon-
tinuities occur on grid faces, e.g. at layer or fracture-matrix interfaces, while mathematically this gives one the freedom 
to use different orders of approximations in each grid cell (because the interpolations do not have to conform at the grid 
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Fig. 3. Degrees of freedom for MHFE-DG on tetrahedral grid elements. Notation as in Fig. 1.

Fig. 4. Degrees of freedom for MHFE-DG on prismatic grid elements. Notation as in Fig. 1.

boundaries). Pressures and fluxes, on the other hand, are required to be continuous across edges to satisfy the physical 
constraints of the problem.

We expand ci(t, x) (and ci,α(t, x)) and ut(t, x) (and uα(t, x) and g(x)) as:

ci(t,x) =
∑

N

(ci)N(t)ϕN(x), (8)

ut(t,x) =
∑

E

qE(t)wE(x), (9)

where the coefficients (ci)N are the species molar densities at the vertices N , and qE is the total flux across faces E .
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Fig. 5. Degrees of freedom for MHFE-DG on hexahedral grid elements. Notation as in Fig. 1.

3.2. MHFE pressures and fluxes

To find the MHFE discretization of the Darcy law for the total velocity, we expand ut as in (9), multiply (5) by a test 
function, which we choose to be the same as the basis vector fields wE , and integrate over elements K . The result is

qK ,E = θK ,E pK −
∑

E ′∈∂ K

βK ,E,E ′tpK ,E ′ − γK ,E , E ∈ ∂ K , (10)

in which pK =
∫

K p and tpK ,E =
∫

E∈∂ K p follow from partial integration of the divergence term by Gauss’ theorem, and the 
coefficients are defined (with dx the volume increment) as:

βK ,E,E ′ = λt,K

⎡

⎣
∫

K

wK ,E K−1
K wK ,E ′ dx

⎤

⎦
−1

, (11)

θK ,E =
∑

E ′
βK ,E,E ′ , (12)

γK ,E = −λt,K ρt,K K(g · nE)|E|. (13)

Detailed derivations can be found in [70]. The MHFE discretization of the pressure equation proceeds along the same lines. 
We multiply (4) by wE , expand the phase velocities in Ui in terms of the total velocity using (6), integrate over each 
element K , and adopt a backward Euler discretization of the time derivative (indexed by superscript n). The final expression 
for the pressure evolution is:

pn+1
K = ,t

α̃K ,t + ζK
×

×
{

ζK

,t
pn

K +
∑

E∈∂ K

β̃K ,Etpn+1
K ,E + γ̃K +

∑

i

ν̄i,K Fi,K

}

(14)

in which α̃K , β̃K ,E and γ̃K are essentially multiplications of (11)–(13) by the partial molar volumes and phase mobilities 
and densities, without additional dependencies on the geometry. In our hybridized MHFE approach, a Schur decomposition 
is performed that leaves the pressure traces on faces as primary variables. The sparsity pattern involves for each row 
(corresponding to a face) all the faces of the neighboring two elements. Cell-centered pressures and fluxes are obtained by 
computationally inexpensive back-substitution. Details of the derivations are provided in [70,79].

The purpose of this brief reiteration of our MHFE method is to demonstrate the elegance with which the method can be 
generalized from Cartesian grids to any type of unstructured partitions. The only difference between different grid types is 
in the integral over permeability in (11), and the normal components of gravity with respect to element faces in (13). Both 
these terms are time-independent and only have to be evaluated once in the initialization of a simulation on a particular 
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grid. Once the geometrical coefficients in (11) and (13) are given, the MHFE computation of the pressures and fluxes at each 
time-step is identical for all grid types.

3.3. DG species transport

The DG discretization of the transport equation is similar: (1) is put into weak form by multiplying by test functions ϕN
and integrating by parts over each element K . The time derivative is discretized by a forward Euler method. Using standard 
calculus, the derivatives over the unknown phase properties are changed into derivatives of the known basis functions, 
which results in the following discretized transport equation (with ds the surface increment):

∑

N

(ci)
n+1
K ,N − (ci)

n
K ,N

,t/φK

∫

K

ϕNϕN ′ dx =
∑

N

∑

α

∑

E

qα,K ,E ×

⎡

⎣(ci,α)n
K ,N

∫

K

ϕN wE · ∇ϕN ′ dx −
(c̃i,α)n

K ,E,N

|E|

∫

E∈∂ K

ϕNϕN ′ ds

⎤

⎦

+ (Fi)
n
K

∫

K

ϕN ′ dx (15)

in which (c̃i,α)K ,E,N are the upstream values of ci,α at all the vertices of face E with respect to the phase flux qα,K ,E through 
E (this defines the numerical flux in our DG discretization and guarantees its continuity). Appendix B provides the explicit 
algebraic expressions from working out (15) for all grid types considered in this work, i.e. triangles, rectangles, tetrahedra, 
prisms, and hexahedra. These expressions can be readily implemented in any reservoir simulator and should facilitate the 
popularization of the Discontinuous Galerkin mass transport update for non-trivial unstructured 3D grids.

An important advantage of this vertex-based DG discretization is that up to 4 vertex values are upwinded for each face E , 
rather than just one value in a face-centered DG approach. This means that not only the magnitude of compositions and 
densities are communicated between elements, but also the gradients in those variables along faces. This further reduces 
numerical dispersion and grid sensitivity.

Similar to our discussion of the MHFE method on unstructured grids, we only summarize the DG-discretized mass 
transport equation to highlight the ease with which complex geometries can be accommodated. The only grid dependencies 
are captured in the matrices 

∫
K ϕNϕ′

N dx, 
∫

K ϕN wE · ∇ϕN ′ dx, and 
∫

E ϕNϕN ′ ds, which are again time-independent and can be 
computed as part of an initialization routine once the grid is specified.

We note that while Equation (15) is expressed as a first-order time-discretization, we have also implemented a second-
order Runge–Kutta scheme. However, it appears that the dependence of numerical dispersion on the time-step size is weak, 
partly due to the small time-steps enforced by the CFL condition in our IMPEC scheme [70].

