
Calculation of Solid−Fluid Interfacial Free Energy with
Consideration of Solid Deformation by Molecular Dynamics
Simulations
Tianhao Wu and Abbas Firoozabadi*

Cite This: J. Phys. Chem. A 2021, 125, 5841−5848 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: Fluid−fluid interfacial free energy can be measured
accurately and can also be calculated from molecular simulations.
However, it is challenging to measure solid−fluid interfacial free
energy directly. Accurate computation has not yet been advanced
by molecular simulations. In this study, we derive working
expressions for estimating solid−fluid interfacial free energy
based on the free-energy perturbation method with consideration
of solid deformation. A Lennard−Jones solid−fluid system is
simulated. Our derivations indicate that the effect of solid
deformation is pronounced on solid−fluid interfacial free energy,
and the results may be significantly different from the conventional
test area method. Our results reveal that the contribution of the
solid deformation highly depends on the stress conditions in the
solid, which can be either positive or negative. Adsorption of fluids onto the solid surface has a significant effect on interfacial free
energy. In weak adsorption, the interfacial free energy is close to the solid−vacuum surface free energy. Strong adsorption results in a
significant reduction in interfacial free energy.

1. INTRODUCTION

Interfacial free energy density is a major topic in science and
industry. In gas−liquid interfaces, the surface free energy is often
referred to as surface tension. In liquid−liquid interfaces, both
interfacial free energy density and interfacial tension refer to the
same interfacial property. There are various methods to measure
fluid−fluid interfacial free energy.1 In fluid−solid interfaces, the
measurement of the interfacial tension is much more
complicated, and only indirect methods have been used.
These include cleavage tests for mica−water, solubility tests
for quartz−water based on the Freundlich−Ostwald equation,
and contact angle measurements based on Young’s equation.2−4

Knowledge of solid−fluid interfacial free energy is critical to
many engineering problems. Hydraulic fracturing is a key
technology in shale oil and gas development. Different fracturing
fluids such as H2O, CO2, and N2 may lead to different fracturing
pressures, fracture intensities, and shapes of fractures.5−9 The
mechanisms of fracturing by different fluids are not well
understood, especially for CO2.

10−17 In fracturing simulations,
fracture toughness defines a material’s ability to resist fracture
propagation. The toughness is often characterized by the critical
energy release rate Gc, which is defined as the critical stored
strain energy released per unit crack area at the moment of
fracture extension in elastic materials.18,19 Gc is a key parameter
in fracture propagation. The phase-field method for numerical
simulations of hydraulic fracturing is based on Gc.

20,21 The

critical energy release rate can be estimated directly from surface
free-energy density. Griffith22,23 proposed the theory of rock
failure based on surface free-energy density γs as Gc = 2γs.
Irwin19,24,25 extendedGriffith’s theory by considering the energy
needed to create a damaged zone of plastic deformation ahead of
the crack tip. Irwin proposed thatGc = 2(γs + γp), where γp is the
plastic work per unit area of the surface created.18 We have
recently confirmed Irwin’s theory frommolecular simulations of
kerogen failure.18 For a solid in contact with a fluid, Gc is related
to solid−fluid interfacial free-energy density γsf.
As mentioned above, the fluid−fluid interfacial free energy

can be estimated by various methods, while the method for the
solid−fluid interface is still under debate. In molecular
simulations, fluid−fluid interfacial free energy can be computed
using the Kirkwood−Buff relation based on tensorial
components of pressure.26 An isobaric−isothermal−isointerfa-
cial area ensemble, referred to as the NpzT ensemble, is often
applied.27 In a planar interface perpendicular to the z-axis, the
interfacial free energy is given by
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where pN and pT are the normal and tangential components of
pressure and Lz is the dimension of the domain in the z-
direction.
There is an alternative approach to compute interfacial free-

energy density based on interfacial thermodynamics. The
thermodynamic relation for the change in Helmholtz free
energy F in fluid−fluid systems is given by

∑ μ= − − + + γF S T p V N Ad d d d d
i

i i
(2)

where S is entropy,T is temperature, p is pressure,V is volume, μi
is the chemical potential of component i, Ni is the number of
particles of species i, γ is interfacial free-energy density, and A is
the interfacial area. At constant temperature, volume, and
number of particles, the interfacial free-energy density can be
estimated by

γ = ∂
∂

i
k
jjj

y
{
zzz

F
A N V T, ,i (3)

This method relies on accurate estimation of the free energies
from two different simulations with different interfacial areas,
which is challenging for many complex molecular systems. The
alternative is the test area method proposed by Gloor et al.,28

using which free-energy perturbations are performed instead of
calculating the free-energy difference. The test area method is
used to perform a perturbation of the surface area at constant
volume, in which the overall properties of the reference system
persist (see Figure 1). The change in Helmholtz free energy

between the initial state 0 and the perturbed state 1 is given

as28,29
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where kB is the Boltzmann constant and ΔU is the change of
potential energy due to the perturbation. Based on eq 3, the
interfacial free energy can be estimated by
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To increase accuracy, the central finite difference scheme has
been suggested based on two separate perturbations, including
positive (stretch) and negative (compression) perturbations of
the interfacial area.28 The interfacial energy is then obtained
from

