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The two main themes of this study aim to resolve conflicting results in the literature regarding the thermodynamics of
flat (uniform thickness) thin liquid films. One of the themes concerns the augmented Young equation, which is a condi-
tion for mechanical equilibrium. Two different expressions for the augmented Young equation have appeared in the lit-
erature. It is shown that under certain assumptions, the two expressions can be made equivalent. The second main
theme addresses thermodynamic functions describing systems with non-pressure-volume (non-PV) work. In thin liquid
films, the non-PV work is the film tension work. Two different expressions that relate the film’s Gibbs energy to its inter-
nal energy have appeared in the literature. This ambiguity is resolved by showing that only one of the Gibbs energies can
be used to determine the equilibrium state via energy minimization. The analysis can be readily generalized to systems
with other types of non-PV work. VC 2015 American Institute of Chemical Engineers AIChE J, 61: 3104–3115, 2015
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Introduction

Thin liquid films have a diverse array of applications in sur-

face science. They have been observed on crystalline surfaces

at temperatures below the melting point of the bulk crystalline

material. For example, thin liquid films appear as premelted

layers on the surface of ice crystals and snowflakes.1 The melt-

ing temperature of gold nanoparticles can be theoretically

modeled with high accuracy if the model accounts for the

presence of thin liquid films on the surface of the nanopar-

ticles.2 The thermodynamics of thin liquid films have been

used to explain the wetting behavior of thin polymer films,3,4

which have applications in electronics and the design of anti-

reflective coatings. Thin liquid films have also served as a

model for studying lung surfactants.5 The surfactants are

essential for normal physiological function because they allow

the lung tissues to expand and contract more easily during the

breathing cycle.
Wettability alteration of mineral surfaces by CO2

6,7 and by

low-salinity waterflooding,8–12 both of which have applica-

tions to improved oil recovery (CO2 wettability alteration is

also important for geological carbon sequestration), may be

related to the thin liquid films, specifically thin brine films,

that wet the mineral surfaces. One such wettability alteration

mechanism involving thin brine films is double-layer expan-

sion. In this mechanism, injection of low-salinity brine
expands the two electrical double layers in the film (one at the
film/oil interface and another at the film/rock interface) and
increases the electrostatic repulsion between these two interfa-
ces of the film. As a result, the film becomes thicker, and the
rock becomes less oil-wet, leading to oil release and improved
recovery. Recent efforts have been made to experimentally
measure13 and theoretically predict14 the thickness of brine
films in the presence of CO2 under conditions relevant to sub-
surface CO2 injection.

The thermodynamics of thin liquid films have been studied

for the past several decades, starting with the pioneering work

of Derjaguin.15,16 The foundation he developed has been

improved by Toshev,17 Ivanov,18 Rusanov,19 de Feijter,20 Hir-

asaki,21 and several others. Many studies focus on flat (uni-

form thickness) films, although there has also been work on

curved films and other types of films with a nonuniform thick-

ness.22–26 These studies have done much to further our under-

standing of thin liquid films. For example, it is now well

known that pressure in the film is anisotropic and generally

different from the pressure in the corresponding bulk liquid.

The augmented Young-Laplace equation and the concept of

the disjoining pressure were developed to describe these phe-

nomena. The work done on the film when its area is changed

is commonly modeled using a quantity called the film tension.
The past studies have improved our understanding of thin

liquid films, but there are some conflicting results that have
not been addressed. Two different expressions for the aug-
mented Young equation, which is a condition for mechanical
equilibrium, have been proposed in the literature. Similarly,
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two different expressions for the Gibbs energy of thin liquid
films have been presented, creating ambiguity over which
expression should be used in thermodynamic analyses. This
work addresses both of these issues. The Formulation Section
establishes the foundation for the rest of our study. It introdu-
ces a model system composed of a droplet (which can be
treated as a bulk liquid), a flat thin liquid film formed from the
droplet, and a surrounding gas phase; all of which are con-
tained in an isothermal, closed container. We derive both
expressions for the augmented Young equation in the Mechan-
ical Equilibrium and the Augmented Young Equation Section
and show that the two are equivalent for films that can be
idealized under certain conditions. The Thermodynamic Rela-
tions for Thin Liquid Films Section examines the appropriate
physical context in which the two proposed Gibbs energy
functions may be applied. We show that each of the two func-
tions has a unique physical interpretation and fulfills specific
roles. For example, only one of the Gibbs energies can be used
to determine the equilibrium state in the general case when the
work involving the film tension is nonzero. We conclude with
a summary of our main results in the Conclusions Section.

Formulation

System description

We consider a liquid droplet resting on a flat, smooth, and

chemically homogeneous solid surface. The solid surface

forms part of the walls of a nondeformable container that enc-

loses the droplet and a surrounding gas phase. After the drop-

let is placed on the surface, part of it may eventually spread

out to form a thin liquid film that wets the surface. The droplet

changes shape during this process.27,28 When thermodynamic

equilibrium is eventually established, the film ceases spread-

ing and the droplet assumes a definite shape with a contact

angle h that is defined with respect to the extrapolated surface

of the film. Both the droplet and the film are not necessarily

axisymmetric in shape. It is instructive to compare the typical

physical dimensions of the droplet and the film in the equilib-

rium state. The droplet may be large enough to be visible to

the naked eye. In contrast, the film thickness h is less than 100

nanometers (nm), and usually less than 10 nm, in many studies

that have examined thin liquid films on smooth surfa-

ces.13,14,21,27,28 However, the horizontal dimensions of the

film (i.e., the extent to which it spreads out away from the

base of the droplet) are at least tens of microns large27 and

may be on the order of millimeters. Taking into account the

great disparity between the film’s thickness and its horizontal

dimensions, we idealize the film as being uniform in thickness

so that its volume is Vf 5hAf . This idealization has been used

by many authors.17,18,20,29–32 In accordance with Ref. 33, the

flat film covers the entire solid surface on which it rests. We

define our system to be the entire contents of the closed con-

tainer. This includes the liquid droplet (l), the thin liquid film

(f) formed by the droplet, the gas (g) surrounding the droplet

and film, and three interfaces between the bulk phases: liquid-

gas (lg), liquid-solid (ls), gas-solid (gs). All interfaces in this

study are treated as Gibbs dividing surfaces of zero volume.

The system is isothermal and nonreactive. We also neglect the

influence of external fields like gravity and treat the droplet

and the film as being sufficiently large enough that we may

neglect line tension effects. A two-dimensional cross section

of our system is depicted in Figure 1. For clarity, the thickness

of the film has been exaggerated in the figure.