3.4. Slope limiter

Higher-order methods generally require a slope limiter to avoid spurious oscillations around sharp front, and our DG 
implementation is no exception. We adopt the limiter developed by [53,64]. Consider vertex values (ci)K ,N for an element 
K with local node number N . In the full grid, this node is shared with multiple neighboring element, e.g. eight for a 
hexahedral grid and often even more in fully unstructured tetrahedral grids. Denote c̄ as the vector of averages

[c̄]K ′ = 1
|K ′|

∫

K ′

ci = 1
N ′

∑

N ′
(ci)K ′,N ′ (16)

in all the elements K ′ sharing node N .
The basic idea is to limit (ci)K ,N to lie between the minimum and maximum of the average state variables in all the 

elements surrounding a given node. This is done by minimizing the L2 norm of the limited, or reconstructed, (cl
i)K ,N with 

respect to the original vertex values (ci)K ,N under the physical constraints of mass conservation

min
(cl

i)K ,N

||(cl
i)K ,N − (ci)K ,N ||2, satisfying (17)

min(c̄) < (cl
i)K ,N < max(c̄), and (18)

1
N

∑

N

(cl
i)K ,N = 1

N

∑

N

(ci)K ,N . (19)

The mesh dependence of this slope limiter lies only in keeping track of which elements share which (global) vertex, and 
the (possibly) different numbers of nodes in each type of grid cell.
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It has been shown that this slope limiter does not enforce a maximum principle on the face-averaged values of state 
variables [80], which could theoretically cause spurious oscillations, e.g. if phase fluxes are computed with face-centered 
fractional flow functions. Two-phase immiscible flow is particularly sensitive because mobilities depend directly on the 
primary saturation variable. Nevertheless, this slope limiter was applied successfully in MHFE-DG modeling of two-phase 
immiscible flow on unstructured 3D grids by Hoteit and Firoozabadi [64]. In compositional flow, species molar densities are 
the primary variables that are updated at vertices by DG for given phase fluxes. After slope limiting, molar densities and 
overall compositions (0 < zi < 1) are computed and used to update the phase split (flash) computations. Phase saturations 
(and mobilities) are derived quantities, with 0 < Sα < 1 guaranteed by the flash algorithms. In two-phase flow, face-centered 
mobilities can be computed from face-averaged saturations (which are assumed to vary linearly in each dimension), but 
in compositional flow, saturations are a strongly non-linear function of compositions. Phase properties (compositions and 
saturations) cannot be extrapolated away from the points where flash calculations were performed. Instead, motivated by 
the first-order accuracy of the MHFE flux update, we perform a cell-centered flash computation to update saturations and 
mobilities. With this approach, we avoid any spurious oscillations in our solution. In future work, we may explore methods 
to further improve accuracy by coupling DG to a higher-order flux update (e.g., BDM1) and developing a slope limiter with 
a formal maximum principle.

3.5. Convergence

Formally, the order of convergence for our multi-linear DG approximation should be quadratic. However, these formal 
rates are derived for highly simplified problems, and observed rates are generally lower for highly non-linear problems. 
Nevertheless, the convergence rate scales with the order of approximation. In [66], we found that the convergence rate of 
a 2D face-based bilinear DG mass transport update was twice that of an element-wise constant (FV) approximation. The 
order of convergence is particularly important for IMPEC schemes in 3D. The CLF constraint on the time-steps scales as 
1/h (where h is a characteristic length-scale of the elements, i.e. ,x, ,y or ,z on structured grids, or, say, V 1/3 for an 
unstructured element with volume V ). Therefore, for explicit methods the increase in CPU time for a mesh refinement 
δ f = hcoarse/hfine in each direction scales with at best δ f 4! Our DG approximation on tetrahedra requires the update of 4 ci
at vertices instead of an element-wise constant value, but the associated additional CPU cost is negligible compared to the 
∝ δ f 4 cost of mesh refinement to reduce numerical dispersion.

Note that, when flow instabilities (gravitational or viscous fingering) or strong heterogeneity occur at small spatial scales, 
such features cannot be resolved on coarse grids and mesh refinement may be unavoidable [81]. Up- and down-scaling 
static reservoir models for permeability and porosity heterogeneity on unstructured grids adds further complexity, but 
geostatistical facies modeling can be applied to unstructured grids as well as to structured ones. When a formation is 
layered or fractured, grids should conform to the layer and matrix block sizes, but within a layer or matrix block, less mesh 
refinement is required, e.g., to resolve flow instabilities, when higher-order methods are used. Moreover, the discontinuous
Galerkin method preserves sharp changes in fluid properties at layer and fracture-matrix interfaces.

We also note that it is not straightforward to compare the CPU times and degree of mesh refinement for the different 
types of elements: time-steps are governed by the element volumes and will be similar for any grid types, provided they 
have the same number of elements. However, the computational cost of the DG transport update scales with the number of 
nodes per element. Finally, the MHFE pressure update is proportional to the number of faces, which again scales differently 
for each type of element. To summarize: in order to make a ‘fair’ comparison between simulations on different grids we 
have to balance 1) the number of elements, which governs the time-steps, 2) the number of nodes, which determines the 
cost of the DG update and associated phase-split computations, and 3) the number of faces, which determines the size of 
the matrix that need to be inverted in the implicit pressure solve.

4. Numerical experiments

We present the results of nearly 50 simulations that explore key challenges in the modeling of subsurface flow. Grid 
independence is the first such challenge. In certain numerical models (e.g. TPFA), simulated results are sensitive to the 
orientation and quality of the mesh. We claim that MHFE shows virtually no mesh dependence. We demonstrate this in 
the first set of examples by simulating gravity depletion, water flooding, and CO2 injection on structured and unstructured 
tetrahedral, prismatic, and hexahedral grids. The fluid characterization, rock properties, temperature and pressure conditions 
are representative of a North Sea light-oil reservoir. The second example further explores gridding by verifying that in the 
absence of gravity the expansion front from a point-source in a homogeneous domain is spherical. For unstable flow, which 
exhibits viscous fingering, we demonstrate the advantage of our vertex-based DG formulation over a face-based approach. 
Anisotropic formations with a full permeability tensor are considered in the third example. The convergence rate upon grid 
refinement of our MHFE-DG method on unstructured grids is analyzed in the fourth example. In that example, we compare 
the CPU times for a range of grid refinements and different grid types. In the other examples, the bulk of the CPU time 
may be consumed by phase-split computations, and comparisons between different grid types is less informative of the 
efficiency of the FE methods. In the fifth set of examples, we demonstrate the flexibility of our methods in dealing with 
complicated domain geometries and mixing different elements types in a single mesh.
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Table 1
Example 1: Grids.

Gird NK NN NE

Hexahedra 9000 10,659 28,580
Prisms 11,240 6754 29,734
Tetrahedra 1 9000 2046 19,000
Tetrahedra 2 10,467 2611 22,670
Tetrahedra 3 36,000 7216 74,300

The first five examples are not necessarily representative of realistic reservoir geometries. Rather, each example is con-
structed to demonstrate a specific powerful feature of our finite element approach. In the sixth example, we consider two 
benchmark reservoirs from the literature: Model 2 of the ‘SPE Tenth Comparative Solution Project’ [71], and the ‘Egg Model’ 
developed at the Technical University of Delft [72,73]. These two models use logically Cartesian grids with low geometrical 
complexity, but they incorporate realistic petrophysical properties with many orders of magnitude variations in permeabili-
ties and porosities.

In all the examples we determined that the maximum mass balance error of a species for the entire simulations is of 
the order ∼ 10−13. All simulations were carried out in serial mode on a 2.8 GHz Intel Core i7 with 12 GB RAM.

