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Abstract The formation and development of patterns in the
unstable interface between an injected fluid and hydrocar-
bons or saline aqueous phase in a porous medium can be
driven by viscous effects and gravity. Numerical simula-
tion of the so-called fingering is a challenge, which requires
rigorous representation of the fluid flow and thermody-
namics as well as highresolution discretization in order to
minimize numerical artifacts. To achieve such a high res-
olution, we present higherorder 3D finite element methods
for the simulation of fully compositional, three-phase and
multi-component flow. This is based on a combination of
the mixed hybrid finite element (MHFE) method for total
fluid velocity and discontinuous Galerkin (DG) method for
the species transport. The phase behavior is described by
cubic or cubic-plus-association (CPA) equations of state.
We present challenging numerical examples of composi-
tionally triggered fingering at both the core and the large
scale. Four additional test cases illustrate the robustness
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and efficiency of the proposed methods, which demonstrate
their power for problems of this complexity. Results reveal
three orders of magnitude improvement in CPU time in our
method compared with the lowest-order finite difference
method for some of the examples. Comparison between 3D
and 2D results highlights the significance of dimensionality
in the flow simulation.
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3D simulation · Compositional modeling
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1 Introduction

Accurate numerical simulation of CO2 injection in hydro-
carbon reservoirs is a challenge. Transfer of species between
the phases alters the phase densities, viscosities and com-
position of the fluids and results in phase changes, swelling
or shrinkage and the possibility of instabilities. These pro-
cesses drive secondorder patterns of fluid flow in the domain
Fingering generally refers to the onset and evolution of
instabilities that occur in the displacement of fluid in porous
materials. It results from variations in either viscosity or
density between phases or within a singlephase contain-
ing a solute [1]. Fingering may drastically affect fluid flow
in porous media and thus impact enhanced oil recovery or
sequestration performance; for which they are intensively
studied numerically and experimentally [1–11].

For the numerical simulation of phenomena such as fin-
gering, from one side rigorous representation of the source
of complexity (i.e., fluid mechanics and thermodynam-
ics of the processes) is essential and from the other side

Author's personal copy

mailto:e.shahraeeni@gmail.com
mailto:moortgat.1@osu.edu
mailto:Firoozabadi@Yale.edu


Comput Geosci

highresolution numerical discretization is required in
order to minimize numerical dispersion, which otherwise
obscures small-scale patterns. The performance of a numer-
ical code for the simulation of compositional flow in porous
media is a compromise between accuracy and speed. Differ-
ent logics are implemented to balance this trade-off, which
has resulted in a series of algorithms for compositional
modeling in the literature. A review of some of the available
codes has been presented by Class et al. [12]. They can be
separated into two main categories according to the basic
equations for mass balance or volume balance. Different
choices of primary variables may be mathematically and
physically equivalent, but may result in different numerical
behavior. Two categories of numerical formulations are
fully implicit methods and implicit pressure, explicit com-
position (IMPEC) methods [13]. Fully implicit methods are
numerically stable but they lead to large matrices, which
consequently limit the CPU efficiency by the number of
components. They also generally exhibit higher numerical
dispersion than the IMPEC approach. To reduce the level of
implicitness and thus solve smaller linear systems, the prob-
lem can be reformulated into a pressure equation and mass
conservation equations [14]. The overall technique is called
the IMPEC procedure, which is limited by stability restric-
tions on the time step size. Seeking for higher efficiency,
an intermediate degree of implicitness is also possible with
techniques like implicit pressure and saturation (IMPSAT)
or adaptive implicit (AIM) [15]. A few of the compositional
simulators are developed in the framework of commercial
software used extensively in the industry [16, 17]. Both
commercial packages GEM (by CMG) and ECLIPSE (by
Schlumberger) use the integrated finite difference method
(IFDM) for the spatial discretization and either an implicit
or an explicit Euler scheme for time integration. Among
research codes, DuMux developed at the University of
Stuttgart, uses a BOX scheme for space discretization while
the time integration is performed via a standard implicit
Euler scheme [18]. FEHM has been developed since early
1970s at the Los Alamos National Laboratory and is based
on a control volume finite element (CVFE) spatial dis-
cretization approach and an implicit time discretization
[19]. Stanford University’s finite volume (FV) based GPRS
initially developed by Cao [20] and further extended by
Jiang [21] supports varying degrees of implicitness for time
discretization. IPARS is being developed at the Center for
Subsurface Modeling (CSM) at the University of Texas at
Austin [22–25], which uses an iteratively coupled sequen-
tial IMPEC algorithm for the saturations. The pressure
equation is solved using a backward Euler method for time
discretization and mixed FEM for space discretization.
TOUGH2 developed at the Lawrence Berkeley National
Laboratory uses integrated finite difference method (IFDM)
for discretization in space and implicit time integration

[26]. One last approach to resolve small-scale features is
to use adaptive mesh refinement (AMR) as described e.g.
in [27] and were implemented in [10]. Similar approach
is used by NORMS group from Imperial College [28, 29].
These research codes are examples for different fields of
application.

In compositional modeling, numerical dispersion tends to
smooth sharp composition and saturation fronts. The degree
of numerical dispersion depends on the order of method
used in the discretization. There are inherent limitations in
zeroth-order methods, where steep gradients in composi-
tions and transport properties cannot be captured accurately
by element-wise constant values, unless an exceedingly fine
mesh is used Higher-order methods, on the other hand, yield
more accurate approximations of the sharp fronts because
they include additional terms in the estimation of gradients.
The memory and computational costs of grid refinement
for a lowest-order method far outweigh the overhead from
a higher-order method in achieving comparable accuracy.
Higher-order and mimetic finite difference and finite vol-
ume methods which have been extensively discussed in
the literature [30–32] often rely on information from fur-
ther neighboring grid blocks. In contrast, higher-order finite
element methods achieve better estimation locally within
the grid block by increasing the degree of freedom in the
approximation of variables inside the element. This flexi-
bility provided by the higher-order finite element methods
is particularly important in highly heterogeneous domains
where information from further neighboring elements may
result in strong additional nonlinearity in the system if
higher-order finite volume or finite difference methods are
used.

Higher-order finite element methods are computationally
more expensive per element and require careful implemen-
tation [33]. But these methods have advantages in the rep-
resentation of complex physical processes like viscous and
gravitational fingering where reducing numerical dispersion
is critical. To capture such effects with lowerorder meth-
ods finer mesh should be used, which drastically increases
total simulation time This motivates the implementation of
higher-order methods for such applications. Following the
same line of reasoning, the extension to even higher-order
spatial discretization in the transport of a singlephase prob-
lem is an option, although, as it will be explained in the fol-
lowing sections, for multiphase flow, due to the increase of
expensive phase-split calculations required for each degree
of freedom, determining whether the additional accuracy
from higher-orders justifies the additional cost is not trivial.

Dimensionality is another issue of concern in the sim-
ulation of fingering processes. Gravitational and viscous
fingers are 3D in nature and 2D representation of them
might lead to significant discrepancy between the numeri-
cal results and experimental data. Truncation error induced
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by numerical dispersion in a solution is indeed affected by
the problem dimension. Extra dimensions result in higher
numerical dispersion. In an early paper, Coats [34] showed
significant numerical dispersion in the zero-order methods
for 1D problem. Later Ewing and Heinemann [35] com-
pared numerical dispersion in 2D. In a 3D domain, whether
in zeroth-order or in higher-order methods, one expects
more pronounced numerical dispersion compared with 1D
and 2D. The main objective of this work is to develop the
algorithm for the combined DG and MHFE methods in 3D
to study gravitational fingering for three-phase composi-
tional and compressible flow. The performance will be eval-
uated in comparison with lower-order and lower-dimension
results in a series of illustrative examples.

We consider two sources of gravitational flow instabili-
ties (fingering) in compositional flow. In the first, a denser
liquid is injected on top of a lighter liquid. Specifically,
we consider reservoir conditions at which injected CO2 is
supercritical and denser than the oil in the saturated porous
medium, resulting in unstable flow. In the second case, CO2

is injected from the top with a lower density than the reser-
voir fluid, but it dissolves in the reservoir fluid and this
dissolution increases the local liquid density in the top,
which is again unstable. We consider two scenarios where
this may occur. One is dissolution of injected CO2 into oil,
and the second is in the context of CO2 sequestration in
aquifers where CO2 may dissolve into the aqueous phase. In
both cases, the density increase from CO2 dissolution may
only be a (few) percent, but for high-permeability forma-
tions this is sufficient to trigger gravito-convective mixing
of dissolved CO2 throughout the reservoir or aquifer at a
convective rate that is much faster than diffusive transport
of CO2.