Pressure anisotropy, disjoining pressure, and the
augmented Young–Laplace equation

Because we explicitly consider only the three interfaces that
separate the bulk phases, the region labeled as the film in Fig-
ure 1 includes not only its body, which we refer to as the film
volume, but also the four interfaces that separate the film vol-
ume from the rest of the system. Since the film is thin, we
neglect the contribution to the film’s internal energy from its
two lateral interfaces and consider only the contribution from
the film-gas and film-solid interfaces. These two interfaces are
parallel to each other and separated by a distance h. Each is
defined by an area Af. The small thickness allows the film-gas
and film-solid interfaces to be sufficiently close in proximity
so that the properties of the film (e.g., density) exhibit spatial
heterogeneity.29 The properties of thin flat films generally
depend on z. The pressure in the film is also anisotropic and
can be described by a second-order Cartesian tensor P with
diagonal components Pf

xx;P
f
yy;P

f
zz and vanishing off-diagonal

components. We denote Pf
zz as Pf

n, since it gives the pressure
normal to the film-gas interface. It has been shown for flat
films that Pf

n does not have any spatial dependence while Pf
xxðzÞ

5Pf
yyðzÞ is a function of only z.29 We briefly discuss that deriva-

tion here because we will use some of the results in our work.
The interfacial balance of momentum normal to the static
liquid-gas interface or film-gas interface yields the Young–Lap-
lace equation

Pn2Pg52cj (1)

where Pn is the normal pressure on the liquid or film side of
the interface, Pg is the gas phase pressure, c is the interfacial
tension, and

j5
1

2

1

R1

1
1

R2

� �
(2)

is the mean curvature defined by the two principal radii of cur-
vature R1 and R2. Since Pn5Pl in the droplet, the Young–

Figure 1. Two-dimensional cross section of our
system.

It is not necessarily axisymmetric. It consists of two

bulk phases (the droplet l and the gas g), the thin liq-

uid film (f), and three interfaces that separate the bulk

phases: liquid-gas (lg), liquid-solid (ls), gas-solid (gs).

All of these fluids are held inside an isothermal, closed

container. The film is characterized geometrically by

its thickness h, area Af, and volume Vf5hAf. It covers

the entire solid surface on which it rests. The contact

angle h forms at the liquid-film-gas contact line. The

horizontal double-headed arrows represent the por-

tions that contribute to the interfacial areas or to Af.

For clarity, h has been exaggerated in this figure.

[Color figure can be viewed in the online issue, which

is available at wileyonlinelibrary.com.]
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Laplace equation for the liquid-gas interface states that

Pl2Pg52clgj. The film-gas interface in our study is flat

(j 5 0) so that upon applying (1), we obtain Pf
nðz5hÞ5Pg. For

the hydrostatic thin liquid film, the Navier–Stokes equation

simplifies to

r � P50

which is a vector equation that leads to three separate scalar

equations

@Pf
xx

@x
50 (3)

@Pf
yy

@y
50 (4)

@Pf
n

@z
50 (5)

The geometry of the film allows it to be thought of as a pla-

nar sheet of finite thickness h and horizontal dimensions much

larger than h. Symmetry requires that all pressure components

be independent of x and y [this is consistent with (3) and (4)]

and that Pf
xxðzÞ5Pf

yyðzÞ for all z. We represent Pf
xxðzÞ and Pf

yyðzÞ
by a single pressure Pf

t ðzÞ, where the subscript t is chosen

because P f
t ðzÞ gives the pressure along directions that are tan-

gent to the film-gas interface. Equation 5 combined with the

previously derived relation Pf
nðz5hÞ5Pg require that Pf

n be uni-

form throughout the film and equal to gas-phase pressure Pg.

This result shows that even though the film is formed from the

droplet, its normal pressure is different from the bulk liquid

pressure Pl. To describe this phenomena, Derjaguin15,16 intro-

duced the concept of the disjoining pressure P, which he

defined as the excess normal pressure in a liquid film

PðhÞ5Pn2Pl (6)

The disjoining pressure is a locally defined quantity whose

magnitude sharply decreases with the local thickness of the

film because the interactions between the film-gas and film-

solid interfaces become weaker with increasing separation. If

the film is of uniform thickness, its disjoining pressure is

everywhere equal to Pg2Pl. The film’s thickness is therefore a

reflection of the difference between the two bulk phase pres-

sures. The definition in (6) can also be applied to the droplet

with the understanding that its “thickness” (the distance

between the liquid-gas and liquid-solid interfaces) is every-

where sufficiently large that P 5 0. In other words, the entire

droplet is described by an isotropic pressure Pl.
On a macroscopic scale, the transition from the properties

of the film to those of the bulk liquid appears to be abrupt. On

a scale comparable with the film thickness, however, this tran-

sition occurs gradually.21,29 Figure 2a shows that on this scale

(we choose a representative value of h 5 10 nm), there exists a

transition zone between the film and the bulk liquid.34–36 The

bulk liquid and gas phases are described by isotropic pressures

Pl and Pg, respectively. The pressure in the transition zone is

anisotropic, with the normal pressure Pn and the tangential

pressures Pt being generally unequal to each other and unequal

to Pl. We therefore have three liquid regions (the bulk, the

transition zone, and the film) where the normal pressure in

each region is different from the normal pressure in the other

two regions. Nevertheless, Pn in all three regions can be

related to Pg by a single, unified equation. We may substitute

the definition (6) of the disjoining pressure into (1) to obtain

Pl2Pg52cj2PðhÞ (7)

This result is called the augmented Young–Laplace equa-

tion and was first proposed by Derjaguin.15 Applied to the

bulk liquid where c5clg and P 5 0, Equation 7 becomes the

traditional Young–Laplace equation. Applied to the flat film

where j 5 0, Eq. 7 simplifies to P5Pg2Pl. For the transition

zone, (7) is equivalent to (1), where c and Pn refer to the local

interfacial tension and the local normal pressure, respectively.
The augmented Young–Laplace equation, which is derived

purely from mechanical considerations, serves as a check on

the consistency of our results. The conditions for mechanical

equilibrium derived in the Mechanical Equilibrium and the

Augmented Young Equation Section must be consistent with

(7). We make one additional simplification. Because the tran-

sition zone is typically much smaller in x and y than the other

two liquid regions, the uniform thickness model approximates

the real behavior depicted in Figure 2a with the idealized pic-

ture illustrated in Figure 2b. The approximation avoids the dif-

ficulties in modeling the transition zone, where Pn5Pnðx; y; zÞ
and Pt5Ptðx; y; zÞ may be complicated functions of the spatial

coordinates.

Film thickness, work, and energy

We have stated that the internal energy of the film is equal

to the internal energy of the film volume (fv) plus the internal

energies of the film-gas (fg) and film-solid (fs) interfaces.

More generally, any extensive property Ef of the film (except

for the area Af) can be written as Ef 5Efv1Efg1Efs. In accord-

ance with Gibbs’ treatment, the film-gas and film-solid interfa-

ces have zero volume and are described by interfacial tensions

c fg and c fs, respectively. The work done on the interfaces in an

Figure 2. Two-dimensional cross section of the system
near the liquid-film-gas contact line at a
scale comparable with h.

The curvature of the liquid-gas interface is not noticea-

ble at this scale. The bulk liquid and gas phases are

described by isotropic pressures Pl and Pg, respectively.