4.1. Example 1: Depletion, water flooding, and CO2 injection

We consider a 0.3 km × 0.1 km × 0.05 km section of a North Sea reservoir, discretized by structured hexahedra, unstruc-
tured prisms, and various tetrahedralizations. We consider the 7-(pseudo)-component fluid characterization and formation 
properties (homogeneous rock permeability of 100 mD and 20% porosity) from Example 2 in Moortgat and Firoozabadi [70]. 
The temperature is 400 K, and the initial bottom-hole pressure of 337.5 bar is just below the saturation pressure (338 bar) 
of the oil. We assume Stone [82,83] relative permeabilities, with quadratic exponents and end-points of k0

rg = k0
ro = 0.4 for 

gas and oil. The aqueous phase has an end-point relative permeability of 0.3 and exponent of 3. The residual oil saturations 
are 50% to water and 0% to gas (due to phase behavior).

We test our unstructured higher-order FE methods for three important oil recovery processes: gravity depletion, water 
flooding, and compositional CO2 gas injection.

To investigate whether our method suffers from grid dependency, we consider 5 different grids. The first is a structured 
mesh with 50 × 18 × 10 = 9000 elements, while the other 4 are unstructured. The second grid has 10 layers of prisms, 
the third (tetrahedra 1) consists of 9000 equal size tetrahedra constructed from a 1500 element structured grid (5 layers) 
by dividing each cuboid into 6 tetrahedra, the fourth grid (tetrahedra 2) is an irregular constrained Delaunay tesselation 
with 10,467 elements of widely varying sizes, and the fifth (tetrahedra 3) is a 36,000 element refinement (10 layers) of the 
tetrahedra 1 grid. The number of elements, vertices and faces for each grid are summarized in Table 1. Wells are placed at 
the origin (bottom) and the diagonally opposite corner (top) with each well’s function (injection or production) determined 
by the production scenario. For the depletion case, oil is produced at a constant rate of 6% pore volume (PV) per year from 
the bottom well, water flooding and gas injection are at a constant rate of 5% PV/yr from the bottom well with constant 
production pressure from the top.

4.1.1. Depletion
Fig. 6 shows the gas saturation throughout the domain on all 5 grids after 5 years of gravity depletion. The results are in 

good agreement on all types of grids. The complete lack of mesh dependence for these simulations is even more apparent 
in Fig. 7, which shows the oil recovery over a simulation time of 20 years. The results are indistinguishable. Depletion is 
a somewhat challenging test-case for multiphase flow simulations, because the flow exhibits gravitational counter-current 
flow with gas buoyantly rising to the top while oil drains to the bottom.

4.1.2. Water flooding
The water saturation after 1 year of 5% PV/yr injection is shown in Fig. 8 on all 5 grids. Due to the 50% residual oil 

saturation, water has invaded about 10% of the domain. Again, we find very good agreement in the front locations on all 
meshes and nearly identical oil recoveries over 20 year in Fig. 9. We do see a slightly sharper kink in the oil recovery around 
the time of water breakthrough for the finest tetrahedral grid, suggesting that the ∼ 9000 element grids still have a small 
degree of numerical dispersion.

4.1.3. CO2 injection
The injected CO2 has a higher density (614 kg/m3) than the oil (543 kg/m3), so CO2 will preferentially flow below the 

oil. Fig. 10 illustrates that the gas saturation after 10 years of injection is nearly identical for MHFE-DG simulations on 
hexahedral, prismatic and tetrahedral 1 grids. Also shown is a comparison between MHFE-DG and a lower-order transport 
update (MHFE-FV) on a 2D cross-section at y = 70 m for 30% and 50% PVI and for 3 different grid types. The MHFE-FV re-
sults have not converged and are therefore more dispersed. The implications of this numerical dispersion are more apparent 
in Fig. 11. It shows that while the converged MHFE-DG simulations predict the same oil recovery on all grid types (with 
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Fig. 6. Example 1: Gas saturation after 5 years of depletion, simulated on 5 different grids.

Fig. 7. Example 1: Oil recovery from 20 years of gravity depletion, computed on 5 different structured and unstructured grids.

Fig. 8. Example 1: Water saturation after 1 year of flooding, simulated on 5 different grids.
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Fig. 9. Example 1: Oil recovery from 20 years of water flooding, computed on 5 different structured and unstructured grids.

different levels of refinement as given in Table 1), the MHFE-FV results have different oil recoveries on different grids and 
the recovery predictions are overestimated by 15–25%.

4.2. Example 2: Grid sensitivity studies

We carry out a few more targeted grid sensitivity studies.

4.2.1. Stable waterflooding
First, water is injected (at 10% PV/yr) from the center of a 3 m × 3 m × 3 m cube, with constant pressure production 

from all 8 vertices. All rock and fluid parameters are the same as in Example 1. We set the gravitational acceleration to zero 
to make the problem fully symmetric. The water front should therefore expand as a sphere. Sensitivity to grid orientation 
manifests itself as enhanced flow along the prevalent grid directions. On 2D structured grids (below), this would result in 
a diamond-shaped distortion of the (real) circular outflow. In 3D, grid sensitivity would lead to deviations from the sphere, 
either along the coordinate axes for structured cuboid grids, or along preferred grid lines in unstructured prismatic and 
tetrahedral grids.

Fig. 12 shows the water saturation profile at 6% PVI, as well as a projection onto a slice at z = 0.7 m, simulated on a 
hexahedral, a prismatic, and two tetrahedral grids. We see no discernible deviations from the sphere (or projected circle) 
due to grid sensitivity.

We also simulated this problem (and others) with our previous face-based DG formulation and found equally low grid 
sensitivity. However, we expect that the vertex-based DG formulation should be superior in some applications, as discussed 
in Section 3.3. To test this hypothesis we consider a pathological case of an unstable displacement front next.

4.2.2. Unstable gas injection with viscous fingering
We consider a 2D horizontal 50 m × 50 m five-spot pattern (source in the center, constant pressure production wells 

in all four corners), and a fine 99 × 99 element mesh. All other parameters are the same as above. To simulate unstable 
flow, we inject CO2 and increase the gas/oil mobility ratio through the relative permeability by changing the gas relative 
permeability to linear, and setting k0

rg = 10 × k0
ro = 1. The oil and gas viscosities are 0.14 cp and 0.03 cp, respectively.

Fig. 13 shows the overall CO2 composition at 5% PVI for simulations with vertex- versus face-based DG formulations. We 
present these early-time results, because the onset of a viscous fingering instability is of interest. Due to the adverse mobility 
ratio, the flow is inherently unstable. However, the instability needs to be triggered by some deviation from complete 
symmetry (e.g. numerical precision). What we see in Fig. 13 is that for the vertex-based DG, viscous fingers emerge first 
along the physical deviation from symmetry caused by the four production wells in the corners. For the face-based DG, 
on the other hand, we find that the most pronounced fingers prefer to flow along the coordinate axes, which is a typical 
unphysical gridding effect. We conclude that for certain problems the vertex-based DG formulation presented in this work 
performs better than the face-based discretization with the same formal convergence properties. Simulations results are 
also presented for a lowest-order FV transport update, which shows similar grid orientation effects as in the face-based DG 
approach, but with increased numerical dispersion.