Fickian diffusion plays a critical two-fold role in this
process. First, Fickian diffusion is what drives the initial
dissolution of CO2 from the gas phase into the oil or aque-
ous phase. This process occurs across the phase boundary
and can be relatively fast even for small diffusion coef-
ficients (unlike diffusive transport over reservoir scales).
Second, Fickian diffusion acts as a restoring force at the
onset of gravitational flow instabilities (fingering). Once a
finger starts to develop, this sets up compositional gradients
that will drive diffusion of CO2 from the elevated-CO2-
concentration fingers to the low-CO2-concentration ambient
oil or aqueous phase. This process “smears out” or stabi-
lizes the instability. Higher diffusion coefficients will delay
the onset of gravitational fingers (critical time) and result
in fewer and larger fingers (critical wavelength) when the
instability does develop.

The density difference between CO2enriched versus
CO2-free phases is the driver for fingering, while the con-
vective rate of finger growth is governed by Darcy’s law,
and thus proportional to the formation permeability and

inversely proportional to viscosity. Linear stability analyses
have been carried out to determine at what critical time and
wavelength the unstable density difference will exceed the
diffusive stabilizing force (e.g., [10, 36–39] and references
therein). The onset time and critical wavelength depend on
the aforementioned reservoir and fluid properties, but dif-
ferent stability analyses and simulation studies find a wide
range in overall proportionality constants. In [40], we sim-
ulated 2D fingering behavior in an aquifer and found a
proportionality factor close to that in [10]. In this work we
simulate both a 3D example from [10] for single-phase flow
in a CO2 sequestration context, as well as unfavorable fin-
gering for multiphase flow in an oil reservoir, which was
modeled before with CMG [16].

We advance the modeling of fingering in 3D by (1)
the use of higher-order methods, which can capture the
small-scale onset of the instability on relatively coarse
grids, (2) a self-consistent model for Fickian diffusion in
multi-component multiphase mixtures [41], and (3) accurate
fluid properties from equation of state (EOS)-based phase
stability and phase-split computations for two- and three-
phase flow. We rely on the commonly used Peng-Robinson
EOS for pure hydrocarbon phases, but use a more accu-
rate cubic-plus-association EOS for mixtures that contain
polar components [40]. The latter is most important for
the aqueous phase in the context of carbon sequestration
studies.

Following this brief introduction, in the next section
we present the mathematical formulation of the problem.
Derivations of the discretized form of the equations in 3D
are briefly presented in the Section 3. In the Section 4 we
discuss the rate of convergence, accuracy and CPU time of
zero-order and higher-order methods in 3D problems. We
also compare 2D and 3D results to investigate the effect
of dimension reduction on flow and species transport in
challenging cases where fingers form due to the compo-
sitional effects. The paper is summarized with concluding
remarks.

2 Mathematical formulation

In this section, we briefly summarize the formulation for
compositional modeling of higher-order methods in 3D.
We first discuss the species transport, and then the flow
equations.

2.1 Species transport

The mass balance of each species is given by

φ
∂czi

∂t
+ ∇ · Ui = Fi i = 1, 2, ..., nc (1)
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where ϕ [−] is porosity (assumed constant), c[mol/m3] is
overall molar density, zi[−] is overall mole fraction of com-
ponent i (�izi = 1), t [s] is time, Ui [mol/m2/s] is total
molar flux of component i and Fi [mol/m3/s] is the distribu-
tion of sources/sinks of component i. The total molar flux
Ui is the sum of convective and diffusive fluxes:

Ui =
∑

α

(cαxαivα+SαJαi) i =1, 2, ..., nc, α = o, g,w.

(2)

The diffusive flux Jαi can be expressed by

Jαi = −cαφ

nc−1∑

j=1

Dαij∇xαj i = 1, 2, ..., nc − 1

nc∑

j=1

Jαj = 0 (3)

where the subscript α = o, g and w denotes the oil, gas
and water phases, respectively, with α designating a generic
phase, cα[mol/m3] is the molar density of phase α, xαI [mole
fraction] is the mole fraction of component i in phase α

(�αxαi = 1), vα [m/s] is the (effective) velocity vector of
phase α, Sα [−] the saturation of phase α and Jαi [mol/m2/s]
is the diffusive flux of component i in phase α. The Fickian
diffusion coefficient matrix with elementsDαij is computed
using the unified model from Leahy-Dios and Firoozabadi
[42].

2.2 Darcy’s law

Darcy’s law gives the phase velocity as

vα = −λαK (∇p − ραg) (4)

where vα [m/s] is phase velocity, p[Pa] is pressure, ρα

[kg/m3] is mass density of phase α, g [kg/m/s2] is gravity
acceleration, K [m2] is medium intrinsic permeability ten-
sor, and λα [m.s/kg] is the phase mobility. In the numerical
implementation of the method for the sake of simplicity, we
assume an isotropic domain with scalar (yet heterogeneous)
permeability K.

The mass density of phase α is calculated from:

ρα = cα

nc∑

i=1

xαiMi α = o, g,w (5)

where Mi [g/mol] is the molecular weight of component i.
The phase mobility (λα) is a function of phase satura-

tion(s) (Sαg[−]), relative permeability krα [−] and phase
viscosity μα [kg/m/s]. The phase mobility is defined as
λα(Sα) = krα/μα .

We use the total velocity as the primary unknown in
Darcy’s law [43, 44], which is a smooth function of space
and adds both accuracy and robustness to the computations.

Another advantage of using the total velocity relates to cases
where a phase disappears; the phase mobility λα will then
be zero, which result in zero phase velocity. But with total
velocity v

v ≡ vw + vg + vo (6)

as long as one of the phases is mobile, the total velocity v
is non-zero and the system of equations is positive definite
and solvable for pressure.

Defining total mobility λt , total mass density ρ and
fractional flow functions fα as

λt =
∑

α

λα, ρ =
∑

α

fαρα, fα = λα

λt

, (7)

we write the total velocity as

v = −
∑

α

λαK (∇p − ραg) = −λtK (∇p − ρg) . (8)

From Eq. 8, the pressure gradient ∇p is obtained:

∇p = −K−1

λt

v + ρg. (9)

Introducing (9) into Darcy’s equation (4) yields the phase
velocity vα as a function of the total velocity v:

vα = fα (v + Gα) Gα = Kg
∑

β=o,g,w

λβ

(
ρα − ρβ

)
. (10)

2.3 Pressure equation

Using the concept of volume-balance [45], one can derive
the following pressure equation:

φCf

∂p

∂t
+

nc∑

i=1

v̄i∇ · (coxoivo + SoJoi + cgxgivg + SgJgi

+ cwxwivw + SwJwi ) =
nc∑

i=1

v̄iFi (11)

where Cf [m.s2/kg] is the total compressibility and
v̄I [m3/mol] is the total partial molar volume of compo-
nent i. Moortgat et al. [46] outline the procedure for the
computation of Cf and v̄I in three-phase gas-oil-water
mixture.

2.4 Thermodynamic equilibrium relations

For successful largescale compositional simulations, an effi-
cient and robust phase equilibrium computational algorithm
is required. Li and Firoozabadi [47] present an efficient
strategy for stability analysis and phase-split calculations. In
three-phase, the component splitting between phases is car-
ried out by solving thermodynamic equilibrium equations
based on the equality of phase fugacities. For a given set of
pressure p, temperature T and overall composition zi of a
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system with nc components, one may calculate phase com-
pressibility factor Zα and phase composition xi,α . Details
of the calculation are provided by Li and Firoozabadi
[47]. We adopt the Peng-Robinson equation of state (EOS)
[48] for hydrocarbon phases, and a cubic-plus-association
(CPA) EOS for the aqueous phase [40]. The CPA-EOS
takes into account the self-association of water molecules,
and cross-association between water and CO2 molecules
[49] From molar phase densities, the phase saturations
are calculated.

2.5 Three-phase relative permeabilities

We use the Stone model [50, 51] for three-phase relative per-
meabilities. The details of our implementation are discussed
in [40].