The pressure is anisotropic in the film and in the transi-

tion zone. We represent the anisotropy by denoting the

pressure normal to the interface as Pn, and the pressures

tangent to the interface as Pt. The uniform thickness

model approximates the real behavior in (a) with the

idealized picture in (b). [Color figure can be viewed in

the online issue, which is available at wileyonlinelibrary.

com.]
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infinitesimal process are c fgdAf and c fsdAf . In the film vol-
ume, there is only pressure-volume (PV) work. Following the
studies of Amirfazli32 on wetting films and de Feijter on free
thin liquid films,29 we define h so that the PV work done on
the film volume in changing the film’s area by dAf is
mechanically equivalent to what it would be if the contents
of the film volume were replaced with bulk liquid. Let Z rep-
resent a distance along z that is sufficiently large to ensure
that the properties at Z are homogeneous (i.e., located in the
bulk gas phase). As illustrated in Figure 3, mechanical equiv-
alence is achieved if

2

ðZ

0

PtðzÞdz

� �
dAf 52PlhdAf 1c fgdAf 1c fsdAf 2PgðZ2hÞdAf

(8)

which can be rearranged to

c fg1c fs52

ðh

0

PtðzÞ2Pl
� �

dz2

ðZ

h

PtðzÞ2Pg½ �dz (9)

With the thickness defined in this manner, the work done on
the film in changing its area by dAf is

c fg1c fs
� 	

dAf 2PlhdAf (10)

The extensive properties Ef 5Efv1Efg1Efs of the film are
defined to be consistent with (8) and (9). In the region near the
film, the volumetric density e of an extensive function E varies
with z, so we may write

Efg1Efs5Af

ðh

0

eðzÞ2el
� �

dz1

ðZ

h

eðzÞ2eg½ �dz


 �
(11)

Efv5elVf (12)

In addition to (10), there is also work done on the film in

changing its thickness by dh. This work is

2Pf
nAf dh (13)

The differential of the internal energy of the film as a whole

is dUf 5dUfv1dUfg1dUfs. Combining (10) and (13), dUf dur-

ing a reversible process is

dUf 5Tf dSf 2Pf
nAf dh1ðc fg1c fs2PlhÞdAf 1

Xc

k51

lf
kdNf

k (14)

where Tf is the temperature of the film, Sf is the entropy, l f
k is

the chemical potential of component k in the film, Nf
k is the

moles of k, and c is the number of components. The internal

energy (14) can be decomposed into a film-volume contribu-

tion dUfv and a surface excess contribution dðUfg1UfsÞ repre-

sented by

dUfv5Tf dSfv2PldVf 1
Xc

k51

l f
k dNfv

k

dðUfg1UfsÞ5Tf dðSfg1SfsÞ2PAf dh

1ðc fg1c fsÞdAf 1
Xc

k51

l f
k dðNfg

k 1Nfs
k Þ

(15)

The differential of the Helmholtz energy Ff 5Uf 2Tf Sf of the

film is

dFf 52Sf dTf 2Pf
nAf dh1ðc fg1c fs2PlhÞdAf 1

Xc

k51

lf
kdNf

k (16)

Thermal and phase equilibrium

The system in Figure 1 is isothermal, constrained in size by

a constant-volume container, and closed to the surroundings

so that the conditions for thermodynamic equilibrium are

obtained by minimizing the Helmholtz energy F of the sys-

tem.37 Since F is an extensive property, it can be expressed as

a sum of the Helmholtz energy of its constituent subsystems

F5Fl1Fg1Ff 1
X

i

Fi; i5lg; ls; gs

A necessary condition for the minimum of F is

dF5dFl1dFg1dFf 1
X

i

dFi50 (17)

for all processes that cause an infinitesimal change in the sys-

tem’s state variables. For a reversible process

dFl52SldTl2PldVl1
Xc

k51

ll
kdNl

k (18)

dFg52SgdTg2PgdVg1
Xc

k51

lg
kdN

g
k (19)

dFi52SidTi1cidAi1
Xc

k51

li
kdNi

k (20)

where V is the volume, and ci is the interfacial tension of inter-

face i. The system is isothermally constrained at a temperature

T and is closed so that

Figure 3. The dashed lines depict an imaginary parti-
tion of the system. The work required to
expand the portion of the system inside the
partition by dAf is given by the integral on
the left-hand side of (8). The film thickness h
is defined so that (a) is mechanically equiva-
lent to (b), as expressed by (8). The “excess
tangential pressure” is encoded in the inter-
facial tensions cfg and cfs. To be consistent
with this figure, the properties of the film are
defined according to (11) and (12).

[Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]
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dTl5dTg5dTf 5dTi50; i5lg; ls; gs (21)

dNl
k52dNg

k 2dNf
k2
X

i

dNi
k; k51; :::; c (22)

Substituting (16) and (18)–(22) into (17), we obtain

dF52PldVl2PgdVg2Pf
nAf dh1ðc fg1c fs2PlhÞdAf 1

X
i

cidAi

1
Xc

k51

ðlg
k2ll

kÞdN
g
k 1
Xc

k51

ðl f
k 2ll

kÞdNf
k1
X

i

Xc

k51

ðli
k2ll

kÞdNi
k50

(23)

Because the differentials dNg
k ; dNf

k , and dNi
k, are independ-

ent of each other, we have

ll
k5lg

k5l f
k 5li

k; i5lg; ls; gs; k51; :::; c (24)

The conditions for thermodynamic equilibrium in our

system include spatial uniformity of the temperature (ther-

mal equilibrium) and the chemical potential of each com-

ponent (phase equilibrium). We now proceed to derive the

conditions for mechanical equilibrium, which is our last,

but least trivial, set of conditions for thermodynamic

equilibrium.

Mechanical Equilibrium and the Augmented
Young Equation

The augmented Young equation proposed by Amirfazli

In the absence of a film, the contact angle h formed when a

droplet contacts a bare solid surface immersed in a gas is

described by the well-known Young equation, which is a con-

dition for mechanical equilibrium of the system. If the droplet

forms a film as in Figure 1, mechanical equilibrium is instead

described by an augmented Young equation that takes into

account the effect of the film on the contact angle. For flat thin

liquid films, two different expressions for the augmented

Young equation have been proposed in the literature. Amirfa-

zli32 obtains

clgcosh5c f s1c f g2cls (25)

In this section, we use the concept of virtual work to derive

(25). Virtual work is widely used in analytical mechanics38,39

and has also been used for thermodynamic minimization prob-

lems by Gibbs and others.30,36,40,41 This concept forms the

framework of Li and Neumann’s study on thin liquid films,30

but our work differs from theirs in that they represent the film

in terms of only the surface excess so that their expression for

the differential of the internal energy is given by (15) instead

of (14). In The augmented Young equation proposed by Hira-

saki Section, we extend the analysis to derive the other aug-

mented Young equation proposed in the literature and show

that it is equivalent to (25) under the conditions described in

that section.
Equations (23) and (24) together require that

2PldVl2PgdVg2Pf
nAf dh1ðc fg1c fs2PlhÞdAf 1

X
i

cidAi50

(26)

This result states that the work done on the subsystems dur-

ing an infinitesimal, reversible process must sum to zero. The

system is constrained in total volume so that dðVl1Vg1Vf Þ5

0 and dðAf 1Als1AgsÞ50. Substituting these constraints into

(26), we have

ðPg2PlÞdVl1ðPg2Pf
nÞAf dh

1 ½ðc fg1c fs2PlhÞ2cgs1Pgh�dAf 1ðcls2cgsÞdAls1clgdAlg50

(27)

Some of the differentials in (27), such as dVl and dAlg, may

be related to each other in a complicated way. The differen-

tials correspond to real displacements in the system that occur

during the reversible process. For our problem, we focus on

the virtual work associated with virtual displacements, which

are infinitesimal perturbations in the system’s configuration

consistent with the mechanical constraints. The virtual dis-

placements in our system must be consistent with the con-

straint that the total volume is a constant. An alternative, but

equivalent condition to (27) is that the virtual work due to the

virtual displacements within the system must sum to zero. Fig-

ure 4 shows the three virtual displacements considered in The

augmented Young equation proposed by Amirfazli Section.

