
Effect of fluctuations on the onset of density-driven convection in porous
media
Michael Bestehorn and Abbas Firoozabadi 
 
Citation: Phys. Fluids 24, 114102 (2012); doi: 10.1063/1.4767467 
View online: http://dx.doi.org/10.1063/1.4767467 
View Table of Contents: http://pof.aip.org/resource/1/PHFLE6/v24/i11 
Published by the American Institute of Physics. 
 
Related Articles
Absence of subcritical instabilities and global nonlinear stability for porous ternary diffusive-convective fluid
mixtures 
Phys. Fluids 24, 104101 (2012) 
Capillary filling dynamics of water in nanopores 
Appl. Phys. Lett. 101, 153112 (2012) 
Division by fluid incision: Biofilm patch development in porous media 
Phys. Fluids 24, 091107 (2012) 
Core-flood experiment for transport of reactive fluids in rocks 
Rev. Sci. Instrum. 83, 084501 (2012) 
On a singular incompressible porous media equation 
J. Math. Phys. 53, 115602 (2012) 
 
Additional information on Phys. Fluids
Journal Homepage: http://pof.aip.org/ 
Journal Information: http://pof.aip.org/about/about_the_journal 
Top downloads: http://pof.aip.org/features/most_downloaded 
Information for Authors: http://pof.aip.org/authors 

http://pof.aip.org/?ver=pdfcov
http://careers.physicstoday.org/post.cfm?ver=pdfcov
http://pof.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=Michael Bestehorn&possible1zone=author&alias=&displayid=AIP&ver=pdfcov
http://pof.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=Abbas Firoozabadi&possible1zone=author&alias=&displayid=AIP&ver=pdfcov
http://pof.aip.org/?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.4767467?ver=pdfcov
http://pof.aip.org/resource/1/PHFLE6/v24/i11?ver=pdfcov
http://www.aip.org/?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.4757858?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.4758683?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.4747154?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.4746997?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.4725532?ver=pdfcov
http://pof.aip.org/?ver=pdfcov
http://pof.aip.org/about/about_the_journal?ver=pdfcov
http://pof.aip.org/features/most_downloaded?ver=pdfcov
http://pof.aip.org/authors?ver=pdfcov


PHYSICS OF FLUIDS 24, 114102 (2012)

Effect of fluctuations on the onset of density-driven
convection in porous media

Michael Bestehorn1,a) and Abbas Firoozabadi2,b)

1Department of Theoretical Physics, Brandenburg University of Technology, 03044 Cottbus,
Germany
2Reservoir Engineering Research Institute (RERI), Palo Alto, California 94306, USA and
Department of Chemical and Environmental Engineering, Yale University, New Haven,
Connecticut 06511, USA

(Received 27 February 2012; accepted 2 October 2012; published online 26 November 2012)

We study the dissolution of CO2 in saline aquifers. The long diffusion times can be
accelerated by orders of magnitude from mass transfer that origins from convection.
Convection occurs at a critical time via a phase transition from the horizontally
homogeneous diffusion state. To start the instability, perturbations that break the
horizontal translation symmetry are necessary. We start with the basic equations and
the boundary conditions, examine the linearized equations around the diffusive time
and z-dependent base state and compare different definitions of the critical time found
in the literature. Taking a simple model we show the role of fluctuations for delayed
instabilities if the control parameter is slowly swept through the bifurcation point.
Apart from the critical time we use a “visible” time where convection is manifested in
the vertical CO2 transport. We specify the perturbations with respect to their strength
and length scale, and compute the critical times for various cases by numerical
integration of the basic equations in two spatial dimensions. Fluctuating concentration
at the upper boundary, fluctuating porosity as well fluctuating permeability are studied
in detail. For the permeability fluctuation, the compressibility of the fluid becomes
important and the velocity field cannot be derived from a stream function. Our
work also includes non-isothermal conditions with a prescribed vertical geothermal
gradient and space dependent thermal conductivity. Temperature fields for different
standard configurations are computed numerically and serve as starting condition
for density-driven convection. Based on our work, we conclude that the visible
time is much larger than the critical time. The visible time is a strong function of
strength and length scale of the perturbations. C© 2012 American Institute of Physics.
[http://dx.doi.org/10.1063/1.4767467]

I. INTRODUCTION

Storage of carbon dioxide in saline aquifers in the subsurface is potentially the most promising
option in reduction of this greenhouse gas in the atmosphere. Saline aquifers are spread throughout
the world and have enormous capacity for storage.1 Some of the aquifers offer the advantage of
solubility trapping which may alleviate the concerns from CO2 leakage to the environment. When
CO2 dissolves in water or in brine, the density may increase about one percent (by weight). The
increase in density can result in convection currents that in some cases dramatically improve the rate
of dissolution of CO2. Without natural convection, the main mechanism of dissolution is through
Fickian diffusion which is known to be slow.

The change from the purely diffusive process to the onset of convection and density-driven
mixing can be considered as a non-equilibrium phase transition.2 At a certain critical bifurcation
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point in parameter space, the old state becomes unstable and a new one becomes stable. To achieve
this exchange of stability, there is a need for a driving force in form of fluctuations to leave the old
state, both in nature and in computations. Without such forces, the system may stay in the unstable
state for an unpredictable time.

The process of CO2 dissolution starts first from Fickian diffusion without macroscopic fluxes
that leads to a slowly growing, horizontally homogeneous diffusion layer under the upper boundary.
As long as the diffusive layer does not exceed a critical thickness, the flux-less state is stable and
fluctuations are damped in time. But when an adequate critical thickness of the dissolved layer
is developed, the system passes the critical point and arbitrarily small disturbances may grow,
giving way to a new convective state. These disturbances can be provided by inhomogeneous rock
properties, inhomogeneous thermal gradients or fluctuations of the CO2 concentration on the top of
the domain by influence of the gas phase above.

A number of authors have studied density-driven mixing in the context of CO2 sequestration
in the subsurface.3–9 All these authors point out to a critical time at which the critical thickness
is reached and the mixing from CO2 begins due to natural convection. Different approaches and
methods have been used to compute the critical time. Some authors introduce perturbations at the
boundary when CO2 is assumed to be in local equilibrium with the water phase.3–5, 7 Others vary
some of the rock properties in the domain.7, 8 In some works, the time when initial fluctuations start
to grow is defined as critical.4, 6 As we will see in this work, often the result for the critical time is
very different from one approach to another sometimes more than a factor of ten.

The critical time strongly depends on the kind and size of initial or persistent fluctuations of the
material properties of the rocks and/or of boundary conditions (b.c.).

This work presents a comprehensive analysis of density-driven convection in porous media
originating from various perturbations. We consider noise and fluctuations in porosity, permeability,
and in the upper boundary conditions of the brine layer. Size and length scale of the perturbations
are varied over a factor of 1000 (size) and 15 (length scale) and their influence on the critical time
(after which convection occurs) is studied. We use the “one percent time” what we also call “visible
time,” i.e., the time where the deviation of the total CO2 flux (convection and diffusion) through
the upper interface is one percent larger than that by diffusion alone. This criterion can be found
in previous works.7 We examine permeability inhomogeneity systematically through the Dykstra-
Parsons coefficient in a wide range.10, 11 Permeability inhomogeneity may be the most logical step in
relation to density-driven mixing due to large variations even in the porous media that are believed to
be homogeneous. We also examine the effect of temperature gradient on density driven mixing. There
is vertical temperature gradient in all the subsurface formations. Sometimes horizontal temperature
gradients are also observed due to thermal conductivity that varies in the horizontal directions.
Whereas the vertical geothermal gradient is too low to cause a buoyancy driven instability of the
water layer,12 the horizontal gradient generates a convective fluid motion even if it is very small.
Such a motion violates the horizontal homogeneity and may trigger the density-driven convection
without any further perturbations. We compare such effects for several strengths of the horizontal
gradient for certain rock formations with those from the material fluctuations studied in the previous
parts.