4.2.3. General quadrilateral and hexahedral grids
As a final test of mesh sensitivity, we consider water-flooding from the center of extremely poor quality distorted quadri-

lateral and hexahedral grids as shown in Fig. 14. Production is again from all the corners. The nodes of structured 2D and 
3D grids are randomly perturbed to the degree that, for instance, many of the quadrilaterals look like triangles with a hang-
ing node on one of the edges (which in reality is the fourth node of the quadrilateral). The hexahedra have non-parallel 
faces and many sharp angles. For the 2D grid, water is injected from the center at 10% PV/yr. The 3D simulation is as in 
Section 4.2.1. We can still not detect any mesh sensitivity or other numerical artifact, and the total mass balance error 
(integrated in time, and over the domain) in each of the 6 components after 100% PVI is < 10−14.
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Fig. 10. Example 1: Gas saturation after 10% PV of CO2 injection from the bottom, MHFE-DG simulations on 3 different grids. Overall CO2 composition 
is also shown at 30% and 50% PVI on a cross-section at y = 70 m for both MHFE-DG and lower order MHFE-FV simulations, with arrows indicating the 
(projected) injection (top) and production (bottom) well locations.

Fig. 11. Example I: Oil recovery from 20 years, or 1 PV, of CO2 injection from the bottom, computed on 4 different structured and unstructured grids with 
MHFE-DG and MHFE-FV.
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Fig. 12. Example 2: Water saturation isosurface (S w = 0.2) and projected contours (S w = 0.05 and S w = 0.1) at 6% PVI on NK = 29,791 hexahedral, 
NK = 35,030 prismatic, NK = 29,478 tetrahedra 1, and NK = 55,566 tetrahedra 2 grids.

Fig. 13. Example 2: Overall CO2 molar fraction at 5% PVI CO2 injection from the center for MHFE-FV and MHFE plus vertex- and face-based DG simulations. 
Production is from the four corners.

Fig. 14. Example 2: Water saturation for injection from the center with production from all corners. Left figure is at 15% PVI for NK = 64 × 64 distorted 
quadrilateral grid. Right figure is same NK = 29,791 hexahedral grid and S w = 20% iso-surface at 6% PVI as in Fig. 12 but with nodes randomly distorted.

4.3. Example 3: Water flooding of anisotropic reservoir

One of the strengths of our FE formulation is that we can readily accommodate full permeability tensors. On unstructured 
grids we effectively always consider anisotropic permeability, in the sense that even for a matrix-diagonal permeability on 
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Fig. 15. Example 3: Water saturation after 1% PVI of water, simulated on 5 different grids with permeability tensor K+ given in (20).

a real mesh element, the permeability mapped onto the reference finite element will look like an anisotropic permeability 
tensor.

In this example we consider two tensors in which the vertical permeability is much lower than the horizontal perme-
ability, and the permeability in the x–y direction is either enhanced or reduced:

K± = 10 mD

⎛

⎝
50 ±40 0

±40 50 0
0 0 1

⎞

⎠ (20)

such that the determinants of K+ and K− are again 100 mD. We repeat the water flooding case from Example 1 with this 
permeability, and on all 5 (un)structured grids.

The effect of the non-zero Kxy component is most apparent before the water front reaches the back y = 100 m of the 
domain, so we plot the water saturation at 1% PVI for K+ and K− in Figs. 15 and 16, respectively. Only 0 < x < 100 m is 
shown for clarity.

We see how the positive Kxy significantly enhances the (early) flow along the x = y direction in Fig. 15, while a neg-
ative Kxy has the opposite effect in Fig. 16. A similar example for triangular 2D grids was presented in Moortgat and 
Firoozabadi [75]. These observations are as expected and simply demonstrate the applicability of our MHFE-DG approach to 
non-grid-orthogonal tensor permeabilities. The initial flow is mainly in the x–y plane, due to the high horizontal to vertical 
permeability ratio. The fronts on the coarsest two tetrahedral grids (1 and 2) are slightly more dispersed, because they have 
only ∼ 5 layers in z, as compared to 10 layers for the hexahedral and prismatic grids. On the finer tetrahedral 3 grid the 
results appear to be converged. In terms of the oil recovery predictions, the results from the coarsest tetrahedral 1 grid 
converge to those on the finer hexahedral and prismatic grids, as shown in Fig. 17 for 20 years of water injection for K+
(the figure for K− is omitted due to its similarity).

4.4. Example 4: Convergence analysis

We analyze the convergence properties of our FE methods by simulating a simple problem on a wide range of grid 
refinements. Water is injected into a 4 cm × 4 cm × 30 cm core saturated with nC10. The temperature and pressure are 
310 K and 100 bar, respectively, the permeability is 10 mD, and porosity is 20%. The relative permeabilities are linear 
with unit end-point for oil and 0.3 for water, and the residual oil saturation is 30%. To simulate gravitationally stable 
displacement, we inject one PV/day from the bottom and produce from the top at a constant pressure.

We perform simulations on 9 different grids. The coarsest grid has N1 = 2 × 2 × 15 hexahedral elements, which we 
refine by a factor 2 in each direction 4 times, such that the finest grid has 212 × N1 elements. Tetrahedral grids are created 
by dividing each hexahedron into 6 tetrahedra. The number of elements, vertices, and faces for the 5 hexahedral and 4
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Fig. 16. Example 3: Water saturation after 1% PVI of water, simulated on 5 different grids with permeability tensor K− given in (20).

Fig. 17. Example 3: Oil recovery from 20 years of water injection from the bottom of a reservoir with permeability tensor K+ given in (20), computed on 
3 different grids.

Table 2
Example 4: Convergence analysis on hexahedra.

NK NN NE h (mm) L1 error (×10−3) Convergence rate p CPU time

245,760 245,760 753,664 1.25 – – 36 min
30,720 34,969 96,256 2.50 2.55 – 3 min

3840 4941 12,544 5.00 7.25 1.51 14 sec
480 775 1696 10.00 17.54 1.39 1 sec

60 144 244 20.00 36.32 1.28 <1 sec

tetrahedral grids are provided in Tables 2 and 3, respectively. The finest grid has 245,760 elements, 262,449 faces, and 
753,664 nodes, such that we update well over one million values for compositions, pressures and fluxes.

The flow of water through the core is piston-like displacement. The exact water composition profile is expected to be a 
1D step-function propagating through the core, with increasing numerical dispersion exhibited on coarser grids. 3D plots of 
the results on all 9 meshes are not very informative. Instead, Fig. 18 shows a projection onto the z-axis of all the hexahedral 
simulations at 50% PVI.

