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a b s t r a c t

Hydrodynamic simulation of fluids in vessels is often based on the internal energy (U), volume (V), and
the number of moles of all components (reN ¼ N1; N2; …; Nn) as the working variables to determine the
thermodynamic state by finding the global maximum of entropy. The procedure of finding the equi-
librium state may be divided into two steps: stability analysis and phase-split computations. Stability
analysis is performed first, and the phase-split computation proceeds if the system is unstable. Most of
the past work on UVN space has been based on phase-split computations, while the stability analysis is
barely investigated. Furthermore, previous studies for the stability analysis use only Newton's method to
solve the non-linear algebraic equations. We present an efficient and robust approach for stability
analysis where UVN is specified. The successive substitution iteration (SSI) is used to provide good initial
guesses for Newton's method. The proposed approach results in a reduced number of unknowns and
does not require a large number of iterations to achieve convergence in Newton's method. Our proposed
formulation is compatible with different equations of state and is applicable to both pure component and
multi-components. The robustness and efficiency of the algorithm for stability analysis are demonstrated
in various examples.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

Stability analysis is an essential element of compositional
modeling in many applications such as compositional reservoir
simulation [1e3], enhanced oil recovery processes [4,5], and pre-
cipitation problems [6]. For large-scale problems, such as compo-
sitional reservoir simulations, phase-behavior computations may
be performed billions of times for a single simulation job. Finding
the equilibrium state of a given system includes two parts: the
stability analysis and phase-split computations. The stability anal-
ysis is carried out first to determine if there is a need to perform the
phase-split computations. If the initial phase is stable, the phase-
split computation is not required, and computational time is
saved. Therefore, for phase-behavior computations, the stability
analysis can have a significant influence on the efficiency of com-
putations [1].
d Biomolecular Engineering,
Consider a multicomponent mixture with specified internal
energy (U), volume (V), and moles (N ¼ N1; N2; …; Nn) of all
components. We are interested in determining if the mixture is
stable in a single-phase state. To solve this problem, one must find
whether there is a multiphase state that has entropy higher than
that of the given initial phase. The temperature, pressure, and
composition of each phase that is consistent with the energy, vol-
ume, and total moles of components are computed in the process.
Stability analysis determines the stability of the given phase and
may and may not provide initial guesses for the subsequent phase-
split computations depending on basic thermodynamic functions.

There are some ten published algorithms on the phase-behavior
computations in the UVN space. Most approaches focus on the
phase-split computations and use a Newton-based method to solve
the highly non-linear algebraic system of equations. The authors do
not report on the efficiency of the stability analysis. Castier [7] has
proposed an approach that includes adding and removing phases
during the phase equilibrium computations. The approach com-
putes the temperature (T) and pressure (P) of the specified UVN
space at the first step to allow the isothermal-isobaric stability
analysis algorithm. This approach can correctly detect the stability
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Fig. 1. Illustration of the two states considered in the stability analysis. The state with a
higher total entropy S is thermodynamically more stable.
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or instability of the original single phase. However, the mole frac-
tions of the trial phase obtained from the isothermal-isobaric sta-
bility analysis algorithm are not guaranteed to increase the entropy
of the system. The algorithm requires a large number of iterations
to achieve convergence. Coupling the stability analysis with phase-
split computations can overcome the complexity of adding or
removing phases in the latter if the former is robust.

To the best of our knowledge, only the work by Smejkal and
Miky�ska [8,9] covers the algorithm for stability analysis in the UVN
space. The algorithm uses Newton's method. A damping parameter
is applied for controlling the step size and a modified Cholesky
decomposition for the Jacobian matrix to achieve convergence
[8,9]. The work in Refs. [8,9] overcomes the convergence problems
previously reported; however, it is not as computationally efficient
as our algorithm, as will be demonstrated in this work. In Refs. [8,9]
seven initial guesses of the temperature are required, which leads
to 7(n þ 2) initial guesses for a stability analysis computation in an
n-component mixture instead of n þ 2 in our algorithm. The au-
thors do not provide a complete report on the efficiency of the
stability analysis. Smejkal and Miky�ska [8] report 124 iterations in
one example and 71 iterations in another. We apply our algorithm
to the same examples and compare the efficiency in Section 4 of
this work. The efficiency of the stability analysis is also missing in
another relevant publication by Smejkal and Miky�ska [9].