2.6 Initial and boundary conditions

With respect to czi , Eq. 1 is the first degree, which requires
boundary conditions (BC) for molar density and mole frac-
tions at the inflow boundary; the outflow boundary is part
of the solution and will be computed. We also need initial
conditions for molar density and mole fractions of all com-
ponents in the domain. With respect to p the pressure Eq. 11
is the first degree. Therefore one either needs pressure as
Dirichlet BC for each boundary point of the domain or, since
the pressure equation is coupled to Darcy’s equation (4) one
may provide the normal component of total velocity as Neu-
mann BC for all boundary points. The initial pressure is
also required in the domain. The no-flux condition on the
impermeable walls for Darcy’s equation (4) is implemented
simply by setting the permeability K to zero on boundary
faces.

3 Numerical implementation

Mikyska and Firoozabadi [33] present detailed numerical
implementation of the MHFE-DG method for 2D com-
positional modeling of two-phase flow. Moortgat et al.
[46] extend the formulation to three-phase flow in 2D. We
present the numerical scheme for 3D three-phase composi-
tional flow in this paper.

The set of Eqs. 1, 9 and 11 along with the thermody-
namic equilibrium relations, can be solved for pressure,
phase velocities and compositions using an IMPEC scheme.
The mixed hybrid finite element (MHFE) method of the
lowest order is applied to the pressure field, which is usually
smooth and continuous. Fluid properties, on the other hand,
show sharp discontinuities, for instance around the front,
which are smeared out by numerical dispersion. There-
fore a trilinear discontinuous Galerkin (DG) method is

implemented for the transport equation which is theoret-
ically first order in space and zero order in time (using
forward Euler). Advantages of this combination have been
discussed by Hoteit and Firoozabadi [52]. They show that
changing the order of the mass transport equation has a sig-
nificant effect on the accuracy and CPU efficiency of the
simulations.

In compositional modeling there are advantages in the
use of IMPEC methods. The fundamental assumption of
IMPEC is that pressure and concentration equations can be
decoupled when the time scale variation of the concentra-
tion field is significantly smaller than the variation of the
pressure field. Compared with the fully implicit methods,
IMPEC methods have smaller and computationally cheaper
linear systems. The other advantage of IMPEC methods is
the straightforward incorporation of phase stability analy-
ses. The stability analysis identifies whether a fluid phase
is stable, and if not, provides an initial guess for the flash
computation. Alternatively, phase compositions of the pre-
vious time step may provide a good initial guess for flash
calculation.

A scalar quantity c(x, t) in a 3D cubic element K can be
represented by four degrees of freedom (DOF), l = 1,2,3,4,
as

cK(x, t) =
4∑

l=1

cK,l(t)ϕK,l(x) x = (x, y, z). (12)

where φK,l (x) are listed in Appendix A.
Similarly, a generic vector quantity q(xt) in an element

K can be discretized as:

qK(x, t) =
∑

E∈∂K

qK,E(t)wK,E(x) x = (x, y, z) (13)

where wK,E (x) is the lowest-order Raviart–Thomas linear
basis vector of face Ein an element K listed in Appendix A.

Using this representation, one can write qK,E in Eq. 13 as

qK,E =
∫

E

q · nK,E (14)

which is the normal component of a vector q on edge E

of an element K with respect to the outer normal nK,E .
This form will be used in the derivation of discretized
equations.

3.1 MHFE discretization of Darcy’s equation

We multiply Darcy’s equation (9) by the basis vector field
wK,E and integrate the pressure gradient by parts over
element K to find the discretized total velocity:

vK,E = aK,EpK −
∑

E′∈∂K

bK,E,E′pK,E′ + dK,E (15)
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Fig. 1 Schematic of the problem domain (examples 1, 2, and 4)

in terms of element-average pressures pK and face-average
pressures pK,E′ . The coefficients in Eq. 15 are listed in
Appendix B.

From flux continuity across face E, the flux can be
eliminated by collecting the Darcy velocity and a global
matrix system for p (element-average pressures, pK) and pf
(face-average pressures, pK,E) can be constructed:

RTp − M pf = V (16)

where R, M and V are defined in Appendix B.

3.2 MHFE discretization of pressure equation

The other NK equations, required for the closure of the
pressure system, are from the discretization of the pressure
equation (11). The pressure equation is multiplied by basis
vector fieldwK,E and integrated over each elementK . From
the continuity of pressures across face E, we can construct
a second global matrix system of equations:

Dpn+1 − R̃pn+1
f = G (17)

where superscript n refers to the current time step and n +1
to the next time step. Coefficients are listed in Appendix B.

Fig. 2 CO2 concentration at PVI = 7 %, along a line from injection to
production well with MHFE-FD and MHFE-DG methods in 16 × 16
× 16 and 64 × 64 × 64 grids and the reference solution (example 1)

Equation 17 provides NK equations, which, along with
equation (16) give a closed system withNK + NE equations
and NK + NE unknowns. The matrix D is diagonal, so we
can eliminate p to find:

(
M − RTD−1R̃

)
pn+1
f = RTD−1G − V. (18)

Once pn+1
f is calculated, the cell-averaged pressure p can

be updated from Eq. 17 and the total velocity from Eq. 15.
Then phase velocity is calculated from Eq. 10 as discussed
in Appendix C.

3.3 DG discretization of molar balance equations

We use the discontinuous Galerkin scheme to discretize the
component transport Eq. 1. This equation is written in the
weak form by multiplying test function ϕK,l and integrating
over each element K . The time derivative is approximated

Table 1 Gridding in example 1
Grid cells Number of Number of Number of Size of 3D linear Size of (corresponding)

grid cells edges nodes system 2D linear system

4 × 4 × 4 64 240 125 237 38

8 × 8 × 8 512 1728 729 1725 142

16 × 16 × 16 4096 13,056 4913 13,053 542

32 × 32 × 32 32,768 101,376 35,937 101,373 2110

64 × 64 × 64 262,144 798,720 274,625 798,717 8318
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Table 2 CPU time (minutes) for different grids at PVI = 7 %
(example 1)

Number of grid cells 64 512 4096 262,144

CPU time, MHFE-DG <1 s 0.067 1.36 3078.6

CPU time, MHFE-FD <1 s 0.057 1.29 3066.6

by the forward Euler method. The final form of the DG
discretized mass balance equation reads

φK

4∑

j=1

cKz
j n+1
i,K − cKzln

i,K


t
MK

j.l −
∑

α

4∑

j=1

cα,Kx
j
αi,K

∑

E

vα,K,EM
K,E
j,l

+
∑

E

∑

α

c̃α,K x̃αi,K,Evα,K,E

|E| ME
l

+
∑

E

|E|Jαi,K,EME
l =

∫

K

Fi,KϕK,l

(19)

in terms of the element averaged phase compositions xαi,K

and six upwind phase compositions x̃αi,K,E for the six faces.
Different integral coefficients M are listed in Appendix B.
The quantities x̃αi,K,E and c̃α,K,E are the composition (mole
fraction) of component i and phase α density on edge E

of element K . The face values are upwinded depending on
the velocity direction. On the edge common between two
elements K and K ′:

x̃αi,K,E =
{

xαi,K,E if vα,K,E ≥ 0

xαi,K ′,E if vα,K,E < 0
(20)

c̃α,K,E =
{

cα,K,E if vα,K,E ≥ 0

cα,K ′,E if vα,K,E < 0.
(21)

These values are calculated by the flash procedure described
in Section 2.4. A maximum of seven flash calculations are
performed for each element at each time step for the DG
method in 3D

In Eq. 19 Jαi,K,E = Jα,i,K .nK,E is the average diffusive
flux through edge E which is assumed continuous across

edges. By considering the diffusion flux term only when
l = 1, it is treated with finite difference scheme. But due
to the secondorder spatial variation in diffusion, the term is
quadratic in 
x. Higher-order discretization of the multi-
component diffusion flux is beyond the scope of this work
[41].

It is well known that higher-order methods may exhibit
spurious oscillations, unless a slope limiting procedure is
adopted. We use the same slope limiter as in earlier works
[33, 53], which is discussed in Appendix D. An itemized
description of the full algorithm and corresponding flow-
chart are provided in Appendix E.