The important results are summarized in Tables 2 and 3, which provide the L1 errors, convergence rates, and CPU times 
of all the simulations. The order of convergence is lower than the formal order of 2, but is still well above linear. In fact, it 
is higher than for the Buckley–Leverett problem simulated with a MHFE-DG approach in Hoteit and Firoozabadi [64], and 
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Table 3
Example 4: Convergence analysis on tetrahedra.

NK NN NE h (mm) L1 error (×10−3) Convergence rate p CPU time

184,320 34,969 376,832 1.376 – – 3 min
23,040 4941 48,128 2.752 1.89 – 14 sec

2880 775 6272 5.503 4.92 1.38 8 sec
360 144 848 11.007 16.90 1.58 <1 sec

Fig. 18. Example 4: Water composition (molar fraction) at 50% PVI on all 5 hexahedral grids as provided in Table 2.

Fig. 19. Example 5: Compounded mesh before (left) and after applying the coordinate transformation in (21)–(22) (right), and location of injection and 
production wells in the final mesh. The original mesh on the left consists of 1) a 0.1 km × 0.1 km × 0.08 km cube discretized by 10 × 13 × 10 hexahedral 
elements, 2) an hour-glass shaped domain consisting of 10 layers, with the horizontal cross-sections defined by the points (100 m, 0 m), (175 m, 40 m), 
(250 m, 10 m), (220 m, 80 m), (165 m, 60 m), and (100 m, 100 m), discretized by 2870 prisms, and 3) a 30 m-radius sphere, discretized by 676 tetrahedra 
(constrained Delaunay tesselation).

our convergence study in Moortgat et al. [66]. The latter may be due to the vertex, rather than face, based formulation. 
Fig. 18 illustrates the gain from the higher order of convergence: the simulation results on the 8 × 8 × 60 grid have mostly 
converged to the same accuracy as on the 32 × 32 × 240 grid, while requiring two orders of magnitude less CPU time.

4.5. Example 5: Complex domains and grids

4.5.1. Mixed elements grid
To illustrate our capability to mix different element types, we start with 3 sub-domains, which are discretized by hexa-

hedra, prisms, and tetrahedra, respectively, and then form a compounded grid by ‘glueing’ the three grids together, as shown 
in Fig. 19. Because neighboring elements cannot have intersecting edges, we join the rectangular faces of the right-boundary 
of the cuboid with those of the left-boundary of the prismatic grid, and one of the triangular faces of the top-boundary of 
the latter grid with one of the triangular faces of the tetrahedral sphere. We subsequently transform the x and z coordinates 
to x′ and z′ (with Lx = 250 m and Lz = 143 m) by

x′ = x − (z + Lz)/5, (21)

z′ = z + x/6 + 40 sin(xπ/Lx)
4 + y/2.5, (22)

to create more general unstructured hexahedral and prismatic elements. The geometrical slopes and domes result in inter-
esting multiphase flow, particularly when driven by gravity. The grid and well locations are shown before and after applying 
(21)–(22) in Fig. 19.
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Fig. 20. Example 5: Gas saturation after 4 years depletion at 5% PV/yr from the bottom.

Fig. 21. Example 5: Water saturation at 10% (left), 25% (middle), and 45% (right) PV of water flooding.

For the simulations, we consider the same fluid and rock parameters as in Example 1 and again simulate depletion, 
water flooding, and gas injection.

Gravity depletion We deplete at a constant rate of 5% PV/yr from the lowest point in the domain. The initial bottom-hole 
pressure is 375 bar. The saturation pressure of the reservoir oil is not much lower (338 bar), and after a few months the 
pressure in the top start to drop below the saturation pressure. It takes only 6 months before the entire reservoir is in 
a two-phase state. Fig. 20 shows the gas saturation throughout the reservoir after 4 years. Because of the relatively high 
permeability (100 mD), the liberated gas buoyantly rises to the top and accumulates in the trap in the prismatic grid section 
and inside the sphere, although the latter is hampered by the bottle-neck intersection. In terms of numerical performance, 
we see a smooth and nearly flat saturation profile throughout the grid without any artifacts at the intersections between 
different element-types.

Water flooding Water is injected at 5% PV/yr from the lowest point, and production is from the top of the sphere, re-
sulting in immiscible compressible displacement of the reservoir oil. The water saturation at different times is shown in 
Fig. 21. Note that the mesh is rotated around the z-axis by 180◦ to offer a better view. During the first 10% PVI wa-
ter mainly fills the lower trough of the hexahedral and prismatic sections, before spilling over into the second trough in 
the domain. After 42% PVI the flooding front reaches the bottle-neck to the sphere. At later times, water fills the sphere, 
without recovering the oil in the dome section of the domain. Fig. 21 nicely shows a level front due to gravitational segre-
gation.

CO2 injection As mentioned in Example 1, CO2 is denser than the oil at these reservoir conditions and should be injected 
from the bottom for the most efficient oil recovery. However, the flow in that case is similar to that of water in the previous 
example, so instead we simulate the more complicated scenario of CO2 injection from the top of the sphere, with production 
from the bottom. Fig. 22 shows the overall molar fraction of CO2 after 10% and 25% PVI. We see how dense CO2 sinks to 
the bottom of the sphere, and then fills the right-side trough of the prismatic grid, before spilling over into the downward 
sloping prismatic and hexahedral sections of the domain. Again, we observe no sign of grid sensitivity within or across the 
transitions between the 3 sub-grids.
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Fig. 22. Example 5: Overall CO2 composition (molar fraction) at 5% (left) and 10% (right) PV of CO2 injection.

Fig. 23. Example 6: Gas saturation for 5% PV/yr methane injection into bottom five layers of SPE 10 domain at 25% PVI (left) and 70% PVI (right).

Fig. 24. Example 6: Gas saturation for 5% PV/yr methane injection into top five layers of SPE 10 domain at 50% PVI (left) and 100% PVI (right).

4.6. Example 6: Benchmark examples with realistic petrophysical properties

4.6.1. SPE tenth comparative solution project
We consider the SPE 10 benchmark problem [71] as an example of a realistic geo-statistical realization of petrophysical 

properties. This benchmark problem has more than eight orders of magnitude variation in permeabilities, as well as a wide 
range in porosities. We perform fine-grid simulations of two-phase flow in two different sectors of this domain, which is 
saturated with nC10 at the same temperature and pressure as in Example 4. C1 is injected at 5% PV/yr from one corner 
and production is at a constant pressure from the opposite corner. The relative permeabilities are linear with an end-point 
relative permeability of 0.27 for oil, and 1 for gas.

The first section consists of the bottom five layers (60 × 220 × 5 grid cells). This is part of the fluvial Ness formation 
in the North Sea, which has well connected high-permeability sandstone channels, corresponding to river depositions with 
low permeability shale in between. Fig. 23 shows the gas saturation at 25% and 70% PVI and clearly shows the channeling 
of injected methane through the high permeability sandstone with a poor sweep of the shale depositions.