We represent displacements normal to the liquid-gas interface,

film-gas interface, and liquid-film-gas contact line as dnlg, dh,

and dnlfg, respectively. We use the sign convention where dnlg

> 0 if the displacement is directed away from the droplet, dh
> 0 if h increases, dnlfg > 0 if the displacement is directed

away from the bulk liquid.
The virtual work associated with dnlg is

2

ð
Alg

PldnlgdAlg2

ð
Alg

Pgð2dnlgÞdAlg1

ð
Alg

2clgjdnlgdAlg

5

ð
Alg

ðPg2Pl12clgjÞdnlgdAlg

(28)

The first two integrals on the left-hand side of (28) represent

the pressure-volume work done on the liquid and gas phases,

while the third represents the interfacial work from the change

in the surface area of the liquid-gas interface due to the dis-

placement dnlg. The expression for this interfacial work may

be derived formally using differential geometry, but it can also

be understood from Figure 5. The virtual work associated with

dh is

2Pf
nAf dh2PgAf ð2dhÞ5ðPg2Pf

nÞAf dh (29)

The virtual work associated with dnlfg is

Figure 4. The three virtual displacements (dnlg, dh, and
dnlfg) are admissible with the constraint of a
constant-volume container. The resultant
shape of the droplet and film after the dis-
placements is shown with dashed lines. From
the sign convention described in the text, dnlg

and dh are negative, but dnlfg is positive.

[Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]
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ð
Llfg

clsdnlfgdLlfg1

ð
Llfg

c fgð2dnlfgÞdLlfg1

ð
Llfg

c fsð2dnlfgÞdLlfg

1

ð
Llfg

clgcoshdnlfgdLlfg2

ð
Llfg

PlhdnlfgdLlfg2

ð
Llfg

Plhð2dnlfgÞdLlfg

5

ð
Llfg

½2ðc fg1c fsÞ1clgcosh1cls�dnlfgdLlfg

(30)

where dLlfg is the length of a differential element of the liquid-

film-gas contact line (Figure 6). The first integral on the left-
hand side is the interfacial work from the change in the liquid-

solid interfacial area Als. This is coupled with the interfacial

work done on the film in changing Af (the second and third

integrals). The integral
Ð

Llfg clgcoshdnlfgdLlfg is the work done

on the liquid-gas interface, where clgcosh is the force in the

direction of the displacement dnlfg per unit length of the
liquid-film-gas contact line. The last two integrals on the left-

hand side of (30) are the pressure-volume work terms (with

differential volume element hdnlfgdLlfg) of the bulk liquid and

the film volume, respectively.
Mechanical equilibrium requires that the right-hand sides of

(28)–(30) sum to zero. However, because the three virtual dis-

placements are independent of each other, each of the right-

hand sides individually must be zero. As a result, we obtain
three conditions for mechanical equilibrium

Pl2Pg52clgj (31)

Pf
n5Pg (32)

clgcosh5c fg1c fs2cls (33)

The Young–Laplace equation for the liquid-gas interface is
expressed in (31). Equation (32) shows that equilibrium
requires Pf

n5Pg so that the disjoining pressure in the film is
P5Pg2Pl. Both (31) and (32) are consistent with the aug-
mented Young–Laplace equation 7 discussed earlier. Equation
33 is the augmented Young equation (25) presented by
Amirfazli.32

Note that for a single-component fluid the Kelvin equation
can be derived based on (21), (24), and (31), and making the
assumptions that the gas phase is ideal and the liquid in the
droplet is incompressible.2 In that case, the equilibrium droplet
will be oversaturated. However, oversaturation applies only to
single-component fluids. It may not apply to multicomponent,
nonideal mixtures, such as the ones considered in our study.2

The augmented Young equation proposed by Hirasaki

Hirasaki43 has suggested, but has not derived, an augmented
Young equation of the form

clgcosh5cgs2cls2Ph (34)

Through a simple extension of the previous section, we may
show that (34) is compatible with (25) for flat films with vol-
ume Vf 5hAf that terminate before the film reaches the edge
of the solid surface. This idealized geometry can be relaxed by
considering films of nonuniform thickness that terminate grad-
ually at their edges. Yeh et al. have derived an augmented
Young equation for such films.23,24 Up until now, we have
considered the film to cover the entire solid surface on which
it rests (see Figure 1).

To examine systems where there may be a flat film which
does not cover the entire solid surface, let us consider a

Figure 5. Sketch of a differential element of the liquid-
gas interface (defined by radii of curvature R1

and R2) and the resultant shape of the ele-
ment after the virtual displacement dnlg is
applied.

Before undergoing the displacement, the area of the ele-

ment is approximately dL1dL2. After the displacement,

the element becomes deformed so that its area is

approximately dL1 11dnlg=R1

� 	
dL2 11dnlg=R2

� 	
, which

simplifies to ð112jdnlgÞdL1dL2 if the quadratic term in

dnlg is neglected.42 The mean curvature j is defined in

(2). Thus, the displacement dnlg maps an area dAlg of

the interface to an area ð112jdnlgÞdAlg. This reasoning

justifies the expression for the interfacial work term in

(28). [Color figure can be viewed in the online issue,

which is available at wileyonlinelibrary.com.]

Figure 6. Overhead view of the system, where for
clarity we depict the droplet as being spheri-
cal and the thin liquid film as being cylindri-
cal.

The discussion in the text applies in the general case of

more complicated shapes. The change in the area Als of

the liquid-solid interface due to the virtual displacement

dnlfg is
Ð
Llfg dnlfgdLlfg, which is represented by the

annulus between the dashed curve and the bulk liquid.