Algorithms of stability analysis in the temperature, pressure,
and moles (TPN) space are far more developed than they are in the
UVN space. A large number of studies [1,3,6,10e13] have been
published on the computations in the TPN space. Studies have
initially focused on the use of Newton-based methods with various
constraints. A progression of discoveries have driven the authors
from relying entirely on Newton's method to adopting a two-
technique approach (a combination of the SSI method and New-
ton's method). Although Newton's method can have quadratic
convergence as opposed to the linear convergence of the SSI
method, it requires good initial guesses and is computationally
more expensive than the SSI methodwhen the number of iterations
is the same. The purpose of the SSI method is to provide initial
guesses [6] for Newton's method.

This work presents a formulation of the stability analysis based
on the SSI method to provide good initial guesses for Newton's
method. The proposed algorithm improves the robustness of the
computations and employs a dimensionality reduction. In addition,
compared with the work by Smejkal and Miky�ska [8,9], the pro-
posed algorithm has advantages in computational efficiency. For
both the SSI method and Newton'smethod, a general formulation is
presented that is compatible with different equations of state. This
work focuses on the stability analysis of the phase-behavior
computation in UVN space.

The rest of the paper is structured as follows. Section 2 presents
the formulation of stability analysis. Section 3 introduces the nu-
merical details of SSI and Newton's methods. The efficiency of the
proposed algorithm is demonstrated in Section 4 in problems with
different degrees of complexity. A brief summary and concluding
remarks are presented in Section 5. Following Smejkal andMiky�ska
[8], we use the well-known Peng-Robinson EOS [14] to model hy-
drocarbon fluids and non-hydrocarbons (e.g., hydrogen sulfide,
carbon dioxide).

2. Formulation of the stability analysis

In this section, we introduce our approach for computing the
stability of a single-phase system in the UVN space. Note that the
stability in the context of phase equilibrium computations includes
both absolute and metastability conditions. Also, note that the
approach adopted in this work is related to fluid systems and will
not cover various crystallization processes.
Stability analysis determines if a given system is stable at a

specified UVN condition. State I in Fig. 1 describes the given single-
phase mixture which contains n components at fixed U*, V*, and
N*. State II shows a two-phase mixture by introducing a small
amount of a second (trial) phase (U

0
V

0
N

0
). The total internal energy,

volume, andmoles of State II are U*, V*, andN*; the same as in State
I. Denote the total entropy of State I and State II as SI and SII ,
respectively. DS ¼ SII � SI can be used to determine which state is
more stable following the second law of thermodynamics. If any
value of U

0
, V

0
, and N

0
leads to DS>0, the equilibrium state of the

given system at U*, V*, and N* is unstable and the systemwill split
into two- or more phases. On the other hand, if DS<0 for all
possible values of U

0
, V

0
, and N

0
, the equilibrium state of the given

mixture is stable and will remain in single-phase (State I).
Following Smejkal and Miky�ska [8,9], and assuming the volume

of the trial phase is fixed in a small scale, an expression of D which
is a measure of entropy difference between the two can be derived:

D¼ SII � SI

V 0 ¼u
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ði¼1;2;…;nÞ; (1)

where u
0
is the energy density of the trial phase (u

0 ¼ U
0
=V

0
) and c

0
i

is the concentration (molar density) of component i in the trial
phase (c

0
i ¼ N

0
i=V

0
). T

0
, P

0
, and m

0
i stand for the temperature, pres-

sure, and chemical potential of component i of the trial phase,
respectively. The superscripted quantities with a star (*) represent
the original phase. We note that the temperature, pressure, and
chemical potential of each component of a phase can be deter-
mined once the energy and molar density of each component are
known. Therefore, all the quantities of the original phase in Eq. (1)
can be computed using the specified U*, V*, and N*. Like the
original phase, T

0
, P

0
, and mi

0 can be computed by specifying u
0
andc

0
i.