The second section has the top five layers from the Tarbert formation, which has a completely different shallow marine 
deposition history. In Fig. 24, we see a better sweep for the Tarbert formation, in which the permeability variations still 
span 8 orders of magnitude, but with a shorter correlation length.



494 J. Moortgat, A. Firoozabadi / Journal of Computational Physics 315 (2016) 476–500

Fig. 25. Example 6: Gas saturation for 5% PV/yr CO2 injection into Egg reservoir model saturated with oil. Snap-shots at 5% (top-left), 25% (top-right), 50% 
(bottom-left) and 65% PVI (bottom-right). Eight injection wells are indicated in blue, and four production wells in red. (For interpretation of the references 
to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 26. Example 6: Same as Fig. 25 but for CO2 injection into Egg reservoir saturated with oil and water (three-phase flow problem). Snap-shots at 5% (left) 
and 25% PVI (right). Note that these correspond to a 31% lower effective pore volume.

4.6.2. TU delft Egg domain
This synthetic domain is a three-dimensional realization of a channelized reservoir, which was used to benchmark water 

flooding conditions with eight water injectors and four producers using 4 different simulators [73,72]. We use the dataset 
adapted for MRST [84]. An image of the channeled permeability field is also available on the SINTEF MRST website. The 
permeability varies between about 80 and 7000 milli-Darcy, while the porosity is uniform at 20%.

Instead of modeling the same immiscible two-phase flow problem, we combine the grid and realistic petrophysical 
properties from the Egg model with a challenging ‘benchmark’ compositional problem from our own work. We consider 
CO2 injection into a Brazilian oil which we modeled before [68] at conditions where CO2 is supercritical and denser than 
the oil, and the CO2–oil mixtures are near the critical point. All parameters, except the grid, permeability and porosity, are 
the same as in our earlier work [68], and we also include Fickian diffusion in this example. CO2 is injected at a constant 
rate of 5% PV/yr from 8 injectors that perforate the full depth of the formation (7 layers), represented by a total of 56 grid 
cells. Constant pressure production wells are defined on the outer boundaries of the domain, and are represented by one 
element in the top and one in the bottom of each of the 4 producers indicated in Figs. 25–26 (a total of 8 grid cells). The 
grid has a total of 18,553 active grid cells.

Fig. 25 shows gas saturations at 5, 25, 50, and 65% PVI for two-phase gas–oil flow. The panels show how dense CO2, 
injected from the 8 wells in blue, segregates to the bottom even in this relatively thin formation. The high permeability 
channels in the Egg model enhance flow towards some of the producers (in red), while impeding flow to, for instance, the 
bottom-left producer. We also simulate the same problem, but as a three-phase compositional problem with a 31% connate 
water saturation and allowing for CO2 dissolution into the aqueous phase and the resulting volume swelling. Fig. 26 shows 
that the results are quite similar.
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5. Conclusions

In this work, we study for the first time an attractive combination of higher-order finite element methods for com-
pressible, compositional three-phase flow on unstructured 3D grids. The main strengths of our IMPEC MHFE-DG scheme are 
summarized below:

1. Both the DG and MHFE methods work as well on unstructured grids as they do on structured ones and with similar 
complexity of implementation. The DG transport update can capture discontinuities in fluid properties, e.g., across 
phase boundaries, layers, and fractures, with low numerical dispersion. The MHFE approach provides accurate, globally 
continuous, velocity fields, even on highly heterogeneous and anisotropic permeability fields. The only geometry/grid 
dependence of the MHFE-DG implementation consists of coefficients that are computed in a preprocessing step.

2. Our new vertex-based MHFE-DG method is more accurate than previous face-based implementations. The reason is that 
multiple values are upwinded across each face, which transfers information regarding not only the magnitude of phase 
properties, but also their gradients.

3. These finite element methods are remarkably insensitive to mesh orientation and quality, which we demonstrated for 
grids made of tetrahedra, prisms, and general hexahedra in 3D, as well as triangles and general quadrilaterals in 2D.

The first item has been demonstrated on unstructured grids in the past for incompressible immiscible flow, but not for 
compressible compositional flow. Compositional flow is a considerably more complicated problem due to the higher degree 
of non-linearity.

To build confidence in the algorithm, we presented a wide range of numerical experiments in Sections 4. The examples 
demonstrate that simulations of multicomponent multiphase flow with gravity-driven counter-current-flow and phase be-
havior yield identical results on all considered grid types, and for a range of processes (Example 1). As expected, we find 
that the MHFE method exhibits no grid orientation effects (Example 2), and can accommodate a full permeability tensor 
(Example 3). For transport we showed that by using a multi-linear DG approximation we can achieve a higher convergence 
rate than for element-wise constant approximations. This is critical in 3D, where the CPU cost of grid refinement by a factor 
δ f scales with δ f 4 for an IMPEC method (one factor of δ f is due to the CFL time-step constraint and could be eliminated 
in fully implicit schemes). Using even higher orders of DG may further improve accuracy, but involves a more subtle trade-
off than for immiscible incompressible flow models, because of the additional (CPU expensive) phase-split computations. 
Combinations of different grid types were considered in Example 5, and two- and three-phase flow with Fickian diffusion 
were modeled for realistic geostatistical benchmark problems in terms of petrophysical properties in Example 6.

Appendix A. Phase-split computations

Details of the phase stability and phase-split computations for compositional three-phase flow are discussed in [66]. The 
basic algorithm proceeds along the following steps:

1. For a given mixture composition zi , temperature and pressure, perform a phase stability analysis to determine whether 
a single-phase state is stable. The phase stability analysis is based on the tangent-plane distance and finds the phase 
state with the minimum Gibbs free energy. If the fluid is stable, xi,α = zi and cα = c and no further calculations need 
to be performed. If the phase is unstable, we proceed to a two-phase phase-split computation.

2. The phase-split calculations determine the phase compositions and amounts such that the fugacities of each component 
are equal in all phases. We have found that the most numerically stable and efficient approach (fewest iterations) is 
to carry out these calculations in terms of the logarithm of equilibrium ratios: ln Ki = ln φi,α1 − ln φi,α2 , in which φi,α
are the fugacity coefficients and α1, α2 are two of the three possible phases. The molar fractions of each phase, βα are 
found from the Rachford–Rice equation: 

∑
i(xi,α1 − xi,α2 ) = 0. The equilibrium ratios and phase fractions βα are found 

iteratively. First, successive substitution iterations (SSI) are used until both Ki and βα have converged to a tolerance of 
typically 10−4. After this switch criterion, Newton–Raphson (NR) iterations are used until the error is < 10−10. The NR 
method requires the computation of the inverse of a Jacobian matrix of derivatives of the aforementioned governing 
equations with respect to ln Ki and βα . However, while the SSI has linear converge, NR shows quadratic convergence 
and only requires a few iterations.