This annulus is also equal to minus the change in the

area Af of the film. [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.

com.]
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thought experiment where we have an ensemble of systems,

each of which is composed of a droplet made of a nonvolatile

liquid surrounded by a gas phase placed inside an isothermal,

closed container. The premise is that the contact angle h is an

equilibrium measure of the wettability of the liquid droplet to

the solid surface. For sufficiently large droplets (those for

which line tension and other size-dependent effects are negli-

gible), the value of h depends only on the temperature, the

pressure of the surrounding gas phase, and the equilibrium

chemical composition (identity) of the liquid droplet, film,

gas, and solid. The value of h should be independent of the

size of the container. Suppose that the temperature, gas phase

pressure, and the equilibrium composition of the droplet, film,

gas, and solid are the same in all systems of the ensemble. The

only difference among the systems is the size of the container

and thus the area of the solid surface on which the droplet and

film rest. As each system proceeds toward equilibrium, the

film spreads until the equilibrium value of h is established.

Since the liquid is nonvolatile, the total mass of the liquid in

the droplet plus the film is fixed. This requirement, when

coupled with the fact that the equilibrium value of h is the

same in all the systems, means that there is a limit L to the lat-

eral extent to which the film can spread. In practice, L may be

on the order of centimeters for a droplet with a micron-sized

radius. In all systems of the ensemble whose lateral dimen-

sions of the container are larger than L, the film will terminate

before it reaches the edge of the solid surface. If we model the

film as terminating abruptly so that it maintains a uniform

thickness h, we will overestimate the volume of the film by a

negligible fraction that is on the order of h=L� 1.
If we consider a system that is the same as in Figure 1,

except that now the film does not cover the entire solid sur-

face, the conditions for mechanical equilibrium may be

obtained from the four virtual displacements depicted in Fig-

ure 7. Three of the displacements (dnlg, dh, and dnlfg) in this

figure are the same ones examined in Figure 4, so all of the

results we have derived up until now continue to be valid. In

addition, we now include dn fgs, which represents a virtual dis-

placement of the film-gas-solid contact line. We define dn fgs

> 0 if the displacement is directed away from the film. Fol-

lowing the same reasoning as we did for (30), we may show

that the virtual work associated with dn fgs isð
Lfgs

c fgdn fgsdLfgs1

ð
Lfgs

c fsdn fgsdLfgs1

ð
Lfgs

cgsð2dn fgsÞdLfgs

2

ð
Lfgs

Plhdn fgsdLfgs2

ð
Lfgs

Pghð2dn fgsÞdLfgs

5

ð
Lfgs

½ðc fg1c fs2PlhÞ2cgs1Pgh�dn fgsdLfgs

(35)

where dL fgs is the length of a differential element of the film-

gas-solid contact line. As a result, the system in Figure 7 is

described by four conditions for mechanical equilibrium:

(31)–(33), plus an additional fourth condition that we obtain

from setting the integrand in (35) equal to zero

c fg1c fs5cgs2ðPg2PlÞh (36)

Equation 36 is a mechanical equilibrium condition that

must be satisfied for the film to cease spreading. Substituting

(36) and the identity P5Pg2Pl into (33) yields the augmented

Young equation 34 proposed by Hirasaki.43 Thus, the two

expressions (25) and (34) that have appeared in the literature

are equivalent for thin liquid films that can be modeled as

described in this section.
As a check on our results, we now show that (36) together

with (31)–(33) form a self-consistent set of conditions for

mechanical equilibrium. The disjoining pressure in a thick

film (on smooth and flat surfaces, we may consider a film to

be thick if h> 100 nm24) is virtually zero because, as we have

mentioned previously, the disjoining pressure sharply

decreases in magnitude with h. The properties of the thick film

resemble those of the bulk liquid so that c fg5clg and c fs5cls.

Equation 33 in the large thickness limit requires that cosh51,

which implies h50
�
. Physically, this means that a thick film

can be possible only if the liquid droplet is completely wetting

so that it spreads to become flat in shape. Since the disjoining

pressure in the thick film is zero, we have from (32) that

Pf
n5Pg5Pl. From (31), Pg5Pl only if the droplet is flat

(j 5 0). In the large thickness limit, (36) can be written as

clg5cgs2cls, which is the form of the Young equation for a flat

(i.e., film-shaped) droplet.

Film tension

According to (14), the work done on the film is

2Pf
nAf dh1ðc fg1c fs2PlhÞdAf . Since Pf

n5Pg in flat films, this

expression may be written as

2PgAf dh1ðc fg1c fs2PlhÞdAf

It is convenient in thermodynamic analysis to divide the

work into a dVf term and a dAf term. Traditionally,17,29,32,36

this has been done by defining a film tension c f so that

c f 5c fg1c fs1Ph (37)

2PgAf dh1ðc fg1c fs2PlhÞdAf 52PgdVf 1c f dAf (38)

Combining (9) and (37), we have

c f 52

ðZ

0

PtðzÞ2Pg½ �dz

The definition (37) of the film tension is analogous to the

expression c f 52c fg1Ph that has been derived for free thin

liquid films.17,18,20,29,31 These are films where instead of rest-

ing on a solid surface, they are surrounded by the gas phase on

both of their parallel interfaces.

Figure 7. The four virtual displacements (dnlg, dh, dnlfg,
and dnfgs) are admissible with the constraint
of a constant-volume container. The resultant
shape of the droplet and film after the dis-
placements is shown with dashed lines. The
displacement dnfgs is allowed if the film does
not cover the entire solid surface (see the
discussion in the text).

[Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]
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We can express Amirfazli’s augmented Young equation 25

and the mechanical equilibrium condition (36) in terms of the

film tension by substituting (37) into these equations to obtain

clgcosh5c f 2cls2Ph (39)

c f 5cgs (40)

respectively. Equation 40 is a direct consequence of the equiv-

alence between the augmented Young equations 39 proposed

by Amirfazli and (34) proposed by Hirasaki. It states that at

equilibrium, the thickness h of the film assumes a value so that

c f, which is a function of h, is balanced at the edge of the film

by the gas-solid interfacial tension cgs. If cgs is modified (such

as by changing the identity of the solid surface), the thickness

of the film changes so that (40) remains satisfied.
As we have noted previously, (36) and (40) are not general

results that apply to all thin liquid films. They apply only to

flat films that terminate before reaching the edge of the solid

surface. Examples of such films may be the thin alkane films

considered by Li and Neumann.30 They present correlations

for c fg1c fs (their study labels this sum as c f) and cgs in terms

of experimentally measurable quantities like clg and h. Using

experimental data for four different alkane (decane, dodecane,

tetradecane, and hexadecane) films that wet siliconized glass

surfaces, their correlations show that in all four cases, c fg1c fs

is virtually equal to cgs. Li and Neumann state the mean curva-

ture j to be 1000 m21, and clg for the alkanes are in the range

23–28 mJ/m2 so that the magnitude of the disjoining pressure j
Pj5jPg2Plj52clgj is approximately 50 Pa. Since the thick-

ness of the films are assumed to be less than 100 nm,30 the

product Ph is at least four orders of magnitude smaller than

c fg1c fs, which are calculated to be between 23 and 25 mJ/m2,

depending on the particular alkane considered. Thus, Li and

Neumann’s correlations imply that c f 5c fg1c fs1Ph is virtu-

ally equal to cgs, in agreement with (40).