This paper is structured along the following lines. In Sec. II, we introduce the basic equations,
scalings, and boundary conditions together with the material parameters used in the following
computations. Section III presents the numerical method and shows a typical run. A parameter set
is given and used for all following computations throughout the paper. Our results can be easily re-
scaled to other parameter sets belonging to different aquifer depths and given in Table I to be discussed
later. In Sec. IV we study the linearized equations around the diffusive, time-dependent base state
and compare different definitions of the critical time. Section V examines a simple model to show
the role of fluctuations for delayed instabilities, when the control parameter is slowly swept through
the critical point. In Sec. VI the special form of randomly generated perturbations (1d and 2d) is
described. Section VII states the critical times found for the incompressible flow where porosity and
upper boundary concentration are assumed to be fluctuating. Section VIII presents the same results
for slightly compressible flows and a fluctuating permeability assumed to be lognormal distributed,
which is very often the case in natural rocks.10 In Sec. IX we assume non-isothermal conditions
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with a prescribed vertical temperature gradient and given space dependent thermal conductivity. The
stationary temperature fields for several configurations (line discontinuities, enclaves) are computed
numerically and serve as starting condition for the density-driven convection. In Sec. X we compare
our results with those from the literature and draw some conclusions in Sec. XI.

II. DEFINITION OF THE SYSTEM

We consider a porous medium in a confined rectangular geometry in two or three spatial
dimensions (Fig. 1). The medium is characterized by its porosity n and its permeability K. The
medium is also assumed to be isotropic, but since we wish to study the effect of fluctuations, we
allow for spatially varying material properties according to

n = n0(1 + γ (�r∗)), K = K0(1 + β(�r∗)). (1)

The functions γ and β are distributed randomly in space (for more details see Sec. VI below), their
amplitudes are assumed to be small, |γ |, |β| � 1. In (1), �r∗ is the position vector. Dependent and
independent variables with an asterisk bear a dimension. We note that we consider either a varying
porosity or a varying permeability, hence we shall not assume any correlations between these two
quantities.

A. Basic equations

The fluid inside the medium is a mixture of water and dissolved CO2. Its volumetric flux
�q∗(�r∗, t∗) is described by Darcy’s law13

�q∗ = − K0

μ
(1 + β)(∇ P∗ + gρ∗êz). (2)

The density ρ∗(�r ∗, t∗) is given by the continuity equation

n0(1 + γ )∂t∗ρ∗ + ∇∗ · (ρ∗ �q∗) = 0. (3)

The mass fraction of the dissolved carbon dioxide C∗(�r∗, t∗) can be computed from

n0(1 + γ )∂t∗C∗ + �q∗ · ∇∗C∗ = n0 D(1 + γ )�∗C∗ + n0 D∇∗γ · ∇∗C∗. (4)

Here, P* is the pressure field, μ is the viscosity of the fluid, g is the acceleration due to gravity,
and êz is the vertical normal vector. The effective diffusivity is denoted by D and defined as
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FIG. 1. Sketch of the system.
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D = Dm/(nF) with the molecular diffusion coefficient Dm of CO2 in water and the formation
factor F.14 In the Boussinesq approximation, ρ* depends linearly on C* in (2) and (3) simplifies to
the incompressibility condition ∇∗ · �q∗ = 0. For fluctuating permeability, compressibility should be
taken into account as we shall discuss later. For this case we assume also in (3) a linear dependence
of ρ* on C*, according to

ρ∗ = ρ0(1 + α C∗) (5)

with the coefficient

α = ∂ρ∗

∂C∗

∣∣∣∣
C∗=0

and ρ0 as the density of pure water. With (4) we find from (3)

∇∗ · �q∗ = −αDn0
[
(1 + γ )�∗C∗ + ∇∗γ · ∇∗C∗] . (6)

The set (2) and (4)–(6) constitutes the basic equations for the variables �q∗, P*, and C* (or ρ*).
They are completed by no-flux boundary conditions on the domain walls

x∗ = 0, Lx : q∗
x = 0, ∂x∗C∗ = 0,

z∗ = 0 : q∗
z = 0, ∂z∗C∗ = 0,

z∗ = Lz : q∗
z = 0, C∗ = C0(1 + δ(�r∗)).

(7)

As stated above, δ represents small fluctuations at the top boundary, which may originate from the
dynamics in the gas layer above the liquid. If the water layer is in equilibrium with the pure CO2

gas layer, C0 is the saturation value which depends on temperature and pressure. This value as well
as α of relation (5) can be computed using a generalized equation of state.15

B. Natural scaling

Scaling of all dependent and independent variables yields a system with the minimal number of
independent dimensionless parameters. Work on convection traditionally is based on a Rayleigh
number as most important control parameter. However, a Rayleigh number includes a length,
normally the height or depth of the layer, which has a physical meaning only if the concentration
gradient is established over the whole height. Due to the very long vertical diffusion time in aquifers
that may have the height of more than 100 m, it is more appropriate to study a transient solution of
a vertically invading concentration front of carbon dioxide from the top into water. Then the system
can be considered as semi-infinite in depth at least in the early stage of its evolution and instead
using a length, namely the total height, which is completely arbitrary in this case, we define

s = n0μD

K0gρ0αC0
(8)

to scale all lengths and velocities of the system. This scale depends only on material properties.
(Note that s = Lz/R with R as the Rayleigh number, for cases where Lz plays a significant role.)

The appropriate time scale is that of the diffusion time with respect to s,

τ = s2

D
, (9)

the scaling of all other quantities is straightforward. We take

�r∗ = s �r , t∗ = τ t, (10)

�q∗ = �q n0 D

s
, C∗ = C0 C, P∗ = P

μn0 D

K0
, (11)



114102-5 M. Bestehorn and A. Firoozabadi Phys. Fluids 24, 114102 (2012)

where all variables without an asterisk bear no dimension. Inserting these into the basic set yields a
system of dimensionless equations,

�q = −(1 + β)(∇ P̄ + Cêz), (12)

(1 + γ )∂t C + �q · ∇C = (1 + γ )�C + ∇γ · ∇C, (13)

∇ · �q = −αC0 [(1 + γ )�C + ∇γ · ∇C] (14)

with

P̄ = P − PH S

and PHS = −z/αC0 as the hydrostatic pressure. The domain size is now transformed to

0 ≤ x ≤ x1 = Lx/s, 0 ≤ z ≤ z1 = Lz/s. (15)

We note that these time and length scales are already used in Ref. 6.

C. Boussinesq approximation and homogeneous porous medium

For the sake of completeness we list the basic equations in the Boussinesq approximation13, 16

and for the case β = γ = 0:

�q = −∇ P̄ − Cêz, (16)

∂t C = −�q · ∇C + �C, (17)

∇ · �q = 0. (18)

In this formulation, there are no parameters.

D. Parameters

In this paper, we take

α = 0.27,

a value found using the CPA (cubic-plus-association) equation of state.15 For the porous media we
assume

K0 = 0.5 · 10−12 m2, n0 = 0.2.