The problem is then to investigate whether there exists a set of
values for u

0
and c

0
i such that D>0.

The maximum of D can be computed by solving the following
set of conditions

�
vD
vu0

�
c0
¼0; (2)



Fig. 2. Depiction of the initial guesses for c
0
in a binary mixture where the two

components have molar volumes b1 and b2, respectively.
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where the subscript c
0
jsi indicates constant concentrations for all

components except for i. Since all of the starred quantities are fixed,
the derivatives ofD in Eqs. (2) and (3) depend only on the quantities
of the trial phase (’). This leads to the following equations:
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We simplify the second and third terms in Eq. (4). From the

expression U ¼ TS� PV þ Pn
i¼1

Nimi, one can obtain the expression

for the entropy density by dividing by V
0
on the two sides of the

equation. The entropy density of the trial phase (s
0 ¼ S0= V 0) can be

expressed by
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Writing the Gibbs-Duhem relation
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From Eq. (7), we derive
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Substituting EEqs. (6) and (8) into Eq. (4) yields

�
vD
vu0

�
c0
¼
�
1
T 0 � 1

T*

�
¼0: (9)

Eq. (9) states that T
0 ¼ T*, which implies the temperatures of the

original phase (State I) and the trial phase in State II are identical at
stationary points. Because T* can be computed by the given U*, V*,
and N*, T

0
is also known. Since the energy density u

0
is a function of

the temperature and concentration of the trial phase, the only
unknown for finding a maximum of D becomes c

0
. The algorithm

developed by Smejkal and Miky�ska [8,9] requires to supply 7 initial
guesses for T

0
(to compute u

0
) to n þ 2 initial guesses for c

0
. On this

basis, the algorithm needs to examine 7(n þ 2) initial guesses in
stability analysis. Our algorithm does not need initial guesses for u

0

or T
0
. Thus, the number of initial guesses is n þ 2 instead.

By taking the advantages of the simplifications, Eq. (5) leads to
m

0
i ¼ m*i for all i. Finding a maximum of D is equivalent to seeking a

set of concentrations c
0
in the trial phase that satisfies

m
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i
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The chemical potentials can be expressed in terms of fugacity,f
(2) as
m
0
i �m*i ¼RTln

 
f
0
i
�
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!
¼0 ði¼1;2;…;nÞ: (11)

Let us define the fugacity coefficient, f (2) of component i as

fi ¼
cfi
Pci

ði¼1;2;…;nÞ; (12)

where c ¼ Pn
i¼1

ci is the total molar density of the phase. Applying
the natural logarithm on both sides and rearranging for the
fugacity, we obtain

lnfi ¼ lnfi þ lnP þ ln
ci
c

ði¼1;2;…;nÞ: (13)

Substituting Eq. (13) into Eq. (11), we obtain

ln
f

0
i

�
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0�
f*
i ðT*; c*Þ

þ ln
c
0
i

c*i
þ ln

P
0

P*
� ln

c
0

c*
¼ 0 ði¼1;2;…;nÞ: (14)

To solve Eq. (14) we propose to adopt the SSI method followed
by Newton's method. The equation set for solving c

0
is given below.

lnc
0
i ¼ ln

f*
i ðT*; c*Þ
f

0
iðT*; c

0 Þ þ lnc*i þ ln
P*

P 0 � ln
c*

c0 ði¼1;2;…;nÞ; (15)

where c
0 ¼ Pn

i¼1
c
0
i is the total molar density of the trial phase.