Thermodynamic Relations for Thin Liquid Films

Two expressions for the Gibbs energy

In this section, we discuss the relation between the Gibbs

energy and the internal energy (i.e., the Legendre transform

between the two functions) of thin liquid films. As we will soon

see, the form of this relation has not been clearly resolved in the

literature. We start by combining (38) and (14) to obtain the dif-

ferential of a thin liquid film’s internal energy Uf

dUf 5Tf dSf 2PgdVf 1c f dAf 1
Xc

k51

l f
k dNf

k (41)

The internal energy is an Euler homogeneous function of

the extensive variables44 whose differential we integrate to

obtain

Uf 5Tf Sf 2PgVf 1c f Af 1
Xc

k51

l f
k Nf

k (42)

Four other common thermodynamic energy functions of a

thin liquid film are its Helmholtz energy Ff, grand potential

X f , enthalpy, and Gibbs energy. For reasons that will soon

become clear, we do not assign the last two functions a symbol

for now. There is agreement that

Ff 5Uf 2Tf Sf (43)

X f 5Uf 2Tf Sf 2
Xc

k51

l f
k Nf

k5Ff 2
Xc

k51

l f
k Nf

k (44)

Enthalpy5 Gibbs energy 1Tf Sf (45)

Thus, (42)–(45) provide four equations for the five functions
Uf, Ff, X f , enthalpy, and Gibbs energy. An equation that
expresses the Gibbs energy in terms of Uf (or alternatively,
enthalpy in terms of Uf) is needed to completely specify these
functions. Two different expressions for the Gibbs energy of a
film have appeared in the literature. According to Iyota et al.45

and Toshev,46 the Gibbs energy is

Gf 5
Xc

k51

l f
k Nf

k (46)

so that the relation between Gf and Uf is

Gf 5Uf 2Tf Sf 1PgVf 2c f Af 5Ff 1PgVf 2c f Af (47)

In this expression, the chemical potentials take on their
familiar role as the partial molar Gibbs energy, as shown in
(46). de Feijter47 provides a different expression for the film’s
Gibbs energy

G f 5c f Af 1
Xc

k51

l f
k Nf

k5G f 1c f Af (48)

where we denote this alternative expression as G f . The differ-
ence between Gf and G f is the c f Af term that appears due to
the film tension work c f dAf , which is a type of non-pressure-
volume (non-PV) work. The relation (48) requires that

G f 5Uf 2Tf Sf 1PgVf 5Ff 1PgVf (49)

Eriksson and Toshev48 also express the Gibbs energy accord-
ing to (49). Ikeda et al. use both Gf and G f in a parallel manner
in their study.49 The studies above present the Gibbs energy in a
matter-of-fact way, with no physical justification for why a par-
ticular expression is chosen. As a result, there is ambiguity over
which of the two functions should be used in thermodynamic
analyses. The goal of this section is to clarify this fundamental
issue by discussing the appropriate physical context in which
each of the two proposed expressions may be applied.

To gain a deeper appreciation of the historical background
to the problem we have posed, we briefly consider the simpler,
but analogous problem of writing the Gibbs energy of a system
where there is only one interface. Thin liquid films are more
complicated because they have more than one interface of
interest. A typical example of a single-interface system is the
interface that separates a gas bubble from a surrounding bulk
liquid. This liquid-gas interface, which we treat as a Gibbs
dividing surface of area Alg and zero volume, is assigned prop-
erties that represent excess quantities. There is no controversy
over how to express the Gibbs energy of the gas and bulk liq-
uid phases, but there is discrepancy in the literature over how
to write the Gibbs energy of the interface. Just like for thin liq-
uid films, two different expressions have appeared

Glg5Ulg2TlgSlg2clgAlg5
Xc

k51

llg
k Nlg

k (50)

Glg5Ulg2TlgSlg5clgAlg1
Xc

k51

llg
k Nlg

k (51)

where clg is the interfacial tension. As in the case of thin
liquid films, the ambiguity arises because of non-PV work.
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For the liquid-gas interface, the non-PV work is the interfa-
cial work clgdAlg. The Gibbs energy in (51) is the same as

the Helmholtz energy Flg of the interface, which is defined
as Flg5Ulg2TlgSlg5Glg. Equation 51 is the expression for
the Gibbs energy recommended by Alberty, although he also

recognizes (50) to be a valid expression.50 His study consid-
ers not only interfacial work, but several other types of non-
PV work (e.g., work done by electric, magnetic, and gravita-

tional fields). He recommends to write the Gibbs energy as
U2TS1PV for all systems, presumably to keep this relation
invariant with respect to the different types of non-PV work.

In the case of the liquid-gas interface where Vlg50, Alb-
erty’s recommendation simplifies to (51). Equation 50 is the
expression for the Gibbs energy adopted by the International

Union of Pure and Applied Chemistry (IUPAC), as
described in the IUPAC manual published by Everett in
1972.51 Everett states firmly in this manual that (50) is the

only way to express the Gibbs energy of the interface. In
(50), the chemical potentials are equivalent to the partial

molar Gibbs energy. Some authors present the two expres-
sions (50) and (51) in a parallel manner.52 Thus, despite
several decades of studies, the relation between the Gibbs

energy and the internal energy of single-interface systems
has still not been clearly resolved.

Our analysis of thin liquid films can be understood more
clearly by considering the case of bulk fluids, where the

Gibbs energy defined as G5U2TS1PV is used for two types
of calculations. One purpose is to determine the equilibrium
state of the system. Specifically, the equilibrium state of a

closed system at constant (T, P) with only PV work is found
by minimizing G.37 The other purpose of G is to calculate the
reversible non-PV work obtainable from the system. For a

closed system at constant (T, P) with both PV and non-PV
work, 2dG equals the maximum differential amount of non-

PV work that can be done by the system. It is because of this
physical interpretation that G was for a long time known as,
and is still sometimes called, the “Gibbs free energy.” Of

these two purposes, the Gibbs energy is far more commonly
used to determine the equilibrium state than to calculate the
reversible non-PV work.

The Gibbs energy of thin liquid films is used for the same

two types of calculations. We show in the rest of this section
that whether we should apply Gf in (47) or G f in (49) in ther-
modynamic analyses is univocally determined by what we

wish to compute with the Gibbs energy. In particular, Gf must
be used if our goal is to determine the equilibrium state
through an energy minimization. This is true regardless of

whether the film is closed (see next paragraph) or is part of a
larger system and can exchange matter and energy with the

rest of the system (see the Equilibrium in systems containing
thin liquid films Section). We will show that, except in a very
specialized case, it is not correct to use G f in determining

equilibrium states. Nevertheless, G f can still be useful because
its differential indicates the maximum amount of film tension
work (i.e., non-PV work) that can be done by the film.