The values for α, C0, ρ0, μ, and D depend on temperature and pressure, and therefore on the depth
of the aquifer. Some values can be found in Table I. If we specify quantities with a dimension, we
take the values of the first row for 50 bars and 30 ◦C. For these values, the scales read

s ≈ 6 · 10−3 m, τ ≈ 17 · 103 s ≈ 0.2 day.

TABLE I. Parameters and scales for three values of temperature and pressure. The values for C0 are from Ref. 15, for D
from Ref. 18, for μ and ρ0 from Ref. 17.

Temperature (◦C) Pressure (bar) D × 10−9(m2/s) μ × 10−4 (Pa s) ρ0 (kg/m3) C0 s (m) τ (s)

30 50 2.15 8.0 998 0.043 0.0060 17 000
40 75 2.7 6.5 995 0.048 0.0055 11 000
50 100 3.4 5.6 992 0.049 0.0059 10 000
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III. NUMERICAL METHOD AND NONLINEAR RESULTS

A. Method

We briefly introduce the numerical method applied for the full nonlinear problem. We restrict
to the case of an incompressible flow and the Boussinesq approximation. If the system is considered
in 2D (x, z), the volumetric flux can be represented by a stream function

qx = ∂z
(x, z, t), qz = −∂x
(x, z, t), (19)

which satisfies (18). Here, we assume β = 0 (the case of fluctuating permeability will be discussed
separately). The pressure can be eliminated from (16) by forming twice the curl. The system to be
solved numerically then takes the form

�
 = ∂x C, (20)

(1 + γ )∂t C + ∂z
∂x C − ∂x
∂zC = (1 + γ )�C + ∇γ · ∇C. (21)

Equation (21) is discretized by finite differences on an M × N mesh. Spatial derivatives are expressed
by centered space schemes, for time iteration we used an explicit Euler forward method.19 The
convective terms are computed by a conservative upwind scheme, also called donor cell method.20, 21

To determine 
, the Laplacian in (20) is inverted. In horizontal direction, we use a sine-transform22


(x, z) =
M∑
n

ϕn(z) sin

(
πn

x1
x

)
, ∂x C(x, z) =

M∑
n

cn(z) sin

(
πn

x1
x

)

fulfilling the b.c. (7). Instead of (20), this yields a set of M decoupled ordinary differential equations
of the form (

d2
z − π2n2

x2
1

)
ϕn = cn, n = 1 . . . M. (22)

After discretization of z, one inverts M tridiagonal systems of length N at each time step achieved
by a standard routine (e.g., Thomas algorithm, see Ref. 23).

The method is an extension of the semi-implicit pseudo-spectral scheme developed and used
earlier in Ref. 24, where details on accuracy and convergence are presented.

B. A typical run

Figure 2 shows a time series with the specified parameters in Sec. II D. We set δ = 0 and
allow for an inhomogeneous white noise fluctuation in space for n with |γ | < 0.01. The integration
domain is 20 m × 20 m which is resolved by a mesh with 512 × 2500 points. The linearly
fastest growing mode has a wavelength of about 0.4–0.8 m (see Fig. 3 below), thus the critical
modes are resolved with 10–20 mesh points which is a reasonable compromise between accuracy
and effort. In the vertical direction, the early fingers are also resolved with more than 10 mesh
points.

In the figure, only the upper 10% of the layer is shown. With this resolution, the time step could
be as large as 0.4 (≈ 0.08 days) to achieve convergence.

(a) (b) (c)

FIG. 2. Onset of instability and early finger formation. The layer has a width of 20 m. The plotted area has a height of 2 m,
scaling in the vertical is enlarged by a factor 5. (a) 150 days, (b) 330 days, and (c) 750 days.
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The typical scenario can be divided into four regions:

1. Early phase (Fig. 2(a)): 1D diffusion front. The CO2 diffuses slowly into the water layer from
the top, homogeneously in the x direction. Small perturbations caused by γ are damped.

2. Instability (Fig. 2(b)): The diffusion front becomes unstable when it reaches a certain thickness.
Then the perturbations can grow in the form of periodic waves. The wave vector of these waves
correspond roughly to the one with the largest linear growth rate (see Sec. IV).

3. Finger formation (Fig. 2(c)): When the amplitude of the perturbation reaches a certain mag-
nitude, nonlinear effects become important. Fingers of high concentration are formed and
fall down rapidly. The fluid moves now macroscopically and rather thin areas of saturated
water are formed due to upwelling liquid. This increases the mean concentration gradient near
the surface strongly and as a consequence the CO2 mass flux through the upper boundary is
increased as well. The width of the finger is already much larger than the wavelength of the
patterns at onset. This coarsening process is also known from the classical Rayleigh-Taylor
instability25 and continues to the long-time limit.

4. Saturation (not shown): At very late times the fingers lose their shapes, merge and disappear.
Finally, the whole water layer is homogeneously saturated and the fluid motion comes to an
end.

IV. THE LINEAR PROBLEM

A. Base state

In this section we neglect all fluctuations and use the Boussinesq-set (16)–(18). If we take
C(t = 0) = 0, �q(t = 0) = 0 as initial condition, the process is purely diffusive in the beginning. If
the layer is deep enough there is no effect of the lower boundary for times much shorter than the
vertical diffusion time L2

z/D, and the system can be considered as semi-infinite. The exact solution
of the diffusion equation (17) reads

C0(z, t) = 1 − erf

(
z1 − z

2
√

t

)
, (23)

where erf denotes the error function.26 This corresponds to a one-dimensional CO2 saturated layer
that invades from the top. Since the saturated layer is heavier than pure water, this layer may get
unstable due to buoyancy after it reaches a certain thickness. Since the base state is time dependent,
the stability analysis is subtle and the definition of the critical point (critical depth of the diffusive
layer) is not unique in the literature. We shall come back to this point later.

With the normal mode representation


(x, z, t) = 
k(z, t) eikx , C(x, z, t) = C0(z, t) + Ck(z, t) eikx , (24)

(20) and (21) turn after linearization into the system(
∂2

zz − k2
)

k = ikCk, (25)

∂t Ck = ik
∂zC
0 + (

∂2
zz − k2

)
Ck (26)

with

∂zC
0 = 1√

π t
e− (z−z1)2

4t ≡ g(z, t), (27)

a normalized Gaussian.
From (25) and (26) one can derive a closed equation for Ck

∂t Ck = L̂(z)Ck − k2g(z, t)L̂(z)−1Ck (28)

with the differential operator

L̂(z) = ∂2
zz − k2 (29)

and L̂−1 its inverse.
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ft

k

t*

*

σ = 1

λ=0
λ   =0

 [1/m]

 [days]

FIG. 3. Amplification factor, zero growth rate (dashed), and frozen time instability (red dashed).