3. Once a two-phase solution is found, we perform a second phase-stability analysis to determine whether the two-phase 
state is stable, or whether a three-phase state has a lower Gibbs free energy. This can be done by testing the stability 
of either of the two phases found in the previous step. If the two-phase state is stable, phase compositions can be 
computed from zi , Ki and βα . If not, a three-phase split computation is performed.

4. The three-phase split computation, while computationally more challenging, is mathematically similar to the two-phase 
split. We solve for two sets of equilibrium ratios from ln Ki,α1 = ln φi,α1 − ln φi,α2 and ln Ki,α3 = ln φi,α3 − ln φi,α2 , and 
two Rachford–Rice equations. The same combination of SSI and NR with the same switch criterion and final tolerance 
is used for the iterative solution procedure.
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The full (stand-alone) phase stability and phase-split algorithm is very computationally expensive. In the context of reservoir 
simulations, many of the computational steps can be avoided by spatial and temporal information. For example, whenever 
equilibrium ratios and phase amounts from a previous time-step are available, these can be used as initial guesses for 
a phase-split calculation. In > 99% of cases the phase-split computation with such a guess converge in a few iterations, 
avoiding the need for a phase-stability analysis. Also, if a grid cell and all its neighboring grid cells where in single-phase 
in the previous time-step, it is safe to assume that this grid cell will remain in single-phase at the next time-step (for 
fluid injection, not depletion, and for an IMPEC scheme with a time-step constraint that essentially says that a fluid cannot 
propagate through more than one grid cell in one time-step). A similar argument can be used for grid cells saturated with 
water and oil, when an injection gas front is still far away. The phase-split computations are further optimized by adaptively 
adjusting the switch criterion: if the average number of SSI iterations is large, while only one or two NR iterations are used, 
we increase the tolerance (switch to NR earlier). Conversely, if the number of NR iterations is high or NR fails due to 
inadequate initial guesses, the tolerance is decreased (more SSI iterations before NR).

Appendix B

In this appendix we provide the complete expressions for the second-order Discontinuous Galerkin update on two-
dimensional triangles and rectangles, and three-dimensional prisms, tetrahedra, and hexahedra. Our formulation allows for 
any combination of these element types within a single grid.

To solve (15) we invert the matrix 
∫

K φNφN ′ dx analytically and arrive at the generic expression

(ci)
n+1
K ,N = (ci)

n
K ,N + ,t

φ|K |
∑

α

[(V i)
n
α − (Ei)

n
α + (Fi)

n
K ] (23)

for each component i at each node N . (V i)
n
α and (Ei)

n
α collect all the terms in the volume and surface integrals in (15), 

respectively.
The expressions for (V i)

n
K ,α and (Ei)

n
E,α are the same for each grid cell, each phase, and each time-step, so we drop 

indices n and α. As such, cN refers to the phase composition inside grid cell K at node N . Note that the flux index refers to 
edges. For the upwind phase compositions we use slightly different notation here c̃E,n will refer to the phase composition 
upwinded with respect to the flux qα,E , at local node n of edge E (i.e., n = 1, 2 for triangular and quadrilateral elements, 
n = 1, 2, 3 for tetrahedra and two faces on a prism, and n = 1, . . . , 4 on the quadrilateral faces on a prism and for hexahedra).

We write in matrix notation V = V N,α , Q = qα,E , c = cN,α .

Triangular elements
Fig. 1 illustrates the degrees-of-freedom (DOF) for the MHFE-DG method. The vertex-based DOF for the DG transport 

update are defined inside each element K , and can be discontinuous across edges E .
The volume integrals in (23) can be written as: V N,α = cV̄N q/2, with

V̄1 =

⎛

⎝
2 2 −2
1 1 −3
1 1 −3

⎞

⎠ , V̄2 =

⎛

⎝
1 −3 1
2 −2 2
1 −3 1

⎞

⎠ , V̄3 =

⎛

⎝
−3 1 1
−3 1 1
−2 2 2

⎞

⎠ .

The surface integrals are given explicitly by E N,α = ĒN q/2, with

Ē1 =
(
5c̃1,1 + c̃1,2,5c̃2,1 + c̃2,2,−3[c̃3,1 + c̃3,2]

)
,

Ē2 =
(
c̃1,1 + 5c̃1,2,−3[c̃2,1 + c̃2,2],5c̃3,1 + c̃3,2

)
,

Ē3 =
(
−3[c̃1,1 + c̃1,2], c̃2,1 + 5c̃2,2, c̃3,1 + 5c̃3,2

)
.

Quadrilaterals
We write the volume integrals in (15)–(23) as V N,α = 1

9 A−1(cV̄N q) with

A−1 =

⎛

⎜⎜⎝

4 −2 1 −2
−2 4 −2 1
1 −2 4 −2

−2 1 −2 4

⎞

⎟⎟⎠ ,

and

V̄1 =

⎛

⎜⎜⎝

−2 4 −2 4
−4 2 −1 2
−2 1 −2 1
−1 2 −4 2

⎞

⎟⎟⎠ , V̄2 =

⎛

⎜⎜⎝

2 −4 −1 2
4 −2 −2 4
2 −2 −4 2
1 −2 −2 1

⎞

⎟⎟⎠ ,
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V̄3 =

⎛

⎜⎜⎝

1 −2 1 −2
2 −1 2 −4
4 −2 4 −2
2 −4 2 −1

⎞

⎟⎟⎠ , V̄4 =

⎛

⎜⎜⎝

−1 2 −2 −4
−2 1 1 −2
−4 2 2 −1
−2 4 4 −1

⎞

⎟⎟⎠ .

The surface integrals are computed from E N,α = 2
3 A−1(ĒN q), with

Ē1 =
(
0, c̃2,1 + 2c̃2,2,0,2c̃4,1 + c̃4,2

)
,

Ē2 =
(
2c̃1,1 + c̃1,2,0,0, c̃4,1 + 2c̃4,2

)
,

Ē3 =
(
c̃1,1 + 2c̃1,2,0,2c̃3,1 + c̃3,2,0

)
,

Ē4 =
(
0,2c̃2,1 + c̃2,2, c̃3,1 + 2c̃3,2,0

)
.

Tetrahedra
For tetrahedra we find V N,α = cV̄N q/3, with

V̄1 =

⎛

⎜⎜⎝

2 2 −3 2
1 1 −4 1
1 1 −4 1
1 1 −4 1

⎞

⎟⎟⎠ , V̄2 =

⎛

⎜⎜⎝

1 −4 1 1
2 −3 2 2
1 −4 1 1
1 −4 1 1

⎞

⎟⎟⎠ ,

V̄3 =

⎛

⎜⎜⎝

−4 1 1 1
−4 1 1 1
−3 2 2 2
−4 1 1 1

⎞

⎟⎟⎠ , V̄4 =

⎛

⎜⎜⎝

1 1 1 −4
1 1 1 −4
1 1 1 −4
2 2 2 −3

⎞

⎟⎟⎠ .