Quantities in the initial single-phasemixture (*) are fixed during
the iterations, while the pressure and fugacity coefficients of the
trial phase (‘) are functions of the concentrations c

0
that may vary

with each iteration. As the solutions (c
0
) change, P

0
and f

0
i are

updated. In summary, the stability analysis contains n unknowns
(the set of concentrations c

0
) that will be determined by solving the

n unknowns in Eq. (15).
3. Numerical algorithms

3.1. Initial guesses

As discussed in Section 2, we desire to compute themaximum of
D defined in Eq. (1) in the c

0
space. If the maximum is negative, the

initial single-phase mixture is stable. Otherwise, it will split into
two or more phases. Since there might be several local maxima, we
intend to investigate D using a few initial guesses of c

0
. In this work,

we propose to follow the strategy in Smejkal and Miky�ska [8]. The
admissible set of concentrations of an n-component mixture form
an n-simplex domain. We choose the barycenter of the simplex and
the midpoints of the lines joining the barycenter with each of the
n þ 1 vertices as initial guesses of c

0
(n þ 2 initial guesses for an n-

component mixture). Fig. 2 presents an illustration of the initial
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guesses of c
0
for a binary (n ¼ 2) mixture. We can obtain four initial

guesses which are marked with crosses (the barycenter B and the
midpoints M0, M1, and M2). The barycenter has the coordinates
c
0 ¼ ð1 =3b1; 1 =3b2Þ, and the coordinates of the midpoints are ð1=
6b1;1=6b2Þ, ð2=3b1;1=6b2Þ, and ð1=6b1;2=3b2Þ at M0, M1, and M2,
respectively. We assume that this set of initial guesses is sufficient
to explore the function D in the c

0
space.
3.2. SSI method

The SSI method is proposed to use the initial guesses of c
0
from

the n-simplex method in the first iteration. Then, we perform the
following steps to update c

0
by solving Eq. (15). The initial estimates

of c
0
is tested sequentially. If any of the initial estimates leads to a

positive D in eq. (1), the system is unstable. It is stable when D is
negative for all the initial estimates.

1. Given U*, V*, and N* of the original phase, T*ðU*;V*;N*Þ can be
computed using Eq. (85) in Smejkal and Miky�ska [8] by the
bisection method. Following Smejkal and Miky�ska [8], the
reference state for computing the internal energy is T0 ¼
298:15 K and P0 ¼ 1 bar. Themolar energy at the reference state
is u0 ¼ uðT0; P0Þ ¼ � 2478:96 J=mol. From an EOS (such as the
Peng-Robinson EOS) one can find P*, S*, and fugacity coefficient
f* of all components i. T

0
of the trial phase equals to T*.

2. Determine the n þ 2 initial guesses for the concentrations of the
trial phase (c

0
) from the n-simplex described above and perform

the following steps for each of the guesses.
3. Let k denote the iteration count. At k ¼ 1, c

0ðkÞ is set to one of the
initial guesses we have chosen.

4. At each iteration, we aim to compute the right-side of Eq. (15).
The quantities of the original phase (*) are already known from
Step 1. The trial-phase quantities f

0ðkÞ
i ¼ f

0
iðT

0
; c

0ðkÞÞ and P
0ðkÞ ¼

P
0 ðT 0

; c
0ðkÞÞ are readily obtained from the EOS.

5. Update c
0ðkÞ by taking the exponential of the right-side of Eq.

(15) to obtain c
0ðkþ1Þ.

6. Step 4 and 5 are repeated until a convergence criterion
(switching tolerance) is met. Then we switch to the more effi-
cient Newton's method.
Table 1
Specifications of U, V, and Ni ; the internal energy, volume, and the total number of
moles of component i, respectively: Problems 1e4.