To solve the linear problem with time dependent coefficients (28), the variable z is discretized
on a grid with N points. The discretized version of (28) can be cast into the form

dt �uk(t) = M(t, k2) �uk(t), (30)

where the N elements of �uk are the mesh points of C,

(uk(t))i = Ck(zi , t), zi = i

N
z1 (31)

and M is a N × N matrix with time dependent coefficients.
Following Ref. 4, we define the propagator P(t, t0, k2), a time dependent matrix that transforms

the vector �uk(t0) (e.g., the initial condition) to �uk(t), according to

�uk(t) = P(t, t0, k2) �uk(t0). (32)

Inserting (32) into (30) yields a matrix differential equation

dt P(t, t0, k2) = M(t, k2) P(t, t0, k2) (33)

with initial condition

P(t0, t0, k2) = 1. (34)

We use (32) to introduce an amplification factor

σk(t) = ρ(P(t, t0, k2)) (35)

as the spectral radius (or the absolute value of the largest eigenvalue) of P . The fastest growing
mode has the direction of the eigenvector �pm of P which belongs to the largest eigenvalue. For this
mode, the relation

| �pm(t, k2)| = σk(t)| �pm(t0, k2)| (36)

holds. From (36), a temporary growth rate according to

λk(t) = σ̇k(t)

σk(t)
(37)

can be derived.
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B. Numerical results

To find the spectral radius (35), the set (33) is solved numerically by an explicit fourth-order
Runge-Kutta method23 with the initial conditions (34). For discretization in z a mesh with N = 200
points is used. The system is not solved in the whole vertical domain 0 ≤ z ≤ z1 but only in the
upper 10%, giving a high spatial resolution. The procedure is checked for convergence with respect
to time step, spatial step size and size of integration domain.

Figure 3 shows the line where σ k = 1 together with the line for the minimum of σ k in the
k–t plane for the parameters listed in Sec. II D. The line σ k(t) = 1 denotes the time where the
fastest growing initial perturbation has reached its initial amplitude. This could be one definition of
the critical time. An alternative one is the minimum of σ k which would coincide with a vanishing
temporary growth rate (37).

C. Frozen-time analysis

Some authors employ the so-called frozen-time approach, also known as quasi-steady-state
approximation,27, 28 which means that the time dependent coefficients of the differential equations
are assumed constant and time is merely regarded as an external parameter. We compare the results
of Sec. IV A with the frozen-time method and rewrite (30) as

dt �uk(t) = M(T, k2) �uk(t), (38)

where T denotes the frozen time. Equation (38) is standard and can be solved by

�uk(t) = �uk(0) exp(λftt)

with

λft = λft(k
2, T )

as eigenvalues of M . Onset of instability of the base state is then defined as the line in k–t-space
where the largest eigenvalue has a vanishing real part. The lower dashed line in Fig. 3 shows this
location and it can be seen that it almost coincides with the line of minimal amplification factor
found from the non-modal analysis.

D. Discussion of results

From Fig. 3, it turns out that the critical time may vary between about 10 days and 30 days,
depending on its definition. However, the size of the deviations from the diffusive state when σ

exceeds a value of one is arbitrary as far as it is not clear how large the initial perturbations were.
If we consider Fig. 2, it is clear that even after a much longer time of 150 days the concentration is
still almost completely diffusive. Only after 330 days a significant wavy structure becomes visible.
So it seems questionable if the linear criteria are useful at all in defining an onset time. In Ref. 6, the
time where the spatial average of C − C0 starts to increase is defined as critical time, because then
disturbances grow. It is shown that this corresponds to the situation where the largest eigenvalue of
M + M+ with M from (38) and M+ its transpose is zero. However, the critical time based on this
criterion differs only very little from that found by the frozen-time method. This is not surprising
because M is almost symmetrical.

V. DYNAMIC CONTROL PARAMETER AND DELAYED BIFURCATION

The instability in the system under consideration has two time scales: one is provided by the
time-dependent base state (23), the other by the growth rate of unstable modes of (28) when the base
state has evolved to a certain critical thickness. The choice of initial conditions of the perturbations
and fluctuations of several properties complicate the situation further. Since we wish to elucidate the
interplay of these ingredients more general and apart from pure numerical results of the base system
(12)–(14), we resort in this section to the most simple normal form showing a forward bifurcation



114102-10 M. Bestehorn and A. Firoozabadi Phys. Fluids 24, 114102 (2012)

with fluctuations,

dtξ = ε ξ − ξ 3 + f (t). (39)

Here, ξ (t) denotes an order parameter, i.e., the amplitude of a certain spatial mode, etc., ε is the
control parameter, f(t) a delta-correlated fluctuation with

〈 f (t)〉 = 0, 〈 f (t) f (t ′)〉 = Q δ(t − t ′) (40)

and 〈...〉 the mean over different realizations of the fluctuations. Equation (39) describes a pitch fork
bifurcation that takes place at ε = 0. For positive ε, the state ξ = 0 becomes unstable and in the long
time limit the system tends to one of the two steady states ξs = ±√

ε, as long as fluctuations are
small against |ξ s|.

However, our system is more complicated due to the fact that for early times, ξ = 0 is stable
(the diffusive state), as for larger times it becomes unstable and gives way to flow patterns (fingers).
This can be modeled with (39), assuming a time dependent control parameter, which is taken in its
most simple, linear form

ε(t) = a + v t (41)

with a < 0, v > 0. The control parameter is swept through the critical point with the constant
velocity v.

In the following we are only interested in the behavior near threshold and neglect the nonlinearity
in (39). Further, time and ξ can be scaled so that a = −1 and only one relevant parameter, namely
v, remains. The system we shall study now as a showcase reads

dtξ = (−1 + v t) ξ + f (t). (42)

We show the effects of a dynamic control parameter, initial conditions, and internal fluctuations on
a delayed bifurcation from the model (42).

A. Instability induced by an initial value

We start with the deterministic case f = 0. The solution to (42) reads

ξ (t) = G(t) ξ (0) (43)

with the initial condition ξ (0) at t = 0 and the Green’s function

G(t) = exp(−t + 1

2
v t2). (44)

A frozen-time analysis of (42) yields from ε(tc) = 0 the critical time from where on any disturbance
may grow as

tc = 1

v
. (45)

The amplification factor introduced in Sec. IV A would correspond to G(t), the time t1 where it is
equal to one is found

t1 = 2

v
, (46)

just two times tc. Starting with any finite (but small) perturbation ξ (0), the system “accumulates”
stability during the time while ε < 0.29 Due to the constant sweep velocity v, it takes the same time
after tc until the perturbation reaches its initial size at t1, see Fig. 4. This situation can be compared
to our case if an initial perturbation in the form of a concentration field is given.
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FIG. 4. Mean square of the order parameter with noise (Q = 1, solid) and without noise (ξ (0) = 1, dashed) for different
sweep velocities. Critical times found by frozen-time analysis are at the minimum of the dashed lines (solid circles).

B. Noise induced instability

If noise is added, it is no longer necessary to start the instability by a non-zero initial condition.30

The solution of (42) with ξ (0) = 0 reads

ξ (t) =
∫ t

0
dt ′ G(t − t ′) f (t ′). (47)

The mean square can be computed by the help of (40) according to

〈ξ 2(t)〉 = 1

2

√
π

v
Q exp

(
(vt − 1)2

v

) [
erf

(
vt − 1√

v

)
+ erf

(
1√
v

)]
. (48)

Although the size of ξ depends now on the strength of the noise Q, it is clear from Fig. 4 that
the noise induced instability is delayed and again shows up mainly after about the double time that
would be expected by the frozen-time approach.

For both cases of this simple example the difference between tc and t1 is of the size 1/v and can
therefore become considerably large if v is small.

VI. RANDOM PERTURBATIONS

Perturbations are necessary to start the instability. In a real system, they can have different
origins and therefore may differ in amplitude and length scale. One of the first numerical studies of
convection in strongly inhomogeneous media can be found in Ref. 31 where the so-called turning
bands method32 is applied to create a porosity distributions having well-defined correlation lengths.
For more recent work on fractal based models and further references see Ref. 33. In Ref. 8, random
Fourier modes are weighted with a spectral density of Lorentzian shape leading also to a fluctuating
quantity with a tunable correlation length in real space. In this paper we use a modified method of
Ref. 8 as described in the following.