4 Numerical examples

In order to demonstrate the superiority of the higher-order
methods for transport equation in both lab and field scales
and to examine the effect of dimensionality (2D versus 3D),
we start with a few simple examples illustrating the effi-
ciency of the proposed algorithm in terms of CPU time
and convergence rate and then we will consider challeng-
ing 3D compositional multicomponent multiphase fingering
simulation in examples 5 to 7.

Examples 1 to 5 are performed on a 3.1GHz Intel Core
i5 Macintosh machine, and examples 6 and 7 on a 2.8GHz
Intel Core i7. We note that all CPU times are conservative
and based on strict adherence to the CFL time constraint,
which is sufficient but not necessary for numerical stability
(for less complicated flow, we can use a more relaxed time-
constraint, based on the maximum net number of moles in a
grid cell in one time-step). All simulations are carried out in
serial mode, but the code is parallelized for shared-memory
architectures. The phase-split computations, in particular,
scale well with the number of cores available. This makes
the higher-order DG method even more competitive with
respect to the traditional FD approach, because the main
extra cost of the higher-order DG method is additional flash
computations (seven flash calculations for each 3D ele-
ment rather than one per element in FD), which are trivially

Table 3 Relevant data for the initial oil phase (example 2)

Component Initial oil composition Acentric factor Critical temperature Critical pressure Molar weight Critical specific Volume shift

[mole fraction] (ω) [−] (Tc) [K] (pc) [bar] (Mw) [g/mol] vol (Vc) [cm3/g] (s) [−]

C1 0.4499 0.0110 190.56 45.99 16.00 0.00615 −0.1540

C2–C3 0.1220 0.1178 327.81 46.54 34.98 0.00474 −0.0949

C4–C5 0.0513 0.2103 435.62 36.09 62.98 0.00437 −0.0598

C6–C10 0.1345 0.4175 574.42 25.04 116.19 0.00425 0.0466

C11–C24 0.1677 0.6632 708.95 15.02 218.76 0.00410 0.1494

C25+ 0.0745 1.7276 891.47 7.47 465.91 0.00350 0.4950
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Table 4 Relevant data for water and CO2 (example 2)

Acentric Critical temperature Critical pressure Molar weight Critical specific vol Volume shift

factor [−] (Tc) [K] (pc) [bar] (Mw) [g/mol] (Vc) [cm3/g] (s) [−]

H2O 0.344 647.29 220.90 18.02 – Li and Firoozabadi [49]

CO2 0.239 304.14 73.75 44.00 0.00214 −0.1768

parallelized. A fully parallelized version for distributed-
memory cluster environments is in the works.

In this work, FD and DG only refer to the mass trans-
port update. In both methods, the pressure and velocity
fields are computed using the same MHFE method,x desig-
nated as MHFE-FD and MHFE-DG. As a result, the degree
of numerical dispersion observed in the FD simulations is
conservative.

4.1 Example 1: single-phase CO2 injection
in a C1-saturated 3D homogeneous domain

In this example, CO2 is injected in a 10 m × 10 m × 10 m
3D domain at a constant rate of 10 PV/year from a well
located at the corner (0 m, 0 m, 0 m). The production well
produces at a fixed pressure of 300 bar at the diagonally
opposite corner at (10 m, 10 m, 10 m), as depicted in Fig. 1.
The initial pressure at the bottom of domain is 300 bar and
the temperature is 450 K. The permeability is 10 md and the
porosity is 20 %. The domain is saturated with C1 and there
is no phase change. The CO2 front and numerical dispersion
will be compared for the two methods (MHFE-DG versus
MHFE-FD).

Five different grids listed in Table 1 are used. This table
provides the number of elements (that is, grid cells), edges
and nodes of the grids. The size of the linear systems to be
solved is also provided in both 3D and 2D.

Since the fluid is in single-phase, we expect a sharp
front of CO2 propagating through the domain. The CO2

concentration profile along the line connecting the injec-
tion and production wells provides a measure of numerical
dispersion for each method. Figure 2 depicts the CO2 con-
centration along the cube-diagonal line at PVI = 7 % with
different discretization schemes and grid sizes. We expect
a stepwise reference solution, which is shown along with

Table 5 Relative permeability (example 2)

Swr 0.1 k0row 0.69

Sgr 0.02 k0rog 0.95

Sorw 0.4 nw 3

Sorg 0.1 ng 2

k0rw 0.4 now 2

k0rg 0.63 nog 2

the result from MHFE-DG and MHFE-FD methods in 16 ×
16 × 16 and 64 × 64 × 64 grids in Fig. 2. As the figure
shows, the MHFE-DG method in a 16 × 16 × 16 grid has
the same numerical dispersion as the MHFE-FD method in
a 64 × 64 × 64 grid.

Table 2 compares the CPU times of the simulations for
both methods, which demonstrates that for the same order of
accuracy, MHFE-DG is more than three orders of magnitude
faster than MHFE-FD considering that no flash calculation
is carried out for this example.

4.2 Example 2: convergence analysis for three-phase
multi-component flow in a 3D homogeneous domain

We consider a water-flooded domain and inject CO2 in the
same configuration as depicted in Fig. 1 The initial pressure,
temperature, permeability, and porosity are also the same
as in example 1. This is an eight-component, three-phase
problem.

Fluid data for oil, water and CO2 are given in Tables 3
and 4. The domain has an initial water saturation of 40 %;
relative permeability parameters are given in Table 5.

The overall accuracy is computed in terms of the L1

norm, which is the average absolute value of the difference
between the reference and the numerical solution. The rate
of convergence of the MHFE-FD and MHFE-DG methods
is compared in Table 6 and Fig. 3, based on the results of
simulations in different grids in Table 1.

The reference solution is estimated based on a sequence
of three solutions (8, 16 and 32 elements in each direction)
using the Richardson extrapolation [54] of the concentration
of CO2 in the domain. As depicted in Fig. 2, the aver-
age convergence rates of MHFE-DG and MHFE-FD are
1.140 and 0.573, respectively. Using first-order polynomials
(p = 1) to approximate the solution in each element, the
MHFE-DG method should theoretically have second-order
convergence rate (p + 1 = 2) for a smooth solution. This
case is not a smooth solution in parts of the domain around
the front; therefore the convergence rate is less than the
theoretical value of 2 [40, 55].

Figure 4 shows CPU times of the MHFE-FD and MHFE-
DG methods for the grids in Table 1 versus the L1 norm,
normalized to the MHFE-FD L1 norm in the coarsest mesh.
As an example, for the order of accuracy equal to 0.2,
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Table 6 Rate of convergence
of MHFE-FD and MHFE-DG
(example 2)

Number of grid cells MHFE-FD MHFE-DG

L1 Rate of convergence L1 Rate of convergence

262,144 0.007296 0.001383

32,768 0.011108 0.606442 0.003238 1.226801

4096 0.016666 0.585266 0.007147 1.142275

512 0.024702 0.567781 0.015125 1.081447

64 0.035743 0.533015 0.032673 1.111184

MHFE-FD requires more than three orders of magnitude
CPU time than MHFE-DG.

4.3 Example 3: single-phase C1 injection in a
heterogeneous 3D domain saturated with C3

We consider the 3D heterogeneous 10 m × 10 m × 10 m
domain shown in Fig. 5 which has a near impermeable zone
(K = 10−7 md) in one part, while the rest of the domain has
a permeability of 10 md. The domain is initially saturated
with propane (C3). Methane (C1) is injected at a low rate of
0.1 PV/year at (0 m, 0 m, 0 m) to displace C3 to the opposite
producing corner at (10 m, 10 m, 10 m). The initial pressure
at the bottom of domain is 20 bar and the temperature is
394 K. At the condition of this problem, the C1–C3 mixture
remains in single-phase.

The results are computed with the MHFE-DG method
and MHFE-FD method in both 20 × 20 × 20 grid and
40 × 40 × 40 grid. MHFE-DG results in a finer grid of
40 × 40 × 40 (not shown) are not significantly differ-
ent than the coarser results; the MHFE-DG solution has
already converged on the 20 × 20 × 20 grid. Figure 6

Fig. 3 L1-norm (logarithmic scale) versus spacing (logarithmic scale)
for MHFE-DG and MHFE-FD schemes 864 (example 2)

shows methane composition at one PVI. The MHFE-DG
and MHFE-FD results are very different, with significant
numerical dispersion from the MHFE-FD method, even in a
finer 40 × 40 × 40 grid at a significantly higher CPU time,
as shown in Fig. 6c and Table 7.