Specifications Problem 1 Problem 2 Problem 3 Problem 4

U ðJÞ � 756500:8 � 1511407:6 � 331083:7 � 636468
V ðcm3Þ 52869 4268:1 80258:1 9926:71

NC1
ðmolÞ 10 0:95 15:1 10

NH2S ðmolÞ 90 99:05 84:9 90
3.3. Newton's method

We use the converged solution of c
0
in the SSI method as the

concentrations c
0
for the first iteration in Newton's method. The

concentrations c
0
in subsequent iterations are updated according to

c
0ðkþ1Þ ¼ c

0ðkÞ � J�1ðkÞFðkÞ: (16)

The elements i, j of the Jacobian J, and Fi are given by

JðkÞij ¼ vFðkÞi
vc0

j
¼ dij

c
0ðkÞ
j

þ v

vc0
j
ln4

0ðkÞ
i þ v

vc0
j
lnP

0ðkÞ � 1
c0ðkÞ; (17)

FðkÞi ¼ ln
c
0ðkÞ
i

c*i
� ln

4*
i

4
0ðkÞ
i

� ln
P*

P 0ðkÞ þ ln
c*

c0ðkÞ i¼ð1;2;…;nÞ;

(18)

where dij is the Kronecker delta.
Below is a brief outline of Newton's method algorithm that

follows Step 6 in the SSI algorithm.
7. Let k denote the iteration count of Newton's method. At
k ¼ 1, c

0ðkÞ is the converged solution from the SSI method.
8. Solve Eq. (17) and Eq. (18) for JðkÞij and FðkÞi and update c

0ðkþ1Þ

by Eq. (16).
9. Iteration is stopped once the convergence criterion is met.

10. Evaluate D defined in Eq. (1). If any of the initial guesses from
Step 2 leads to a positive D, the original phase (State I in
Fig. 1) is unstable, and the phase-split computations should
be performed. Otherwise, the phase is stable.

4. Results

Following the procedure in Section 3, we have implemented the
algorithm and performed the single-phase stability tests for ex-
amples in the literature. In this section, we report the stability
analysis results of 8 problems in Castier [7] and Smejkal and
Miky�ska [8] that cover various degrees of complexity. Parameters of
all components used in the computations in the EOS are presented
in Table A1 in the Appendix. Correlation coefficients for the molar
heat capacity of the ideal gases in internal energy and entropy
computations are listed in Table A2 in the Appendix. In Refs. [7,8]
the number of iterations in the stability analysis is not reported for
problems 1e6. For problems 7 and 8, we compare the number of
iterations in our algorithm with Smejkal and Miky�ska [8]. We use
the 2-norm (L2 norm) of the change in the concentrations from one
iteration to the next to check the convergence in all the problems.

4.1. Binary mixtures of methane (C1) and hydrogen sulfide (H2S)

In the first four problems, we consider a binary mixture of
methane (C1) and hydrogen sulfide (H2S) at four different specifi-
cations. Table 1 lists the specifications of the binary mixtures. Ac-
cording to Smejkal and Miky�ska [8], Problem 1 has a solution at
which large amounts of liquid and vapor phases are present.
Problems 2 and 3 have the specifications that lead to solutions very
close to the phase boundary (bubble-point and dew-point,
respectively). The solution of Problem 4 gives a state close to the
critical point of the mixture. The binary interaction parameter be-
tween C1 and H2S in the PengdRobinson EOS is set equal to 0.083.

We report the concentration of all components, temperature,
and pressure in the trial phase together with D and the number of
iterations for convergence in Table 2. The stability analysis con-
verges to a solution where D defined in Eq. (1) is positive. It in-
dicates that the original mixtures are unstable. The T, P’, and ci0 in
the table represent one set of condition in the trial phase that
makes the initial single-phase unstable and results the system to
split into two or more phases subsequently.

The number of iterations depends on the tightness of the
tolerance. Take Problem 2 as an example. Table 3 presents the
number of iterations corresponding to various switching tolerance
and final tolerance combinations. A tighter switching tolerance will
lead to a higher number of iterations in the SSI method but fewer
iterations in Newton's method. The number of iterations in New-
ton's method is rather small for the selected tightness of tolerances.
The SSI method greatly facilities the convergence of Newton's



Table 2
Stability analysis provides. T, P

0
, and ci 0 (temperature, pressure, and the concentra-

tion of component i in the trial phase, respectively). Iterations contain two numbers,
where the first one denotes the iterations required in the SSI to converge to within a
switching tolerance of 10�5, and the second number is in Newton's method to
converge to within a final tolerance of 10�10: Problems 1-4.