In analogy to the case described above for bulk fluids, we

may show that since Gf in (47) is a natural function of
ðTf ;Pg; c f ;N f Þ, where N f 5ðNf

1;N
f
2; . . . ;Nf

cÞ represents the
mole numbers of all species in the film, Gf is a minimum at equi-

librium for a closed film held at constant ðTf ;Pg; c f Þ. This may
be demonstrated in the same way that we may prove the analo-
gous statement for bulk fluids.37 We start by writing the energy

balance and entropy balance of a closed film, which state

dUf 5 d-Q f 2PgdVf 1c f dAf (52)

dSf 5 d-Q f=Tf 1dSf
gen (53)

respectively. In these equations, d-Q f is the heat flow across
the boundaries of the film, 2PgdVf 1c f dAf is the work done
on the film, and dSf

gen is the entropy generated in the film by
irreversible processes. According to the second law of thermo-
dynamics, dSf

gen � 0. Combining (52) and (53), we obtain

dUf 2Tf dSf 1PgdVf 2c f dAf 52Tf dSf
gen � 0 (54)

At constant ðTf ;Pg; c f Þ, the left-hand side of (54) equals d
Gf so that

dG f 52Tf dSf
gen � 0

This result shows that under conditions of constant
ðTf ;Pg; c f Þ, the Gibbs energy Gf always either decreases or
remains the same, depending on whether the heat flow and
work done on the film occur irreversibly or reversibly. There-
fore, at the equilibrium state, which is characterized by the
cessation of all irreversible processes, Gf is a minimum.

We may follow the same reasoning as in the preceding para-
graph to show that since Gf in (49) is a natural function of
ðTf ;Pg;Af ;Nf Þ, G f is a minimum at equilibrium for a closed
film held at constant ðTf ;Pg;Af Þ. However, constant Af implies
that the film tension work c f dAf is constrained to be zero.
Thus, G f cannot be used to determine the equilibrium state of
the film in the general case when c f dAf is nonzero. Neverthe-
less, G f still has a physically meaningful interpretation: for a
closed film at constant ðTf ;PgÞ, the maximum amount of film
tension work c f dAf obtainable from the film is 2dG f . To
show this, we substitute Gf into (54) and rearrange the result to
get

2c f dAf 52dG f 2Tf dSf
gen (55)

Note that dG f 6¼ 2Tf dSf
gen (i.e., G f is not necessarily a min-

imum at equilibrium) unless dAf 50 so that the film tension
work is zero. Since c f dAf represents the film tension work
done on the film, 2c f dAf is the film tension work done by the
film. For a reversible process, dSf

gen50, and (55) simplifies to
2c f dAf 52dG f . For an irreversible process, 2c f dAf < 2dG f

since 2Tf dSf
gen < 0. Therefore, the film tension work done by

the film is always less than or equal to the amount 2dG f

obtainable from a reversible process. In this sense, G f gives an
indication of the free energy available in the film.

Equilibrium in systems containing thin liquid films

If a thin liquid film is part of a larger system and the equilib-
rium state of the total system is obtained by minimizing the
Gibbs energy of the total system, the film’s Gibbs energy must
be expressed as Gf and not G f . As an example, let us define
the total system to be all of the fluid held inside the isothermal
container depicted in Figure 1, where the container walls are
subject to a constant external pressure P. The film in the sys-
tem considered here is not closed. It can exchange matter and
energy with the rest of the system. Also, since the film tension
c f is a function of the thickness h of the film, the constraint of
constant c f described previously requires that the work done
on the film involves only changes in the area Af and not in h.
This restriction of constant c f does not apply to the film con-
sidered here. The only constraints are that the container is
closed, its contents are held at a constant temperature T, and
the only work done on the system by the surroundings is the
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PV work due to the external pressure P. As a result, we may
write U5TS2PV1

Pc
k51 lkNk, where U; S;V;Nk are the inter-

nal energy, entropy, volume, and moles of component k,
respectively, of the total system. Note that from simply exam-
ining the natural variables of Gf and G f , we cannot resolve
which of the two functions should be used, because none of
the variables Nf , Af, and c f are fixed.

Since the total system is closed, isothermal, and surrounded
by a constant external pressure, the Gibbs energy G5U2TS1

PV5
Pc

k51 lkNk of the total system is a minimum at equilib-
rium. Furthermore, by setting dG50, we can show that one of
the conditions for equilibrium is that the chemical potential lk

must be constant throughout the system for all components
k.37,44,53 We have stated that the system can be divided into
six subsystems: the bulk liquid, the gas, the thin liquid film,
and the three interfaces i where i5lg; ls; gs. The equilibrium
state is obtained by minimizing G5

Pc
k51 lkNk, where Nk5Nl

k

1Ng
k 1Nf

k1
P

i Ni
k is the total number of moles of component

k. Since G is an extensive function, another way to express G
is the sum of the Gibbs energies over all the subsystems. The
objective is to define the Gibbs energy of the subsystems in a
way so that the total Gibbs energy G is equal to

Pc
k51 lkNk

when subject to the equilibrium condition ll
k5lg

k5l f
k 5li

k5lk

for all k and i5lg; ls; gs.
It is clear that in order for the sum of the Gibbs energies

over all constituent subsystems to be equal to
Pc

k51 lkNk, the
chemical potential lk must equal the partial molar Gibbs
energy with respect to component k in all subsystems. For the
bulk liquid and gas phases, this requirement is in agreement
with the widely recognized relations Gl5Ul2TlSl2PlVl5Pc

k51 lkNl
k and Gg5Ug2TgSg2PgVg5

Pc
k51 lkN

g
k . As we

have discussed, the issue is over how to relate the Gibbs
energy of the thin liquid film and the interfaces to their inter-
nal energy, since unlike the bulk phases, these subsystems are
described by non-PV work. From our arguments, it is clear
that the Gibbs energy of the film at equilibrium must be
Gf 5Uf 2Tf Sf 1PgVf 2c f Af 5

Pc
k51 lkNf

k , and the Gibbs
energy Gi of interface i must be

Gi5Ui2TSi2ciAi5
Xc

k51

lkNi
k; i5lg; ls; gs (56)

If we were to write the Gibbs energy of the film and the
interfaces with the alternative expressions G f 5c f Af 1

Pc
k51 lk

Nf
k and Gi5ciAi1

Pc
k51 lkNi

k, the sum of the Gibbs energies
over all the subsystems would not be equal to

Pc
k51 lkNk

(which is the quantity that is actually a minimum at
equilibrium)

Gl1Gg1G f 1
X

i

Gi5c f Af 1
X

i

ciAi1
Xc

k51

lkNk 6¼
Xc

k51

lkNk

Thus, for the purposes of determining the equilibrium state,
the Gibbs energy of the thin liquid film and interface i are
given unambiguously by Gf in (46) and Gi in (56), respec-
tively, in which the chemical potentials are equivalent to the
partial molar Gibbs energies. Our analysis is in agreement
with the procedure employed in molecular dynamics simula-
tions for computing the equilibrium state of isothermal, closed
systems subject to only PV work from the surroundings with a
constant external pressure.54 For all such systems (regardless
of whether they are single phase, multiphase, contains a thin
liquid film, etc.), the equilibrium state is found by minimizing
the quantity

Pc
k51 lkNk, which represents the Gibbs energy

of the system. Quantities that arise from non-PV work that

may occur internally within the system, such as interfacial

tensions and film tensions, are not involved in the energy

minimization.