4.4 Example 4: comparison between 2D and 3D
simulations

In this example we compare simulation results in 2D and 3D
to illustrate differences in the flow pattern and breakthrough
time. We consider the same single-phase problem as in
example 1 for CO2 injection into methanesaturated media,
but we use a perforated injection well at (0 m, 0 m, 0 m <

z < 10 m) and a perforated production well at (10 m, 10 m,
0 m < z < 10 m). The initial pressure is 300 bar at the bot-
tom of the domain with an established pressure profile along
vertical direction that satisfies hydrostatic equilibrium. The
initial and subsequently fixed pressure at the producer will
therefore be lower in the top than in the bottom. For the
2D simulation, we take a diagonal 14.14 m × 10 m vertical
cross-section from the injection to the production well.

Fig. 4 CPU time (logarithmic scale) versus L1-norm for the MHFE-
DG and MHFE-FD schemes (example 2)
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Fig. 5 Schematic of domain (example 3)

MHFE-DG simulations are carried out in a 32 × 32 (× 32)
grid in 2D (3D). Figure 7 compares a diagonal cross-section
of the 3D simulation (a) to the 2D result (b).

As expected, the 3D result shows more numerical dis-
persion. Numerical dispersion is particularly challenging in
3D, which may be the reason that few 3D studies of compo-
sitional gravity fingering are reported in the literature. The
3D simulation predicts about 25 % PVI earlier breakthrough
time than the 2D simulation as shown in Fig. 8. Part of dis-
crepancy could be attributed to higher numerical dispersion
in the 3D simulation and could be resolved numerically by
e.g. using finer mesh, but it is in part related to the flow
pattern and the way it is affected by the other boundary con-
ditions in the 3D domain, which do not exist in 2D and could
not be simulated correctly even for such a simple geometry.

4.5 Example 5: gravitational fingering during CO2
injection into a vertical core

In this example we model gravitational fingering at the
core scale. There are two main objectives: to examine the
applicability of 2D simulation for 3D processes, and to
demonstrate that the FD method may not adequately rep-
resent complex fingering patterns even at the laboratory
scale.

Table 7 CPU time (min) for different number of cells at PVI = 100 %
(example 3)

Number of grid cells 800 64,000

CPU time, MHFE-DG 100 –

CPU time, MHFE-FD 93 4585

We use the data from a series of core flooding experi-
ments [56]. We convert a cylindrical core to a 3.9 cm ×
3.9 cm × 27.3 cm domain, in which CO2 is injected from
the top at a rate of one hydrocarbon PV per day. The connate
water saturation is 31 %, and all other residual saturations
are assumed equal to zero. The end-point water relative per-
meability is one, the end-point gas relative permeability is
0.6, the end-point oil relative permeability to water is 0.3,
and the end-point oil relative permeability to gas is 0.4. All
the Corey exponents are one (linear). The absolute perme-
ability of the sandstone core is 221 md and the porosity is
19 %. The temperature is 331.2 K and the initial pressure
is 441.3 bar at the bottom of core, which is kept constant
during the experiment. The fluid properties and initial oil
composition are provided in [56]. The density of CO2 is
0.92 g/cm3 and the oil density is 0.74 g/cm3 at the initial
conditions of the core. Because CO2 is denser than the oil
at this condition, the fluid system is unstable and we expect
gravitational fingers to form during injection from the top.
Dampening effects of Fickian diffusion, capillary forces and
layering in similar problems on the development of insta-
bilities and on the onset of fingering and total recovery are
discussed in [56, 57] and [58].

Figure 9 compares oil recovery for all the simulations in
this example. MHFE-DG simulation results in 18× 18× 80
and 25 × 25 × 100 element grids show excellent
agreement with the experimental data and near convergence
in the 18× 18× 80 grid. Figure 10 shows simulation results
for CO2 concentration profiles fromMHFE-FD andMHFE-
DG at PVI = 10, 20 and 60 %. As expected, the lower-
order MHFE-FD method in the same grid produces very
different results. Numerical dispersion causes significant
dampening of the instabilities, which, as shown in Fig. 10c,
develop at much later time (PVI = 60 %). Consequently, the

Fig. 6 Methane composition
profile (mole fraction) at PVI =
100 % by a MHFE-DG in a 20
× 20 × 20 grid, b 869
MHFE-FD in a 20 × 20 × 20
grid, and cMHFE-FD in a 40 ×
40 × 40 grid (example 3)

Author's personal copy



Comput Geosci

Fig. 7 Methane concentration
at PVI = 50 % a in 3D and b in
2D simulations both using
MHFE-DG (example 4)

gravitational fingers are suppressed in the MHFE-FD sim-
ulation, and we observe piston-like displacement. The
MHFE-FD simulation significantly over-predicts the final
oil recovery (Fig. 9).

In the numerical simulation, the instability and onset of
fingering is triggered by truncation errors. ....Moortgat et al.
[56] mention the dimensionality issue as one probable
source of discrepancy between 2D simulation results and
experimental data. Figure 11 compares 2D and 3D results at
three different times (PVI = 15 %, the onset of instability in
3D simulation; PVI = 23 %, the onset of instability in 2D
simulation, and PVI = 50 %). The 3D results are from the
mid-plane. Instabilities are more pronounced in 3D, which
results in the earlier onset of fingering (15 % PVI in 3D ver-
sus 23 % PVI in 2D), and consequently earlier breakthrough
time, as depicted in Fig. 11c. The average speed of the fin-
gers in 3D is 6.64 μm/s which is about 11.5 % higher than
5.95 μm/s in 2D. Figure 9 shows that the 3D simulations are
indeed in closer agreement with the experimental data than

Fig. 8 CO2 concentration at the bottom of the production well from
2D and 3D simulations (example 4)

the 2D simplification despite the likely higher numerical
dispersion in 3D.

4.6 Example 6: field-scale CO2 injection
with gravitational fingering in 2D and 3D

The focus of this example is on the simulation of largescale
fingering. We investigate the effect of density increase from
CO2 dissolution in the oil phase and the associated phase
behavior in 3D. There is no reported investigation in the lit-
erature in 3D for this problem. In CO2 injection from the
top, even when the injected CO2 is lighter than the oil phase,
gravity drainage may be unstable, as has been recently dis-
cussed by Ahmed et al. [59] in 2D. The layer of denser oil on
top of lighter oil may trigger fast gravito-convective mixing,
particularly when the permeability is high. A similar effect
(considered in the next example) plays a central role in CO2

sequestration from the top, when CO2 dissolution increases
the water density modestly (up to 1 %). In recent years,
densitydriven flows from CO2 injection has been discussed
in the literature [10, 37]. In this example, we will show

Fig. 9 Oil recovery as a function of hydrocarbon PVI for different
grids with MHFE-DG and MHFE-FD in 3D and 2D (example 5)
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Fig. 10 Overall CO2 concentration (mole fraction) at a PVI = 10 %,
b PVI = 20 %, and c PVI = 60 % from MHFE-FD and MHFE-DG
simulations in 18 × 18 × 80 grid (example 5)

that our higher-order scheme is a powerful tool to simulate
fingering in 3D where finite difference codes have inherent
limitations.

Ahmed et al. [59] pose, correctly, that slim tube exper-
imental data represent 1D horizontal flow and cannot be
generalized for field evaluation purposes. Particularly when
fingering occurs, the flow cannot be represented in 1D,
and may not even be captured fully in 2D. Ahmed et al.
[59] perform field-scale simulations in 2D with the CMG
commercial simulator, which is based on the traditional FD
method. In this example, we first present 2D results with
ourMHFE-FDmethod and compare to higher-orderMHFE-
DG results. More importantly, we generalize to fine-grid 3D
simulations, showing density-driven flow and fingering in
compositional 3D flow. We also consider the effect of Fick-
ian diffusion, which may act as a restoring force in fingering
instabilities.

Fig. 11 Overall CO2 concentration at PVI = 15 % (a), 23 % (b), and
50 % (c) for 2D and 3D MHFE-DG in (25 ×) 25 × 100 grids. 3D
results are from mid-plane of the core (example 5)

We consider a domain that is about half the size of
that in [59] to make the 3D simulations numerically
tractable. The 3D domain is 200 m × 50 m × 50 m, and
200 m × 50 m for the 2D simulations. We carry out simula-
tions in 160 × 40 × 40, 140 × 35 (× 35), 100 × 25 (× 25),
and 80 × 20 (× 20) grids in 2D (3D). To further test conver-
gence, we also use finer 400 × 100, 300 × 50, and 200× 50
grids in 2D.