A. One dimension

Let η(x) be a randomly varying function with zero mean in the interval 0 ≤ x ≤ x1,∫ x1

0
η(x) dx = 0 (49)
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and normalized to

1

x1

∫ x1

0
η2(x) dx = 1. (50)

With the autocorrelation function

K (x) = 1

x1

∫ x1

0
η(x ′)η(x ′ + x) dx ′ (51)

one defines a correlation length

� = 2
∫ x1

0
K 2(x) dx . (52)

This definition is straightforward if we assume K(x) = exp (−x/�) and � � x1.34 Let η be represented
by the finite sum

η(x) = 1√
M0

M0/2∑
n=−M0/2

n �=0

eikn x eiϕn , kn = 2π

x1
n, ϕn = −ϕ−n (53)

with ϕ uniformly random-distributed in the interval [0, 2π ]. From (51) and (52) one finds the relation
� = 2x1/M0. If a random initial distribution with correlation length � is desired, we may use the
expression (53) with

M0 = 2x1

�
. (54)

Using the central limit theorem it is shown that η(x) is normally distributed with the variance
〈η2〉 = 1 if M0 → ∞, corresponding to the Gaussian white noise. We have examined the distribution
of η for finite M0 by a standard chi-squared test35 and find good agreement with the Gaussian even
for rather small M0 > 25.

B. Two dimensions

The randomly distributed function η(x, y) can be represented in 2D by

η(x, y) = 1√
M0 N0

M0/2∑
m=−M0/2

m �=0

N0/2∑
n=−N0/2

n �=0

ei(km x+kn y)eiϕmn ,

(55)

km = 2π

x1
m, kn = 2π

y1
n, ϕmn = −ϕ−m,−n

and, if the distribution is assumed to be isotropic,

M0 = 2x1

�
, N0 = 2y1

�
. (56)

Figure 5 shows 2D-patterns produced with (55) for three different correlation lengths.

VII. NUMERICAL RESULTS, INCOMPRESSIBLE CASE

Using the randomly distributed function η defined in Sec. VI, we present numerical solutions of
the system (20) and (21) with the method described in Sec. III. Two global quantities are monitored
as a function of time. One is the quantity

C̄(t) = 1

V

∫
V

d3�r C(�r , t), (57)
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= 0.05 = 0.1= 0.01

FIG. 5. Random dot patterns with different correlation lengths �, side length of the frames is x1 = y1 = 1.

which is equal to one if total saturation is achieved (V denotes the total volume). The mass of
dissolved CO2 then corresponds to

MCO2 (t) = MH2O C0 C̄(t) + O(C2). (58)

The other one is the relative difference of the total mass flux jtot (convective and diffusive) through
the upper surface A to that of the purely diffusive flux jdiff ∼ 1/

√
π t :

�S(t) = 1

A

∫
A

jtot − jdiff

jdiff
d2 f =

√
π t

A

∫
A
∂zCd2 f − 1, (59)

where d2f is the element of surface. If there is no convection, �S should vanish, up to numerical
errors. In thermal convection, an analogue quantity is defined (convective over conductive heat flux)
and called Nusselt number.36 In the following we shall call �S the convection number.

A. Internal fluctuations

We first study the behavior of the convection number for different realizations of fluctuations γ

of porosity n. Therefore we take

γ (x, z) = F η(x, z) (60)

with η from (55). We can vary the two parameters � and F. Figure 6 shows �S for three different
values of this pair. It can be seen clearly that the time where convection starts to dominate depends
strongly on both correlation length and amplitude of the perturbations.

In Fig. 7 we present a more systematic investigation in the plane spanned by � and F. For each
parameter pair we compute the time necessary for �S to reach 0.01. This corresponds to the situation
where the magnitude of the total (convective and diffusive) flux is one percent of the diffusive flux.
Then, contour lines are plotted for five runs with different random distribution of the phases ϕmn of
(55) (thin lines). The bold lines show the average over the five runs.

Figure 7 reveals that there exists a certain optimal correlation length �c of the random distribution
which leads to the fastest growing perturbation. This optimal length can be related to a critical
wave number kc = 2π /�c (wave number of the fastest growing mode) and compared to the linear
computations and Fig. 3. It is interesting to see that the optimal correlation length seems to increase
with decreasing amplitude F.

B. External fluctuations

1. Numerical results

Next we assume a homogeneous porosity (γ = 0) and examine the influence of concentration
perturbations on the top boundary, δ �= 0 in (7),

δ(x) = F η(x) (61)
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FIG. 6. Convection number �S according to (59) for three different pairs of (F, �): (1) (0.003, 0.5 m), (2) (0.003, 0.1 m),
(3) (0.0003, 0.5 m). The main influence comes from the size of perturbations, but also the length scale is important.

with η from (53). Figure 8 shows the dependence of the dynamics on amplitude and correlation
length of δ. The result is qualitatively similar to that of fluctuating porosity, however, instability
occurs a bit earlier for the same magnitude of F for the case of external fluctuations. Figure 9 shows
again the one percent times in the parameter plane for five runs and their average. The differences
between the single runs are much less pronounced than in Fig. 7 which may be due to the fact that
the perturbations diffuse now from the top into the layer, which leads already to a kind of averaging
in each particular run. The optimal correlation length is smaller now and the shift to larger values
with decreasing amplitude is more pronounced.

2. Diffusion of a random perturbation

So far all computations are performed in 2D. Considering the linear problem this should be
sufficient since (28) has exactly the same form in 2D and in 3D. However the “visible” one percent
time depends on the size of the fluctuations available to trigger instability. The fluctuations are
needed in the bulk. If they enter only via the boundary conditions for C at z = z1, we have to study
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FIG. 7. Times necessary for the convection number �S to reach 0.01. There is an optimal correlation length �c of about
0.5 m, leading to the earliest possible onset time (dashed line is a guide to the eye).
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FIG. 8. �S for three different pairs of (F, �): (1) (0.003, 0.5 m), (2) (0.003, 0.1 m), (3) (0.0003, 0.5 m), for fluctuations in C
at the top of the layer.

the propagation of these randomly distributed perturbations from the surface into the bulk before
convection starts, i.e., if the process is solely determined by diffusion. It will turn out that the rate of
damping of the concentration perturbations through the medium depends on the dimensionality of
space and is larger in 3D than in 2D. Before convection sets in, we find a solution of the diffusion
equation

∂t C(x, z, t) = �C(x, z, t). (62)

To this end we consider a finite height z1. The boundary conditions read

∂zC |z=0 = 0, C |z=z1 = 1 + ξ (x, y) (63)

and periodic in xy with the periodicity length x1. The initial condition is

C(t = 0) = 0, for z < z1. (64)
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FIG. 9. One percent time, same as Fig. 7 but for fluctuations in C.
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We first consider only one horizontal dimension x and the vertical dimension z. The perturbations
are of the form (53) and a solution of (62) with (63) and (64) reads

C(x, z, t) =
M0/2∑

m=−M0/2

amCm(z, t)eikm x , km = 2π

x1
m (65)

with

Cm(z, t) = cosh km z

cosh km
+ 2

N∑
n=0

(−1)n+1 e−λnm t χn

λnm
cos χnz (66)

and

am =
⎧⎨
⎩

1√
M0

eiϕm m �= 0

1 m = 0
,

χn = π

2z1
(1 + 2n), λnm = χ2

n + k2
m .