Enthalpy and generalization to systems with other types

of non-PV work

Once the Gibbs energy is established, the enthalpy becomes

fixed because it is related to the Gibbs energy via (45). If the

Gibbs energy is expressed as Gf 5Uf 2Tf Sf 1PgVf 2c f Af , the

enthalpy is

Hf 5Gf 1Tf Sf 5Uf 1PgVf 2c f Af 5Tf Sf 1
Xc

k51

lf
kNf

k

Substituting Hf into the energy balance (52) yields the rela-

tion dHf 5 d-Q f for closed films at constant ðPg; c f Þ. This

result is analogous to the expression dH5 d-Q for a closed sys-

tem consisting of a bulk fluid that is subject to only PV work

at constant P, where H5U1PV is the enthalpy of the bulk

fluid. The relation dH5 d-Q is widely used in thermal science,

especially in thermochemistry. If the Gibbs energy is instead

expressed as G f 5Uf 2T f Sf 1PgVf , the enthalpy is

H f 5G f 1Tf Sf 5Uf 1PgVf 5Tf Sf 1c f Af 1
Xc

k51

l f
k Nf

k

Substituting H f into (52) leads to the relation dH f 5c f dAf

for adiabatic, closed films at constant Pg. The analysis of the

Gibbs energy and enthalpy that we have presented completes

the specification of five commonly used thermodynamic

energy functions of thin liquid films: Uf, Ff, X f , enthalpy, and

Gibbs energy. Other thermodynamic relations for thin liquid

films can be derived from these functions. One such important

relation is the Gibbs–Duhem equation

dc f 52
S f

Af
dT f 1hdPg2

Xc

k51

N f
k

A f
dl f

k

which is obtained by taking the differential of (42) and com-

paring the result to (41). The Gibbs–Duhem equation can be

used to derive the Gibbs adsorption equation for the film29,36

and the Derjaguin–Frumkin equation that relates the disjoining

pressure in the film to the contact angle.16,19,55

Our analysis can be readily adapted to systems with other

types of non-PV work where there is ambiguity regarding the

Gibbs energy and the enthalpy. In all cases, it is straightfor-

ward to write the Helmholtz energy and the grand potential

in terms of the internal energy. This is because the Helmholtz

energy and the grand potential are related to the internal

energy through Legendre transforms that do not involve

work variables like pressure. The Gibbs energy and the

enthalpy are more complicated because they involve Legen-

dre transforms of the work variables. As we have illustrated

for thin liquid films and interfaces, the issue is whether to

include the non-PV work variables in the Legendre trans-

form. Suppose, we have a system where there is non-PV
work that may be represented as XdY, where X is an intensive

variable (e.g., film tension, gravitational potential, and elec-

trostatic potential) and Y is an extensive variable (e.g., area,

mass, and electric charge). If the internal energy U of the sys-

tem is
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U5TS2PV1XY1
Xc

k51

lkNk

where the symbols have their usual meaning, two expressions
for the Gibbs energy may be proposed

G5U2TS1PV2XY5
Xc

k51

lkNk (57)

G5U2TS1PV5XY1
Xc

k51

lkNk (58)

Following the reasoning above, it can be shown that G is a
minimum at equilibrium for the system if it is closed and held
at constant (T, P, X). Furthermore, G cannot be used to deter-
mine the equilibrium state in closed systems because G is not a
minimum at equilibrium, except in the special case when dY5

0 (i.e., when there is no non-PV work in the first place). More
generally, if a system with XdY work is part of a larger, closed,
isothermal system subject to a constant external pressure, Eq.
57, and not (58), should be applied in the Gibbs energy mini-
mization for computing the equilibrium state of the total sys-
tem. This is because in equilibrium state calculations, the
Gibbs energy of all subsystems must be defined so that the
chemical potentials lk are equal to the partial molar Gibbs
energies in all subsystems. This requirement is clearly not sat-
isfied by G in (58). Nevertheless, G gives an indication of the
free energy available since 2dG represents the maximum
amount of XdY work obtainable at constant (T, P). Thus,
whether we should work with G or G is unambiguously deter-
mined by what we wish to compute with the Gibbs energy.
Similar statements can be made for the role of enthalpy.

Conclusions

We have addressed two sets of conflicting results in the lit-
erature regarding the thermodynamics of flat thin liquid films.
One of the two main topics in our study involves the aug-
mented Young equation, for which two different expressions,
(25) and (34), have been proposed in the literature. By apply-
ing the definition (37) of the film tension cf, (25) can be cast in
the alternative, but equivalent form (39). We have shown that
(25) [or (39)] and (34) are equivalent for thin liquid films that
can be idealized as described in The augmented Young equa-
tion proposed by Hirasaki Section. Our analysis is based on
the framework developed by Li and Neumann,30 which uses
the concept of virtual work. For films where (25) and (34) are
equivalent, one of the implications is (40), which states that at
equilibrium the film thickness h must assume a value so that
c f 5c f ðhÞ is balanced at the edge of the film by the gas-solid
interfacial tension cgs. This condition for mechanical equilib-
rium is consistent with other widely accepted equilibrium con-
ditions (31)–(33). It is also in agreement with the conclusions
reached by Li and Neumann, who have developed correlations
that can be used to calculate c f and cgs. Using experimental
data presented in their study, their correlations show that c f is
virtually equal to cgs for the systems considered by the
experiments.

The second main topic addressed in our study concerns the
Gibbs energy and enthalpy of thin liquid films. Two different
expressions for the Gibbs energy, Gf in (46) and G f in (48),
have appeared in the literature, creating ambiguity over which
expression should be used in thermodynamic analyses. The
underlying reason for this issue is that for systems which

undergo non-PV work, it is unclear whether to include non-PV
work variables in the Legendre transforms that relate the

Gibbs energy and the enthalpy to the internal energy. This
complexity is not present in thermodynamic functions like the

Helmholtz energy and the grand potential, since the Legendre

transforms that relate them to the internal energy do not

involve work variables. In thin liquid films, the non-PV work

is the film tension work, which can be expressed as c f dAf . We

have shown that to determine the equilibrium state via minimi-

zation of the Gibbs energy, Gf must be used. The function Gf

has the important property that its partial molar quantities are

equivalent to the chemical potentials. In equilibrium state cal-

culations, Gf must be used regardless of whether the film is

closed (see the Two expressions for the Gibbs energy Section)

or is part of a larger system and can exchange matter and

energy with the rest of the system (see the Equilibrium in sys-
tems containing thin liquid films Section). In contrast, G f is

not useful for determining equilibrium states. Rather, it indi-

cates the free energy available in the film because 2dG f repre-

sents the maximum amount of film tension work that can be

done by the film. Thus, whether we should apply Gf or G f in

thermodynamic analyses is uniquely determined by what we

wish to compute with the Gibbs energy. Similar statements
can be made regarding the enthalpy of thin liquid films, which

is related to the Gibbs energy via (45). Our analysis can be

readily generalized to systems with other types of non-PV
work where there is ambiguity regarding the expression and

interpretation of the Gibbs energy and the enthalpy.
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