The surface integrals are given by E N,α = ĒN q/3, with

Ē1 =
(
6c̃1,1 + c̃1,2 + c̃1,3,6c̃2,1 + c̃2,2 + c̃2,3,−4[c̃3,1 + c̃3,2 + c̃3,3],6c̃4,1 + c̃4,2 + c̃4,3

)
,

Ē2 =
(
6c̃1,1 + c̃1,2 + c̃1,3,−4[c̃2,1 + c̃2,2 + c̃2,3],6c̃3,1 + c̃3,2 + c̃3,3,6c̃4,1 + c̃4,2 + c̃4,3

)
,

Ē3 =
(
−4[c̃1,1 + c̃1,2 + c̃1,3],6c̃2,1 + c̃2,2 + c̃2,3,6c̃3,1 + c̃3,2 + c̃3,3,6c̃4,1 + c̃4,2 + c̃4,3

)
,

Ē4 =
(
6c̃1,1 + c̃1,2 + c̃1,3,6c̃2,1 + c̃2,2 + c̃2,3,6c̃3,1 + c̃3,2 + c̃3,3,−4[c̃4,1 + c̃4,2 + c̃4,3]

)
.

Prismatic elements
Note that this is the first element type where the number of nodes and faces is not equal.

The volume integrals are V N,α = cV̄N q/2, with

V̄1 =

⎛

⎜⎜⎜⎜⎜⎝

2 2 −2 −2 4
1 1 −3 0 0
1 1 −3 0 0
0 0 0 −4 2
0 0 0 0 0
0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎠
, V̄2 =

⎛

⎜⎜⎜⎜⎜⎝

1 −3 1 0 0
2 −2 2 −2 4
1 −3 1 0 0
0 0 0 0 0
0 0 0 −4 2
0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎠
, V̄3 =

⎛

⎜⎜⎜⎜⎜⎝

−3 1 1 0 0
−3 1 1 0 0
−2 2 2 −2 4
0 0 0 0 0
0 0 0 0 0
0 0 0 −4 2

⎞

⎟⎟⎟⎟⎟⎠
,

V̄4 =

⎛

⎜⎜⎜⎜⎜⎝

0 0 0 2 −4
0 0 0 0 0
0 0 0 0 0
2 2 −2 4 −2
1 1 −3 0 0
1 1 −3 0 0

⎞

⎟⎟⎟⎟⎟⎠
, V̄5 =

⎛

⎜⎜⎜⎜⎜⎝

0 0 0 0 0
0 0 0 2 −4
0 0 0 0 0
1 −3 1 0 0
2 −2 2 4 −2
1 −3 1 0 0

⎞

⎟⎟⎟⎟⎟⎠
, V̄6 =

⎛

⎜⎜⎜⎜⎜⎝

0 0 0 0 0
0 0 0 0 0
0 0 0 2 −4

−3 1 1 0 0
−3 1 1 0 0
2 −2 −2 −4 2

⎞

⎟⎟⎟⎟⎟⎠
,

and the surface integrals satisfy E N,α = ĒN q/2, with

Ē1 =
(
5c̃1,1 + c̃1,3,5c̃2,1 + c̃2,3,−3[c̃3,1 + c̃3,3],−4c̃4,1,8c̃5,1

)
,

Ē2 =
(
c̃1,1 + 5c̃1,3,−3[c̃2,1 + 5c̃2,3],5c̃3,1 + c̃3,3,−4c̃4,2,8c̃5,2

)
,

Ē3 =
(
−3[c̃1,1 + c̃1,3], c̃2,1 + 5c̃2,3, c̃3,1 + 5c̃3,3,−4c̃4,3,8c̃5,3

)
,

Ē4 =
(
5c̃1,2 + c̃1,4,5c̃2,2 + c̃2,4,−3[c̃3,2 + c̃3,4],8c̃4,1,−4c̃5,1

)
,

Ē5 =
(
c̃1,2 + 5c̃1,4,−3[c̃2,2 + 5c̃2,4],5c̃3,2 + c̃3,4,8c̃4,3,−4c̃5,3

)
,

Ē6 =
(
−3[c̃1,2 + c̃1,4], c̃2,2 + 5c̃2,4, c̃3,2 + 5c̃3,4,8c̃4,3,−4c̃5,3

)
.
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Hexahedra
The volume integrals are given by V N,α = cV̄N q with N = 1, . . . 8 and six edges E .

V̄1 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 2 −1 2 −1 2
−2 1 0 0 0 0
0 0 0 0 0 0
0 0 −2 1 0 0
0 0 0 0 −2 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, V̄2 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −2 0 0 0 0
2 −1 −1 2 −1 2
0 0 −2 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 −2 1
0 0 0 0 0 0
0 0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

V̄3 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 0 1 −2 0 0
2 −1 2 −1 −1 2
1 −2 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 −2 1
0 0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, V̄4 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 −2 0 0
0 0 0 0 0 0

−2 1 0 0 0 0
−1 2 2 −1 −1 2
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 −2 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

V̄5 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 1 −2
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

−1 2 −1 2 2 −1
−2 1 0 0 0 0
0 0 0 0 0 0
0 0 −2 1 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, V̄6 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 0 0 0 1 −2
0 0 0 0 0 0
0 0 0 0 0 0
1 −2 0 0 0 0
2 −1 −1 2 2 −1
0 0 −2 1 0 0
0 0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

V̄7 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 −2
0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 −2 0 0
2 −1 2 −1 2 −1
1 −2 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, V̄8 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 −2
0 0 1 −2 0 0
0 0 0 0 0 0

−2 1 0 0 0 0
−1 2 2 −1 2 −1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The surface integrals are calculated from E N,α = 2ĒN q with

Ē1 =
(
−c̃1,1,2c̃2,1,−c̃3,2,2c̃4,1,−c̃5,1,2c̃6,1

)
,

Ē2 =
(
2c̃1,1,−c̃2,1,−c̃3,1,2c̃4,2,−c̃5,2,2c̃6,2

)
,

Ē3 =
(
2c̃1,2,−c̃2,2,2c̃3,1,−c̃4,2,−c̃5,3,2c̃6,3

)
,

Ē4 =
(
−c̃1,2,2c̃2,2,2c̃3,2,−c̃4,1,−c̃5,4,2c̃6,4

)
,

Ē5 =
(
−c̃1,3,2c̃2,3,−c̃3,4, c̃4,3,2c̃5,1,−c̃6,1

)
,

Ē6 =
(
2c̃1,3,−c̃2,3,−c̃3,3,2c̃4,4,2c̃5,2,−c̃6,2

)
,

Ē7 =
(
2c̃1,4,−c̃2,4,2c̃3,3,−c̃4,4,2c̃5,3,−c̃6,3

)
,

Ē8 =
(
−c̃1,4,2c̃2,4,2c̃3,4,−c̃4,3,2c̃5,4,−c̃6,4

)
.
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