Again N is finite due to discretization of z.
To see how the initial perturbations at the interface penetrate into the bulk, we evaluate the

standard deviation σ (z, t) according to

σ 2(z, t) = 〈C2〉x − 〈C〉2
x . (67)

Inserting (65) yields

σ 2(z, t) = 1

M0

M0/2∑
m=−M0/2

m �=0

C2
m(z, t). (68)

In Fig. 10, we have evaluated (68) for several times and the dimensionalized height Lz = 20 m.
In three dimensions, the solution of (62) takes the form

C(x, y, z, t) =
M0/2∑

m,�=−M0/2

am�Cm�(z, t)ei(km x+k� y) (69)
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FIG. 10. Standard deviation of C at several times, dashed lines for 2D diffusion, solid for 3D. Parameters are M0 = 80,
M = 200.
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with

Cm�(z, t) = cosh km�z

cosh km�

+ 2
N∑

n=0

(−1)n+1 e−λnm�t χn

λnm�

cos χnz (70)

and

am� =
⎧⎨
⎩

1

M0
eiϕm� m �= 0 or � �= 0

1 m = � = 0
,

km� =
√

k2
m + k2

� , λnm� = χ2
n + k2

m + k2
� .

Computing the standard deviation, one finds

σ 2(z, t) = 〈C2〉xy − 〈C〉2
xy = 1

M2
0

M0/2∑
m,�=−M0/2

m=��=0

C2
m�(z, t) (71)

which is also plotted in Fig. 10 for the parameters of the 2D case. It is obvious that the perturbations
propagate which much less damping in 2D than in 3D. The onset time tc defined from the linearized
problem is independent from spatial dimension, however, the amplitude of the perturbations still
available at onset time is much smaller in 3D. This is due to the uniform distribution of the
perturbations onto all available Fourier modes from 1. . . M0. In 2D the density of modes in Fourier
space is constant, in 3D it is ∼ |�k|. Therefore a larger part of the perturbations fall on small
wavelengths. Small wavelengths are damped stronger than longer ones by diffusion on their way
into the bulk until they can linearly grow, leading to a smaller perturbation available at t = tc.

The amplitude decay of the perturbation depends also on the number of Fourier modes M0

which take part on the random boundary condition, and therefore on the correlation length of the
distribution, as defined in (54). Increasing M0 leads to a larger number of short wave perturbations
which are damped strongly while penetrating into the bulk. As a consequence, onset should occur
later if M0 is increased (or � is decreased), in accordance with the findings of Sec. VII B 1 (Fig. 9).

We note that the size of N is not crucial, since the sums in (66) and (70) converge for N → ∞.
N should only be large enough to resolve the sharp front of C for small t.

We conclude that for the case of fluctuations entering only at the top of the layer, the “visible
time” should be larger in 3D than in 2D.

C. Long time limit

The instability is started earlier if the fluctuations are bigger. But how is the long-time-behavior
influenced? We have addressed this question by plotting C̄ from (57) for very long times for two
different amplitudes of the porosity fluctuations γ . In the beginning, the mean concentration grows
clearly faster for F = 0.03 than for F = 0.003 (Fig. 11), but the difference vanishes for large times,
Fig. 12. Figure 13 presents �S for the two runs, which also shows no significant or systematic
difference. Finally, Fig. 14 shows the contour lines of C, where the last state corresponds almost to
full saturation, since C varies only between 0.88 and 1.

VIII. NUMERICAL RESULTS, FLUCTUATING PERMEABILITY

In this section we assume a constant porosity, constant boundary value for C at the top, but a
fluctuating permeability β �= 0 in space.

A. Equations and method

As basic equations we take the set (12)–(14). The flow field is now assumed to be weakly
compressible. For such a case there exists no stream function and the pressure has to be computed
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FIG. 13. Convection number for the two runs shows also no significant difference.
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(b) (c)(a)

FIG. 14. Contour lines of C for the run with F = 0.003. The state at 200 000 days is almost saturated, the lines correspond to
equally spaced values of C between 0.88 and 1.0. (a) 3000 days min/max = 0.0/1.0, (b) 6000 days min/max = 0.0/1.0, and
(c) 200000 days min/max = 0.88/1.0.

explicitly by taking the divergence of (12),

�P̄ = − ∇ · �q
1 + β

+ �q · ∇β

(1 + β)2
− ∂zC, (72)

where ∇ · �q can be expressed by the concentration field C using (14). Assuming vanishing qz on the
top and on the bottom, the b.c. for the pressure

∂z P̄ = −C at z = 0, z1 (73)

can be derived from (12). Equation (72) is a Poisson equation that is inverted with the same method
used for (20) and explained in Sec. III (the only difference is that we assume here periodic lateral
b.c., so that the sine functions turn into plane waves). If P̄ is known, �q can be computed from (12).

If, on the other hand, we take an incompressible flow field, the first term on the rhs of (72) would
be zero. Then, the laterally homogeneous concentration profile C0(z, t) with �q = 0 would create a
pressure that depends only on z

P̄(z, t) = −
∫

dz C0(z, t) + P̄0,

which yields �q = 0 for all times. Thus, an inhomogeneous permeability cannot start the instability
for the incompressible case.

Note that in (72) all terms are retained, so it should be valid even for large β.

B. Inhomogeneous permeability

Very often the logarithm of the permeability is normally distributed,10

ln(K (�r)/K̄ ) = F η(�r ), (74)

where K̄ is the geometric mean of the permeability and η a normal distribution with variance equal
to one. Such a permeability has the mean value and standard deviation (lognormal distribution)

〈K 〉 = K̄ eF2/2, σK = K̄
(

e2F2 − eF2
)1/2

.

An important measure of inhomogeneity is the coefficient of variation which can be immediately
derived as

CV = σK

〈K 〉 =
(

eF2 − 1
)1/2

. (75)

Another common measure of the variation is the Dykstra-Parsons coefficient,11 which is related to
F by

VDP = 1 − e−F (76)
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FIG. 15. One percent time, same as Fig. 7 but for fluctuations of the permeability.

and varies between zero (completely homogeneous) and one (infinitely heterogeneous). For strongly
inhomogeneous rocks one has CV of order one or larger and VDP > 1/2.

The correlation length of K is the same as that of η. Comparing (74) with (1) we may identify

K0 = K̄ , β(�r ) = exp(F η(�r)) − 1. (77)

To compare the onset time by inhomogeneous permeability, we start with the case where
F � 1. Then we may expand (75)–(77) and find

β ≈ Fη, CV ≈ VDP ≈ F.

Figure 15 shows the one percent times for several values of F and the correlation length. It
turns out that for comparable perturbation amplitudes the times are much larger than for the case
of fluctuating porosity or boundary concentration. Thus the diffusive state seems to be more stable
against disturbances originating from permeability fluctuations only. This can be explained by the
fact that the compressibility of the fluid is very small (a factor αC0 ≈ 0.01 in (72)) and it takes
much larger values for β to create a significant flow field to start the instability. A similar influence
between fluctuating permeability and porosity on onset times is reported in Ref. 7.

C. Long time limit

To conclude this section we present two runs showing pattern formation in the long time limit
for strongly heterogeneous porous media with CV > 1/2. For the first run, we take a rather large
correlation length and F = 0.5,

� = 1.5 m, F = 0.5, 〈K 〉 = 1.13 K̄ , VDP = 0.4, CV = 0.53,

for the second we take a small � and F = 0.7,

� = 0.2 m, F = 0.7, 〈K 〉 = 1.28 K̄ , VDP = 0.5, CV = 0.8.