Stability analysis Problem 1 Problem 2 Problem 3 Problem 4

T ðKÞ 151:83 291:91 297:84 361:80
P

0 ðMPaÞ 0:60 1:84 2:65 10:10

c
0
C1
ðmol =m�3Þ 104:12 146:18 13:22 1000:68

c
0
H2S

ðmol =m�3Þ 564:35 736:58 1413:64 8459:77

DðPa =KÞ 875:5 26722:7 506:22 0:14
Iterations 27þ 2 17þ 2 478þ 11 3855þ 3
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method. With the same initial guesses from the n-simplex method,
we do not obtain a converged solution using Newton's method
alone. The SSI method, which precedes Newton'smethod, improves
the robustness of our approach. Even if we choose a large tolerance
of 10�1 for the SSI, it is sufficient to achieve convergence.

The number of iterations of the SSI method is usually higher than
those of Newton's method, because the convergence of the SSI al-
gorithm is linear, while Newton's method is quadratic. However, for
solving highly non-linear equations, the computation of the inverse
of a Jacobian matrix in Newton's method can be costly when the
system is complex, and it is typically thematrix inversion stepwhich
is computationally expensive. Our results in Table 2 show a small
number of iterations in Newton's method in all the problems.
Problems 3 and 4 require a large number of SSI iterations to converge
to the switching criterion, but only a few Newton iterations to meet
the convergence criterion. The SSI method requires a large number
of iterations for the switching tolerance (10�5) when the system of
interest is close to the critical region. This number can be signifi-
cantly reduced if we increase the value of switching tolerance.
Tables 4 and 5 list the number of iterations based on a larger
switching tolerance for Problems 3 and 4, respectively.
Table 3
The number of iterations to reach convergence for various switching and final tolerance. T
for Newton's method: Problem 2.

SSI Switching Tolerance Newton 10�2 Newton 10�4

Newton only failure failure
10�1 10 þ 2 10 þ 2

10�3 14 þ 2

10�5

10�7

10�9

Table 4
Number of iterations to reach convergence with switching tolerance of 10�5 and larger:

SSI Switching Tolerance Newton 10�2 Newton 10�4

10�1 185 þ 6 185 þ 9

10�3 331 þ 6

10�5

Table 5
Number of iterations to reach convergence with switching tolerance of 10�5 and larger:

SSI Switching Tolerance Newton 10�2 Newton 10�4

10�1 820 þ 4 820 þ 4

10�3 2316 þ 3

10�5
4.2. Liquefied petroleum gas (LPG) mixtures

Table 6 gives specifications of the 6-component LPG mixtures in
Smejkal andMiky�ska [8]. According to the authors, most of the fluid
is in the liquid phase. The fluid system of Problem 6 is close to the
critical point. Similar to Smejkal and Miky�ska [8], all binary inter-
action coefficients are set equal to zero. The results of our
computa� 16272506:4tion are summarized in Table 7.

We summarize the number of iterations in Problem 6 in Table 8.
Similar to Problem 4, when the system is close to the critical point,
the number of iterations in the SSI method noticeably increases,
while Newton's method has a small number of iterations. Note that
Newton's method converges in Problem 6 without implementing
the SSI method. However, the number of iterations in Newton's
method is large. It dramatically reduces by incorporating the SSI
method even when the switching tolerance of the SSI is large.
4.3. Liquefied petroleum gas (LPG) mixture with water (H2O)

In Problem 7, the LPG mixture in Problems 5 and 6 are mixed
with water. The specification of the problem is presented in Table 9.
All binary interaction coefficients are set to zero, the same as
Smejkal and Miky�ska [8]. According to the literature, Problem 7
leads to a three-phase vapor-liquid-liquid equilibrium. One liquid
phase only consists of hydrocarbons, while the other liquid phase is
almost pure water. The equilibrium state lies close to the phase
boundary because the amount of the water-rich liquid phase is
small. Our stability analysis (Table 10) finds that for an SSI
switching tolerance of 10�5 and Newton's method stopping toler-
ance 10�10, the number of iterations is 5 and 2, respectively. In
comparison, Smejkal and Miky�ska report that their algorithm,
which relies on Newton's method only, requires 124 iterations to
achieve convergence. Our method appears to be computationally
more efficient.
he first number denotes the iterations required for the SSI, and the second number is