The domain has a 1 darcy permeability and 22 % poros-
ity. The initial bottom hole pressure is 117 bar and the
temperature is 320 K. Residual saturations are assumed
equal to zero, all endpoint relative permeabilities are one
with quadratic Corey exponents. The fluid properties and
initial oil composition are provided in [59] At the given con-
dition, pure CO2 has a density of 0.618 g/cm3 and viscosity
of 0.02 cp. We note that our phase behavior predictions for
the oil–CO2 mixtures do not agree well with those reported
in [59]. We find a higher CO2 solubility of about 70 mol%
and initial density and viscosity of 0.741 g/cm3 and 0.46 cp,
respectively. The density and viscosity of the oil fully
saturated with CO2 at the given temperature and pressure
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are 0.778 g/cm3 and 0.19 cp, respectively. Despite these dif-
ferences, we observe a similar density increase of 5 % from
CO2 dissolution, which is the focus of this example.

As in [59] for 2D, CO2 is injected from the top-left corner
at a constant rate of 0.05 PV/year, and production is at a
constant pressure from the bottom-right corner. When the
3D reality is simulated with a 2D model, the assumption
is that the flow is invariant in the third direction. For the
3D simulations, in order to be comparable to 2D results, we
inject uniformly from all elements along the top-left y-axis
(0 m, 0 m < y < 50 m, 50 m) at the same rate. Production

is from the bottom-right y-axis (200 m, 0 m < y < 50 m,
0 m).

Figure 12 presents the results at 10 % PVI from 2D sim-
ulation in five different grid sizes using the MHFE-FD and
the higher-order MHFE-DG methods. Fickian diffusion is
first neglected for comparison to results in [59]. Because
we use the same injection rate of 0.05 PV/year as in [59],
but about half the domain size, the effective rate is about
twice as low (the front moves at half the speed). As a result,
we see in the MHFE-FD results that there is more time
for gravitational downward flow. Compared to the MHFE-

MHFE-FD – 80 × 20 grid MHFE-DG – 80 ×20 grid

MHFE-FD – 140 × 35 grid MHFE-DG – 140 × 35 grid

MHFE-FD – 200 × 50 grid MHFE-DG – 200 × 50 grid

MHFE-FD – 300 × 75 grid MHFE-DG – 300 × 75 grid

MHFE-FD – 400 × 100 grid MHFE-DG – 400 × 100 grid

Fig. 12 Overall CO2 concentration (mole fraction) at 10 % PVI from MHFE-FD and MHFE-DG in five different grid 880 sizes, without Fickian
diffusion (example 6)
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Table 8 CPU times for MHFE-FD and MHFE-DG in different grids
(example 6)

Grid cells MHFE-FD MHFE-DG

(h:min:s) (h:min:s)

2D: 80 × 20 without diffusion 00:00:16 00:00:36

2D: 140 × 35 without diffusion 00:01:34 00:03:38

2D: 140 × 35 with diffusion 00:02:32 00:04:42

2D: 200 × 50 without diffusion 00:05:12 00:11:30

2D: 200 × 50 with diffusion 00:07:34 00:13:59

2D: 300 × 75 without diffusion 00:25:03 00:38:29

2D: 400 × 100 without diffusion 01:15:27 01:35:59

3D: 80 × 20 × 20 without diffusion 00:18:00 00:35:00

3D: 100 × 25 × 25 without diffusion 01:08:00 02:18:00

3D: 140 × 35 × 35 without diffusion 15:28:00 17:25:00

3D: 160 × 40 × 40 without diffusion 34:58:00 40:35:00

DG simulations, it is clear that the numerical dispersion
in the FD simulations is pronounced, which suppresses
the formation of gravitational fingers unless extremely fine
grids are used. In the coarsest grids, which are far finer
than what is generally used for large field-scale simula-
tions, the fingering is not resolved at all and the location of
front, which determines the breakthrough time, is severely
underestimated (100 m on the coarsest grid, versus200 m on
the finest).

Conversely, the DG results quickly converge in terms of
the location of the front in the top and the finger penetration
depth, with smaller scale details being resolved in the finest
grids. Without performing another convergence analysis as
considered in example 2, it is apparent that the DG results
converge at a higher rate than the FD simulations. In terms
of CPU time, a DG simulation requires about twice the CPU

time of a FD simulation in the same grid. This is because the
smooth pressure field is calculated with similar CPU times
in MHFE-FD and MHFE-DG methods. In the MHFE-DG
simulation, there is a DG update step but it causes negli-
gible difference in CPU time compared to MHFE-FD. The
significant difference in CPU time is due to the additional
flash calculations in 3D MHFE-DG, which is seven instead
of one per element and five instead of one in 2D MHFE-FD
Implementing different optimization techniques reduce this
difference. For example the additional flash computation
can only be performed near fronts, or wherever the gradients
in compositions are not negligible. Also, the stability and
flash calculations can be skipped in many elements where it
is possible to determine the state of element as single-phase
a priori. It results in about two times more CPU time for
MHFE-DG compared with a MHFE-FD simulation on the
same grid. In very large grids, such as in 3D, the CPU times
become closer, because the linear solver dominates the com-
putational cost. The listed CPU times of this example in
Table 8 along with the results shown in Fig. 12 indicate that
the FD simulations require five to ten times more CPU in
2D to achieve similar accuracy, due to the lower conver-
gence rate (e.g. 01:15:27 instead of 00:13:59 if MHFE-FD
result on 400 × 100 grid is comparable, qualitatively, with
MHFE-DG result on 200 × 50 grid). Note that this example
relies on a direct solver, which becomes inefficient at very
large system sizes.

Fickian diffusion generally acts as a restoring force for
viscous and gravitational fingering. Formation of a finger
results in relatively steep compositional gradients between
the finger and the surrounding oil. Such compositional
gradients are smeared out by Fickian diffusion.

Figure 13 shows simulation results at two levels of grid
refinement for MHFE-FD and MHFE-DG. We find that

MHFE-FD –140×35 ×35 grid MHFE-DG – 140× 35×35 grid

MHFE-FD – 200×50 ×50 grid MHFE-DG – 200× 50×50 grid

Fig. 13 Overall CO2 concentration (mole fraction) at 10 % PVI from MHFE-FD and MHFE-DG simulations in two different grid sizes, with
Fickian diffusion (example 6)
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for the large density increase in this problem, with a cor-
responding pronounced instability, Fickian diffusion is not
sufficient to affect the instability appreciably. Diffusion is
therefore neglected in the 3D simulations.

Figure 14 shows the results of 3D simulations at 10 %
PVI for MHFE-FD and MHFE-DG in four different grid
sizes. The viewing angle is from the bottom to clearly illus-
trate the fingers. Horizontal instabilities and viscous finger
formation are also depicted in this figure. Again we see,
qualitatively, that the MHFE-FD results are more dispersed
and resemble MHFE-DG results in significantly coarser
grids. Because the MHFE-FD method converges at about

half the rate as the MHFE-DG approach (example 2), the
computational cost of obtaining converged results in 3D
becomes prohibitive.

Figure 15 compares the overall CO2 concentration from
2D and 3D MHFE-DG simulations in the 140 × 35 (× 35)
grid. The 3D results are from three different cross-sections
along the y-direction at y = 10 m, y = 25 m (midplane)
and y = 40 m. The onset times of the instability in 2D and
3D are comparable but numerical dispersion is more pro-
nounced in 3D. It should be mentioned that we have not trig-
gered the fingers artificially in this example, which is some-
times done when numerical dispersion would otherwise

MHFEMHFE -FD FD –– 8080 ×× 2020 ×× 20 grid20 grid MHFEMHFE -DG DG –– 8080 ×× 2020 ×× 20 grid20 grid

MHMHFEFE -FD FD –– 100100 ×× 2525 ×× 25 grid25 grid MHFEMHFE -DG DG –– 100100 ×× 2525 ×× 25 grid25 grid

MHFEMHFE -FD FD –– 140140 ×× 3535 ×× 35 grid35 grid MHFEMHFE -DG DG –– 140140 ×× 3535 ×× 35 grid35 grid

MHFEMHFE -FD FD –– 160 × 40 × 40 grid160 × 40 × 40 grid MHFEMHFE -DG DG –– 160 × 40 × 40 grid160 × 40 × 40 grid

Fig. 14 Overall CO2 concentration (mole fraction) at PVI = 10 % PVI from MHFE-FD and MHFE-DG simulations in four different grid sizes,
without Fickian diffusion (example 6)
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Fig. 15 Comparison between 2D (top row) and 3D results in 140 × 35 (× 35) grid, from different cross-sections 887 along the y-axis (second
row: y = 10 m, third row: y = 25 m, and forth row: y = 40 m); results for overall CO2 concentration at 2, 5, 8, and 13 % PVI (example 6)

suppress the onset of the instability. When a randomly
perturbed permeability field is used, the results are simi-
lar for this example. Because of the high density increase
considered here, the fingers develop readily.