In both runs, the distribution of K deviates strongly from a Gaussian, as shown in Fig. 16. As typical
for a lognormal distribution, it is more likely to find smaller values of K, but on the other hand, due
to the exponential in (77) K can become very large in few rare places, forming a kind of channels.
This is especially important for larger correlation lengths (time series in Fig. 17 at top) whereas
for small � the channels are too thin and disconnected, so they cannot contribute to CO2 transport
(Fig. 17, bottom). In the early stages in Fig. 17 at top, it can be seen that finger formation and growth
occurs mainly in the domains where K is large. The fingers fall down not only vertically as it is the
case for a homogeneous medium but also show motion in the horizontal direction, influenced by the
channels.
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FIG. 16. Distribution of K for several values of amplitude and correlation length (F, �). For small amplitudes, the distribution
is almost Gaussian, where it deviates strongly for larger F.

Figure 18 shows �S versus time. From the left frame it is remarkable that temporal fluctuations
seems to be rather strong now, at least for the larger correlation length. The right frame shows the
earlier stages. Convection sets in already after about 100 days. The larger amplitude F = 0.7 shows
a behavior similar to the simple model of Sec. V, Fig. 4. The onset is not sharp but rather starts
smoothly from the beginning.

IX. NUMERICAL RESULTS INCLUDING THERMAL GRADIENTS

A natural vertical temperature gradient of the size of 0.025 K/m or larger, the geothermal
gradient, exists across an aquifer in the vertical direction.37 Temperature increases with depth and if
the density of the water is assumed to depend linearly on temperature, buoyancy should destabilize
the motionless state if the condition

RT ≥ 4π2 (78)

is fulfilled.38 Here, RT is the (thermal) Rayleigh number

RT = K0gγT ρ0L2
zβT

μκ
(79)

with the thermal expansion coefficient

γT = − 1

ρ0

∂ρ∗

∂T ∗

∣∣∣∣
T0

ρ0 = ρ∗(T0),

the thermal diffusivity κ and the geothermal gradient βT. Taking the parameters from above and γ T

= 0.0004 K−1, βT = 0.05 K/m,39 one finds that a layer thicker than Lc
z ≈ 300 m would be thermally

unstable and convection rolls (Rayleigh-Bénard convection) would be formed.40 However, it turns
out that the motion due to thermal gradients is much less than that due to concentration and can
therefore be safely neglected, even for rather thick layers where the motionless fluid would be
thermally unstable. Note that due to the increase in pressure at higher depths the decrease in density
from temperature increase will be even less pronounced, leading to a smaller effective γ T.

If, on the other hand, horizontal thermal gradients exist, buoyancy cannot be compensated by a
hydrostatic pressure and the fluid would always move, no matter how small the temperature gradient
is.41, 42
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FIG. 17. (a) Time series of CO2 concentration for large correlation length and amplitude. Channeling can be seen in the
early stages. Contour lines show the location of K = K̄ . (b) Time series for smaller correlation length.
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FIG. 18. Left frame: Behavior of �S for longer times. Temporal fluctuations are more pronounced than for the case of
fluctuating porosity, compare to Fig. 13. Right frame: Early stage shows a kind of imperfect bifurcation for F = 0.7.

In this section, we assume a prescribed temperature field that has a horizontal space dependence,

∂x∗ T ∗ �= 0.

Such a dependence may origin from inhomogeneous thermal conductivities of the rock and can have
a value of a few degrees per 1000 m.

A. Boussinesq approximation

First we introduce a dimensionless temperature by scaling the temperature with the total tem-
perature difference on Lz according to

T ∗ = βT Lz T .

If we take the Boussinesq approximation and ignore all other fluctuations, the problem considered
in 2D is extended to

�
 = ∂x C + H∂x T, (80)

∂t C = −∂z
∂x C − ∂x
∂zC + �C, (81)

where H is a heat parameter

H = γT βT Lz

C0α
= RT

R
L , (82)

with the Lewis number L = κ/(n0D). For a pure fluid, only (80) remains taking the simple
form

�
 = H∂x T . (83)

B. Constant horizontal temperature gradient

From (83) we may determine the flow field for any given temperature distribution. If we assume
a circular region with radius R and a constant temperature gradient ∂xT = δT/R, a solution to (83)

would read 
 = HδT

4R
(x2 + z2). We can then estimate the maximal velocity after re-scaling to

q∗
max = K0gρ0γT

2μ
δT ∗,

which would yield for our parameters a value of 10−11 to 10−10 m/s, less than one millimeter per
year.

Despite this very small value, this motion can trigger the convective instability. Figure 19
shows the streamlines of the first phase of such a case where no further perturbations are added
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(a) (b) (c)

FIG. 19. Stream lines of the velocity field, numerical solution of (80) and (81) for a constant lateral temperature gradient of
1 K/km. Only the upper half of the layer is shown. (a) 10 days, (b) 600 days, and (c) 1100 days.

(β = γ = 0). In Fig. 19(a), only the base state (upper half shown) is visible which consists of a very
slowly turning roll. After about 600 days, small scale vortices become visible at the corners. Here,
fluid motion is mainly in vertical direction which leads to an increase/decrease of the local velocity
of the CO2-diffusion front and as a consequence to a horizontal inhomogeneity which then may start
the instability. In Fig. 19(c), small scale motion is clearly dominating the primary thermal motion
by a factor 1000. Figure 20 shows �S defined in (59), in Fig. 21 the maximal velocity value |�q| is
plotted. It can be clearly seen that the instability occurs after about 220 days, rather independent
from the size of the thermal gradient.

C. Inhomogeneous thermal conductivity

The thermal conductivity of the rocks may vary in space, depending on their composition. This
variation can produce a horizontal thermal gradient which is normally much smaller than the vertical
one.

To compute the stationary temperature field for a given thermal conductivity λT(x, z), one finds
a solution of the energy equation

∇ · [λT (x, z)∇T (x, z)] = 0 (84)

in the domain 0 ≤ x ≤ x1, 0 ≤ z ≤ z1. The boundary conditions are

T (x, 0) = T0, T (x, z1) = T0 − z1, T (0, z) = T (x1, z) = T0 − z.

To solve (84) numerically, we first write it in the form

λT �T + (∇λT ) · (∇T ) = 0 (85)
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FIG. 20. Convection number if the instability is started only by a lateral temperature gradient of 1 K/km (dotted) and 3 K/km
(solid).
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FIG. 21. Maximal velocity in the domain for the two constant lateral temperature gradients.

and use a Gauss-Seidel algorithm19 on a rectangular finite difference mesh which yields an iteration
formula

T (n+1)
i j = 1

2

1

�x2 + �z2

{
�z2

(
1 + 1

4
λ

(x)
i j

)
T (n)

i+1, j + �z2

(
1 − 1

4
λ

(x)
i j

)
T (n)

i−1, j

+�x2

(
1 + 1

4
λ

(z)
i j

)
T (n)

i, j+1 + �x2

(
1 − 1

4
λ

(z)
i j

)
T (n)

i, j−1

}
, (86)

where i = 2. . . M − 1, j = 2. . . N − 1 and �x = x1/(M − 1), �z = z1/(N − 1). The abbreviations are

λ
(x)
i j = λi+1, j − λi−1, j

λi j
, λ

(z)
i j = λi, j+1 − λi, j−1

λi j

with Tij, λij being the value of T and λT, respectively, at the grid point (i, j). The iteration is started
with

T (0)
i j = T0 − ( j − 1)�z

and stopped when the absolute error

E = βT Lz

∑
i j

∣∣∣T (n)
i j − T (n−1)

i j

∣∣∣

FIG. 22. Quadratic enclave of higher thermal conductivity. Left: temperature difference to the linear state, right: stream
function of the velocity field caused by buoyancy.
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FIG. 23. Same as in Fig. 22 but for a circular enclave near the top of the domain.

falls below 10−6 K, which is the case after 5000–10 000 iterations. The domain size is chosen with
Lx = Lz = 100 m, for discretization, a mesh with 128 × 128 grid points is used.