Newton 10�6 Newton 10�8 Newton 10�10

failure failure failure
10 þ 2 10 þ 3 10 þ 3
14 þ 2 14 þ 2 14 þ 2
17 þ 2 17 þ 2 17 þ 2

21 þ 2 21 þ 2
25 þ 2

Problem 3.

Newton 10�6 Newton 10�8 Newton 10�10

185 þ 12 185 þ 15 185 þ 18
331 þ 9 331 þ 11 331 þ 16
478 þ 6 478 þ 8 478 þ 11

Problem 4.

Newton 10�6 Newton 10�8 Newton 10�10

820 þ 4 820 þ 5 820 þ 5
2316 þ 3 2316 þ 3 2316 þ 3
3855 þ 2 3855 þ 3 3855 þ 3



Table 6
Specifications of the system: Problems 5 and 6.

Specifications Problem 5 Problem 6

U ðJÞ 24858:2
V ðcm3Þ 479845 289380:3

NC2
ðmolÞ 10:8 10:8

NC3H6
ðmolÞ 360:8 360:8

NC3
ðmolÞ 146:5 146:5

NiC4
ðmolÞ 233 233

NnC4
ðmolÞ 233 233

NnC5
ðmolÞ 15:9 15:9

Table 7
Results of stability analysis. The SSI switching tolerance is 10�5, and Newton's
method stops when it converges to within a tolerance of 10�10: Problems 5 and 6.

Stability analysis Problem 5 Problem 6

T ðKÞ 122:97 394:54
P

0 ðMPaÞ 5:10� 10�3 4:22

c
0
C2
ðmol =m�3Þ 0:33 46:40

c
0
C3H6

ðmol =m�3Þ 3:10 1738:54

c
0
C3
ðmol =m�3Þ 0:91 718:80

c
0
iC4

ðmol =m�3Þ 0:39 1261:61

c
0
nC4

ðmol =m�3Þ 0:29 1304:72

c
0
nC5

ðmol =m�3Þ 0:0038 101:01

DðPa =KÞ 35298:71 16:10
Iterations 5þ 2 478þ 2

Table 8
Number of iterations required to reach convergence as a function of the tolerance for
the SSI method and Newton's method: Problem 6.

SSI
Switching
Tolerance

Newton
10�2

Newton
10�4

Newton
10�6

Newton
10�8

Newton
10�10

Newton
only

0 þ 22 0 þ 23 0 þ 23 0 þ 23 0 þ 23

10�1 294 þ 2 294 þ 3 294 þ 3 294 þ 4 294 þ 4

10�3 386 þ 2 386 þ 2 386 þ 3 386 þ 3

10�5 478 þ 2 478 þ 2 478 þ 2

10�7 569 þ 2 569 þ 2

10�9 661 þ 2

Table 9
Specifications of the system: Problem 7.

Specifications Problem 7

U ðJÞ � 17008802:6
V ðcm3Þ 401916:6

NC2
ðmolÞ 10:8

NC3H6
ðmolÞ 360:8

NC3
ðmolÞ 146:5

NiC4
ðmolÞ 233

NnC4
ðmolÞ 233

NnC5
ðmolÞ 15:9

NH2OðmolÞ 14

Table 10
Results of the stability analysis. The SSI switching tolerance is 10�5,
and Newton's method stops when it converges towithin a tolerance
of 10�10: Problem 7.