4.7 Example 7: CO2 sequestration with gravitational
fingering in 2D and 3D

In this example we simulate CO2 sequestration in 3D for
a setup similar to that in Pau et al. [10] Specifically,
we consider a 8 × 8 × 32 m3 domain with 0.5 darcy
permeability and 15 % porosity. The domain is discretized
by a fine 80 × 80 × 80 grid. The grid is linearly refined in

the vertical direction, with 20 cm tall cells in the top, where
the small-scale onset of fingering takes place, 40 cm in the
middle, where fully developed large fingers are expected to
propagate, and 2.5-m cells in the very bottom row, where
we will not require the same level of accuracy. This grid
has 512,000 grid cells, and 1555200 pressure unknowns
on grid faces, which is about the upper limit for a serial
simulation. As in [10], we consider a 1 % random perturba-
tion around the average permeability in each grid cell (but
uniform porosity).

We consider an aquifer temperature and pressure of
350 K and 100 bar, respectively. At these conditions, the
pure aqueous phase density is 978 kg/m3, the maximum

Fig. 16 CO2 concentration in
the aqueous phase (mole
fraction) after 2, 6, and 12 years
(0.2, 0.6, and 1.2 % PVI) for
MHFE-DG simulation on 80 ×
80 × 80 grid (example 7)
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Fig. 17 CO2 concentration in the aqueous phase (mole fraction) after
2, 6, and 12 years (0.2, 0.6, and 1.2 % PVI) 892 for MHFE-DG simu-
lations on a 80 × 80 2D grid versus a 80 × 80 × 80 3D grid, cross-cut
at x = 5 m (example 7)

CO2 solubility is 1.7 mol%, and the CO2-saturated aque-
ous phase density is 987 kg/m3 (a 0.5 % increase).
The diffusion coefficient is D = 1.33 × 10−8 m2/s
(ϕD = 2 × 10−9 m2/s).

The boundary conditions in our model are different from
those in [10]: we consider impermeable boundaries on all

sides, and inject CO2 uniformly from the top at a constant
rate of 0.1 % PV/year (at the initial pressure of 100 bar).
This allows us to study the pressure buildup when CO2 is
sequestered without production. The aqueous phase den-
sity is modeled with the cubic-plus-association EOS, which
takes into account the self-association and cross-association
of (polar) H2O and CO2 molecules.

Despite the differences in boundary conditions, flow
equations (compressible versus incompressible in [10]), and
fluid properties (from our EOS), our simulation results are
qualitatively remarkably similar to [10] (see Fig. 16). The
onset of gravitational fingering (critical time) occurs after
about 1 year, well-defined fingers are visible after 2 years,
the number of fingers in each direction (related to the crit-
ical wavelength) is around 10–13, and the largest fingers
reach the bottom of the domain after about 12 years. We
also see the commonly observed tip-splitting of several of
the fingers.

A noticeable difference with respect to [10] is that we do
not see flattening of the fingers into sheet-like structures,
but rather the fingers retain more of their axial symmetry.
Both could in theory be due to grid sensitivity to structured
grids, but we have found the same cylindrical finger shapes
on fine tetrahedral unstructured grids, as well as in the pre-
vious example for gas-oil two-phase flow We note that a
similar number of fingers as in [10] and thinner fingers at
later times is observed, despite the fact that our character-
istic grid dimensions are 10 cm in the top, versus 8 mm
in [10]. This is a testament to the accuracy of our higher-
order mass transport update, which can resolve the critical
wavelength with only a few elements.

Figure 17 shows a comparison of our 3D results to an
equivalent 2D simulation on a 80 × 80 grid with refine-
ment in the vertical direction (the same as for the 3D grid).
The 3D fingering patterns are quite different for different
cross-sections (see Fig. 16) and are shown in Fig. 17 at
x = 5 m. At the onset, the number of fingers is sim-
ilar in both 2D and 3D, as predicted by linear stability
theory. Interestingly, at later times the fingers are thin-
ner and appear to propagate faster in the 3D simulation.
This might be expected. A 3D pencil-like finger would be
more unstable than a folded-sheet-type finger, which is the
extension of the 2D simulation into the (assumed) invariant
third dimension. If numerical dispersion played a role, one
would expect the fingers to be larger (more dispersed) in
3D.

5 Conclusions

This work presents 3D compositional modeling based on the
combined discontinuous Galerkin and mixed hybrid finite
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element methods as a favorite approach for the simulation of
complex fluid flow pattern formation like fingering dynam-
ics in porous media. The model can be applied to a broad
range of problems and processes.

We draw the following main conclusions from this work:

1. In 3D, the higher-order finite element framework pro-
vides twice the convergence rate of the zero-order
method (Fig. 3). For a given accuracy, MHFE-DG
allows significantly coarser grids or orders of magni-
tude improvement in CPU time (Fig. 4 shows more than
three orders of magnitude improvement in CPU time for
a three-phase, eight-component simulation in the simple
geometry of Fig. 1).

2. Approximation of 3D compositional problems by 2D
simulations may lead to different flows and dif-
ferent recoveries, both in the interpretation of lab-
oratory experiments and at large scales (examples
5–7).

3. Gravity fingering in 3D can be captured by our higher-
order method, whereas zero-order finite difference
methods may be extremely costly when used in finger-
ing studies (examples 5 and 6).
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Nomenclature

ϕ [−] Porosity
t[s] Time
p[Pa] Pressure
g [kg/m/s2] Gravity
v [m/s] Total velocity
φK,l(x) Linear bases functions
Lx , Ly, Lz [m] Element K dimensions
wK,E (x) Raviart–Thomas linear basis vector
nK,E Outer normal of face E of element K
Cf [m.s2/kg] Total compressibility
C [mol/m3] Overall molar density
α = o, g,w Generic phase
cα [mol/m3] Phase α molar density
Sα [−] Phase α saturation
vα [m/s] Phase α velocity
Dαij [m2/s] Fickian diffusion coefficient
λα [m.s/kg] Phase α mobility
Mi [g/mol] Molecular weight of compi
fα [−] Fractional flow functions of phase α

v̄I [m3/mol] Comp. i total partial molar volume
zi[−] Overall mole fraction of component i
Ui [mol/m2/s] Total molar flux of component i

Fi [mol/m3/s] Sources/sinks of component i
Jαi [mol/m2/s] Diffusive flux of comp i in phase α

xαI [−] Mole fraction of component i in phase α

ρα [kg/m3] Mass density of phase α

K [m2] Medium intrinsic permeability tensor
krα [−] Phase α relative permeability
μα [kg/m/s] Phase α viscosity

Appendix A: Scalar and vector basis functions in
3D

The four independent linear basis functions φK,l(x) in (12)
are

ϕK,1(x, y, z) = 1

ϕK,2(x, y, z) = 2

Lx

(
x − Lx

2

)

ϕK,3(x, y, z) = 2

Ly

(
y − Ly

2

)

ϕK,4(x, y, z) = 2

Lz

(
z − Lz

2

)
(A-1)

where Lx , Ly and Lz are the width, length and height of
element K for a trilinear approximation.

Similarly wK,E (x) in (13) is the lowest-order Raviart–
Thomas linear basis vector of face E in an element K:

wK,1 =
(

x

|K| 0 0

)
, wK,2 =

(
x − Lx

|K| 0 0

)

wK,3 =
(
0

y

|K| 0

)
, wK,4 =

(
0

y − Ly

|K| 0

)

wK,5 =
(
0 0

z

|K|
)

, wK,6 =
(
0 0

z − Lz

|K|
)

(A-2)

in which |K| is the volume of the element and indices 1 to
6 denote the six faces.