Figure 22, left frame, shows the temperature field of a quadratic enclave in the middle of the
domain, where the conductivity is 10% larger than for the rest of the rock. The contour lines denote
the difference from the linear state,

δT = T (x, z) − T0 + z.

The right frame shows the corresponding velocity field due to buoyancy, found by integrating (83).
In Fig. 23 we take a circular enclave close to the top, whereas in Fig. 24 1D-discontinuity in form
of a sinusoidal interface is used. The two regions separated by the interface differ in their thermal
conductivities by 10%.

For the circular enclave we find the maximal horizontal temperature gradient of about 2.6 K/km,
compared to the discontinuity, where it is everywhere less than 1 K/km. For all cases, βT = 0.05 K/m
and the variation of λT is 10%. Note that the horizontal gradients depend linearly on the geothermal
gradient, so for smaller βT they are accordingly smaller.

D. Instabilities induced by inhomogeneous thermal gradients

Finally, we take the temperature distributions shown in Figs. 22–24 as input for (80) and (81),
and study the onset of instability when no further perturbations exist. The domain size is Lx = Lz

= 100 m, but all other parameters are kept unchanged. Figure 25 compares the stream lines for the
three different temperature fields at the same time at 1200 days. One can see a reminiscence of the
patterns to their corresponding temperature distributions. For the enclaves, finger formation starts

FIG. 24. A sinusoidal discontinuity between domains of different thermal conductivities can give rise to a rather complicated
temperature and velocity field.
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quadratic enclave

circular enclave

discontinuity

FIG. 25. Streamlines of the velocity field at 1200 days, numerical solution of (80) and (81) for temperature gradients that
origin from inhomogeneous thermal conductivities. The side length and height are 100 m, but only the upper 5 m is plotted.

mainly near the inhomogeneous zones and at the corners, whereas for the discontinuity, the velocity
is rather large at the discontinuity from where it spreads out laterally. Although the absolute value of
the lateral temperature gradient is the smallest one for the discontinuity, this configuration leads to
the fastest growth and earliest onset of convection, which can be seen from Figs. 26 and 27, where
we compare the values of the convection number and qmax as a function of time.

X. DISCUSSION IN RELATION TO EARLIER WORK

The main purpose of our work is to study onset and the early phase of convection of a buoyancy-
driven water-CO2 mixture in porous media. Due to the time and space dependent basic state, the
linear stability problem is not standard and there exist different definitions of the onset time (that
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FIG. 26. �S for the three runs of Fig. 25.
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FIG. 27. Maximal velocity for the three runs.

is, the critical time) where the base state loses stability. Table II summarizes the results of our work
together with results from the literature. The different scalings and material parameters used in the
literature make it difficult to compare our work directly with previous studies. For a clear comparison
we express all times found from the literature in dimensionless units that have to be multiplied by

τ =
(

n0μ

K0gρ0αC0

)2

D (87)

to obtain times in seconds (scaling (8) and (9)). Where necessary, τ is specified in the table.
The differences of the linear times are due to the different methods: some authors use frozen-

time analysis,27 others consider an amplification factor (35)4 or take the minimum of the mean
square disturbances of the concentration field.6, 9, 43 For the last method, the initial conditions of the
disturbances are important. In Ref. 3, the dominant mode solution is applied which yields a much
larger onset time.

The times at which convective patterns become visible may differ over a wide range with direct
numerical solutions of the fully nonlinear problem. On one hand, they depend on the definition
of “visible” time. Usually, this is defined as the moment where the CO2 flux by convection and
diffusion differs by a certain amount, say one percent, from that by diffusion alone. We adopt this
definition in our work. The other point is the size and length scale of the initial perturbations and/or
of perturbations during the evolution process caused by inhomogeneous material properties. Here
we place the emphasis on spatially varying permeability and porosity.

TABLE II. Onset time (first column) and “visible” time in units of τ , (87). Regions specified in the first row are based on
the variations of amplitude and length scale of the perturbations, shown in Figs. 7, 9, and 15.

Linear Porosity Concentration Permeability Thermal τ

This work 50a 450–3600 220–3000 1800–4500 3000–6000 0.2 days
Rapaka4 300 18.5 days
Slim6 48
Pau7 1600 3600 62 s
Riaz3 146
Farajzadeh8 2000 b

Xu9 75
Ennis-King43 75

aFrom Fig. 3, frozen-time analysis.
bDomain depth and diffusion coefficient not provided.
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All the “visible” times are much larger than the onset times from the linear methods. One
exception is Ref. 4, where the time is not clearly stated and we determine it from their Fig. 6. We
could not find the amplitude of the initial condition, which is the one that yields the fastest linear
growth. This optimal initial condition together with a presumably rather large amplitude could lead
to such a relatively short time.

Another even shorter one percent time of t ≈ 141–177 (τ ≈ 28 s) is stated in recent laboratory
experiments.44 Here the authors are not sure about size and nature of perturbations that finally
destabilize the base state.

For our results based on thermal initial fluctuations there may be no reported work in the
literature.

XI. CONCLUSIONS

Various authors use different definitions of the critical time (or onset time). These definitions
include the time when

(i) the frozen-time diffusive base state (23) becomes unstable,
(ii) perturbations of the time-dependent base state start to grow,
(iii) the amplification factor (35) begins to grow,
(iv) the amplification factor (35) reaches unity.

All these definitions lead to different times, see Sec. IV D. Taking (ii), the critical time may also
depend on the form of the perturbations. All critical times have the common feature they are small
compared to the time where convection manifests itself in visible deviations of the concentration
from the diffusive base state.

Apart from (i)–(iv) we use a different characteristic time in our paper, called visible time or
one-percent time as defined above.

The visible time can be considerably longer than the critical times and has more practical
relevance. It also depends on the type, magnitude, and length scale of the perturbations of the
horizontally homogeneous diffusive base state. The investigation of these relationships is the purpose
of our work. We use different sources for perturbations: fluctuations of the concentration field, of
permeability and porosity as they are observed in natural rocks. Concentration fluctuations are
assumed to be present only on the top surface of the domain. Their propagation by diffusion in
the bulk is examined in Sec. VII B 2 where it turns out that the spatial domain dimensionality is
important. For the case of fluctuating permeability, the flow field has to be compressible as shown in
Sec. VIII. Finally, thermal fluctuations from horizontal inhomogeneities in the thermal conduction
are studied in Sec. IX. It is shown that they may have the same effect and influence on the visible
times the rock inhomogeneity or concentration fields.

As a concluding remark we may point out that the two times, onset (linear) and “visibility”
(nonlinear) differ by a factor 10 to 100, depending on the origin of perturbations, but even more on
their size and scale. Since early onset and large convection is desirable for carbon dioxide storage,
these results could be important for site selection.
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