Stability analysis Problem 7

T ðKÞ 130:29
P

0 ðMPaÞ 4:05� 10�3

c
0
C2
ðmol =m�3Þ 0:27

c
0
C3H6

ðmol =m�3Þ 2:31

c
0
C3
ðmol =m�3Þ 0:66

c
0
iC4

ðmol =m�3Þ 0:25

c
0
nC4

ðmol =m�3Þ 0:18

c
0
nC5

ðmol =m�3Þ 0:0021

c
0
H2O

ðmol =m�3Þ 0:080

DðPa =KÞ 47342:63
Iterations 5þ 2

Table 11
Specification of the system: Problem 8.

Specifications Problem 8

U ðJÞ � 87211375:74
V ðcm3Þ 1� 106

NCO2
ðmolÞ 1� 104

Table 12
Results of the stability analysis. The tolerances of 10�5 and
10�10 are used in the SSI and Newton's method, respectively:
Problem 8.

Stability analysis Problem 8

T ðKÞ 280:00
P

0 ðMPaÞ 4:16

c
0
CO2

ðmol =m�3Þ 2790:06

DðPa =KÞ 4069:49
Iterations 40þ 2
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4.4. A single-component fluid (CO2)

Problem 8 covers pure carbon dioxide (CO2) with specified UVN
in Table 11. Our algorithm computes the stability analysis (Table 12)
using 40 SSI iterations to converge to within a switching tolerance
of 10�5, and 2 additional Newton's method iterations to the stop-
ping tolerance of 10�10. In comparison, Smejkal and Miky�ska [8]
state that their algorithm requires 71 iterations for Newton's
method to achieve convergence.
We have also examined a number of other examples which the
stable state is in three-phases. In some of those example stability
finds a single phase to be stable with temperature to be negative.
We interpret the negative temperature as indication that the single
phase is unstable.
5. Conclusions

An efficient algorithm is presented for single-phase stability
analysis in fluid systems with specified internal energy U, volume V,
and moles N of all components. The our proposed algorithm has
variousmerits over themethod in the literature.We take advantage
of the fact that the trial phase temperature is the same as the
temperature of the original single-phase mixture, to reduces the
dimension of the search space. This results in fewer initial guesses
compared to the method in the literature. In the proposed algo-
rithm, the successive substitution interactions (SSI) method is
coupled with Newton's method. The robustness of the algorithm is
demonstrated in problems with different degrees of complexity.
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Appendix

Table A1

Parameters of various components. Tcrit , Pcrit , and u represent the critical temper-
ature, critical pressure, and acentric factor, respectively: Problems 1e8.

Component Tcrit (K) Pcrit (bar) u

C1 190:4 46:0 0:011
H2S 373:2 89:4 0:081
C2 305:4 48:8 0:099
C3H6 364:9 46:0 0:144
C3 369:8 42:5 0:153
iC4 408:2 36:5 0:183
nC4 425:2 38:0 0:199
nC5 469:7 33:7 0:251
H2O 647:3 221:2 0:344

CO2 304:14 73:75 0:239
Table A2
Correlation coefficients (a0, a1, a2, a3) from Smejkal and Miky�ska [8] for computing
the heat capacity of the ideal gases � 1:160� 10�4cigp; iðTÞ ¼

P3
k¼0

aikT
k: Problems

1e8.

Component a0 a1 a2 a3

C1 19:25 5:213� 10�2 1:197� 10�5 � 1:132� 10�8

H2S 31:94 1:463� 10�3 2:432� 10�5 � 1:176� 10�8

C2 5:409 1:781� 10�1 � 6:938� 10�5 8:713� 10�9

C3H6 3:710 2:345� 10�1 2:205� 10�8

C3 � 4:224 3:063� 10�1 � 1:586� 10�4 3:215� 10�8

iC4 � 1:390 3:847� 10�1 � 1:846� 10�4 2:895� 10�8

nC4 9:487 3:313� 10�1 � 1:108� 10�4 � 2:822� 10�9

nC5 � 3:626 4:873� 10�1 � 2:580� 10�4 5:305� 10�8

H2O 32:24 1:924� 10�3 1:055� 10�5 � 3:596� 10�9

CO2 19:80 7:344� 10�2 � 5:602� 10�5 � 1:715� 10�8
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