Appendix B: MHFE coefficients

The coefficients in (15) are

aK,E = λt

∑

E′∈∂K

A−1
K,E,E′ (B-1)

bK,E,E′ = λtA
−1
K,E,E′ (B-2)

dK,E = λtρKg · nK,E |E| (B-3)
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A−1
K,E,E′ and nK,E are defined as

A−1 = 2K

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

LyLz

Lx
0 0 0 0 0

0 LyLz

Lx
0 0 0 0

0 0 LxLz

Ly
0 0 0

0 0 0 LxLz

Ly
0 0

0 0 0 0 LxLy

Lz
0

0 0 0 0 0 LxLy

Lz

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(B-4)

n =
⎡

⎣
1 −1 0 0 0 0
0 0 1 −1 0 0
0 0 0 0 1 −1

⎤

⎦ (B-5)

In Eq. 16 R(NK × NE) is a matrix with NK rows and
NE columns with elements:

RK,E = aK,E (B-6)

Similarly M(NE × NE) and V(NE) where NK and
NE are the number of elements and faces in the domain,
respectively and

ME,E′ =
∑

K:E,E′∈∂K

bK,E,E′ (B-7)

VE =
∑

K:E∈∂K

dK,E (B-8)

aK,E, bK,E,E′ and dK,E are defined before. �K:E,E′∈∂K

represents the summation over those elements that have E

and E′ as edge. �K:E∈∂K represents summation over those
elements K which have E in common.

In Eq. (17)

DK = φKCf,K |K|

t

+
nc∑

i=1

v̄i

∑

E

mi,K,EaK,E (B-9)

R̃K,E′ =
nc∑

i=1

v̄i

∑

E

mi,K,EbK,E,E′ (B-10)

GK = φKCf,K |K|

t

pn
K −

nc∑

i=1

v̄i

∑

E

(
mi,K,EdK,E + si,K,E · nK,E

)

+|K|
nc∑

i=1

v̄i,KFi,K (B-11)

mi = �αcαfαxαI (B-12)

si = �α(cαfαxαiGα + SαJαi) (B-13)

The integrals MK
j,l = ∫

K

ϕK,jϕK,l , M
K,E
j,l =

∫

K

ϕK,jwK,E · ∇ϕK,l , ME
l = ∫

E

ϕK,l in Eq. 19 can be eval-

uated in 3D when j, l = 1, . . . , 4 and E takes six different

values for the six edges of a cubic element, which result in
the following matrices:

MK =
[
MK

j,l

]
= |K|

⎡

⎢⎢⎣

1 0 0 0
0 1/3 0 0
0 0 1/3 0
0 0 0 1/3

⎤

⎥⎥⎦ (B-14)

MK,1 =
[
M

K,1
l,j

]
=

⎡

⎢⎢⎣

0 0 0 0
1 1/3 0 0
0 0 0 0
0 0 0 0

⎤

⎥⎥⎦ ,

MK,2 =
[
M

K,2
l,j

]
=

⎡

⎢⎢⎣

0 0 0 0
−1 1/3 0 0
0 0 0 0
0 0 0 0

⎤

⎥⎥⎦

MK,3 =
[
M

K,3
l,j

]
=

⎡

⎢⎢⎣

0 0 0 0
0 0 0 0
1 0 1/3 0
0 0 0 0

⎤

⎥⎥⎦ ,

MK,4 =
[
M

K,4
l,j

]
=

⎡

⎢⎢⎣

0 0 0 0
0 0 0 0

−1 0 1/3 0
0 0 0 0

⎤

⎥⎥⎦

MK,5 =
[
M

K,5
l,j

]
=

⎡

⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 1/3

⎤

⎥⎥⎦ ,

MK,6 =
[
M

K,6
l,j

]
=

⎡

⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 0 0

−1 0 0 1/3

⎤

⎥⎥⎦ (B-15)

M1 =
[
M1

l

]
=

⎡

⎢⎢⎣

1
1
0
0

⎤

⎥⎥⎦ , M2 =
[
M2

l

]
=

⎡

⎢⎢⎣

1
−1
0
0

⎤

⎥⎥⎦ ,

M3 =
[
M3

l

]
=

⎡

⎢⎢⎣

1
0
1
0

⎤

⎥⎥⎦ , M4 =
[
M4

l

]
=

⎡

⎢⎢⎣

1
0

−1
0

⎤

⎥⎥⎦ ,

M5 =
[
M5

l

]
=

⎡

⎢⎢⎣

1
0
0
1

⎤

⎥⎥⎦ , M6 =
[
M6

l

]
=

⎡

⎢⎢⎣

1
0
0

−1

⎤

⎥⎥⎦ .

(B-16)
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Appendix C: Construction of phase fluxes from
total flux

Calculation of the phase velocities from Eq. 10 is not triv-
ial because of the discontinuity of Gα and fα on an edge.
In 2D and 3D with gravity, countercurrent flow may occur
among the phases, which complicates the flow field. To
avoid non-matching phase velocities at the element edge,
and to guarantee the continuity of phase velocities, we need
to properly determine Gα and fα on an edge. Details of
the phase velocity calculation are provided in [46]. Here we
briefly outline the technique.

For phase mass densities ρα and ρβ , used in Gα , we take
the arithmetic average of phase densities of the neighboring
cells.

For the phase mobility λα , in fα , the idea is to use the
value from the upwind side of the edge with respect to
vα . The problem is how to find the flow direction of vα a
priori (note that vα is not available yet). The flow direc-
tion of one of the phases (either the heaviest or the lightest
one, depending on the direction of the edge normal) can
be found a priori. In vα = fα (v + Gα), the sign of vα

depends on the sign of (v + Gα), because fα > 0. For
any phase α, if Gα has the same sign as v, then (v + Gα)
has that same sign and vα is in the same direction as v
andGα . To find the direction of the other two phases, the
simplest way is trial and error for the two possible direc-
tions on each edge. We first assume one of two phases in
the direction of v and proceed with the calculation of mobil-
ities and phase velocities. If the sign of vα is consistent
with chosen upwind mobility, the assumed direction is cor-
rect, otherwise it should be reversed. A consistence check
is that if the local mobility of the element is picked, then
the velocity should be outward, while if the neighboring
mobility is chosen, the resulting phase velocity should be
inward.

Appendix D: Slope limiter

It is well known that for the DG method to be stable, a slope
limiter is required to avoid spurious oscillations in the solu-
tion when it takes on extreme values at the nodes. The idea
is to modify the solution resulting from DG after each time
step so that the average value of each molar concentration is
not modified, but the slopes are adjusted such that the values
of concentration at any edge are between the two neigh-
boring element average compositions. Details of the slope
limiting algorithm are presented by Hoteit and Firoozabadi
[44].

After each time step of the DG method, the slope lim-
iter provides bands for cKzi,K and cK ′zi,K ′ for each face
value of cEzi,E (where E = K ∩ K ′) so that the slope is
manipulated for the inequalities:

cKzi,K ≤ cEzi,E ≤ cK ′zi,K ′ i = 1, 2, ..., nc (D-1)

The value of overall molar concentration is then evalu-
ated as

c =
nc∑

i=1

czi (D-2)

which fulfills

nc∑

i=1

cKzi,K ≤ cE ≤
nc∑

i=1

cK ′zi,K ′ (D-3)

Appendix E: Flow chart of the algorithm

The computational algorithm in this work follows the fol-
lowing steps:

1. Provide temperature and initial pressure and overall
molar concentrations of all components

2. Perform the stability and flash calculations to deter-
mine the number of phases and phase compositions at
the initial pressure, temperature and overall composi-
tion at the element center and edges

3. Evaluate phase mobilities
4. Calculate diffusion coefficients and diffusion fluxes

from Eq. 3
5. Assemble and solve the system (18) for the traces of

pressure pK,E

6. Evaluate the cell-averaged pressure p on each element
using Eq. 17

7. Calculate the phase velocities and total velocities as
described in Appendix C

8. Compute the new overall composition from one
explicit Euler step of DG

9. Apply the slope limiter
10. Perform phases-split calculations to obtain phase com-

positions for new condition
11. Update the phase mobilities and go to step (5)

Figure 18 illustrates the IMPEC algorithm flowchart.
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Fig. 18 Algorithm flowchart for IMPEC method
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