γ = + Δ − − Δ
Δ

=
Δ − Δ

Δ
→ →−F A A F A A

A
F F

A
( ) ( )

2 2
0 1 0 1

(6)

Other methods in the literature are proposed for the
estimation of the difference of solid−fluid interfacial free energy
(Δγ) between different systems instead of the absolute value of
interfacial energy. These include the phantom wall method and
the contact angle method. In the phantom wall method, a
structureless wall is used to push the fluid away from the solid
phase, in which the phantom wall only interacts with the fluid
molecules.4,30 The phantomwall method provides the difference
only in interfacial free energy between solid−fluid and phantom
wall−fluid or solid−two different fluids. The absolute value of
interfacial free energy can be estimated only if the surface free
energy of the solid phase is known. In addition, similar methods
based on thermodynamic integration are widely used to obtain
interfacial free energy or the relative change, such as the cleaving
wall method, multischeme thermodynamic integration, and dry
surface method.31−34 In a three-phase system, the interfacial free
energy differenceΔγ can also be calculated based on the contact
angle from direct simulations of droplets on solid surfaces.4,35

The interfacial free energy difference Δγ is estimated based on
Young’s equation as

γ γ γ γ θΔ = − = cossf sf f2 1 1,2 (7)

where θ is the contact angle, γsf1, γsf2, and γf1,2 are the interfacial
free energies of solid−fluid 1, solid−fluid 2, and fluid 1−fluid 2,
respectively. The validity of eq 7 is under debate at themolecular
scale.4

Some authors have used the test area method for the
calculation of solid−fluid interfaces without consideration of the
solid deformation.36−38 The stress in solids can be very sensitive
to strain, even for small perturbations, depending on elastic
modulus. This effect may have a pronounced influence on the
relationship between interfacial free energy and free energy
change and may lead to significant errors.
In this work, we introduce a formulation that accounts for

solid deformation based on the free energy perturbation method
for the calculation of solid−fluid interfacial energy. The method
is verified using the Lennard−Jones (LJ) molecular description.
We analyze the contribution of solid deformation to the
conventional test area method. The effects of temperature,
pressure, and adsorption on solid−fluid interfacial free energy
are investigated.

Figure 1. Sketch of the test area method. System 0 corresponds to the
condition before perturbation. Systems 1 and −1 correspond to the
conditions after the infinitesimal stretch and compression, respectively.
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2. METHODOLOGY

2.1. Free-Energy Perturbation Method. Our proposed
free-energy perturbation method is based on the test area
method with consideration of solid deformation. The derivation
is provided in the Supporting Information.
In an isotropic and homogeneous body, the change in

Helmholtz free energy from a perturbation in the surface area,
temperature, and strain (of a closed system) is given by

∑ ∑ σ ε= − + γ +F S T A Vd d d d
i j

ij ij
(8)

where σij and εij are components of the stress and strain tensor,
respectively, and i and j are plane indices. Tension is defined as
positive. One can perform an infinitesimal perturbation of a pure
shear process in a slab with two interfaces at a constant
temperature. The volume of the slab is kept constant, but the
shape is changed when we implement the perturbation on the
surface area. For such a process, eq 8 becomes (see the
Supporting Information)
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where E is Young’s modulus, ν is Poisson’s ratio, Lz is the
thickness of the solid slab in the z-direction, and V = ALz. The
factor 2 in the first term represents a slab’s two surfaces.
Equation 4 is also applicable for the change in Helmholtz free
energy density from the perturbation. Combining eqs 4 and 9
gives
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Equations 8 to 10 are general for both fluids and solids. In
fluids, the deformation corresponds to hydrostatic expansion or
compression, and the second term on the right side is zero. In
our evaluation, the central finite difference is used to increase
accuracy. The two separate perturbations include stretch
(positive) and compression (negative) of the interfacial area,
which correspond to the potential energy change of ΔU+ and
ΔU−, respectively. The interfacial free energy density of a solid−
fluid system is then given by

γ
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where the subscripts s and f denote the solid and fluid phases,
respectively. The working expression in terms of the stress is
given by

γ
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The last term on the right side of eqs 10 to 12 represents the
effect of solid deformation, which is zero in fluids as stated
above.

2.2. Molecular Dynamics Simulations. In this work, we
use the LJ solid and fluid model to demonstrate the
implementation of the proposed method. In the LJ model, the
interaction between two particles α and β is given by

ε
σ σ

= −αβ αβ
αβ
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αβ
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where rαβ is the distance between particle α and β, and εαβ and
σαβ are energy and size parameters, respectively. Note that εαβ
and σαβ are different from εij and σij in eq 8 which can be
distinguished by the subscripts. We use the subscripts ss, ff, and
sf to denote the interaction between solid−solid, fluid−fluid,
and solid−fluid particles, respectively. All the quantities are
given in reduced units. The dimensionless parameters are
presented in Table S1. The simulations are performed using the
Large-scale Atomic/Molecular Massively Parallel Simulator
(LAMMPS).39 The molecular structures are rendered with
Visual Molecular Dynamics (VMD).40

The solid phase consists of 10 × 10 × 10 face-centered-cubic
(fcc) unit cells and contains 4200 particles (see Figure 2a). The

fluid phase consists of 3000 particles. The periodic boundary
condition is applied to all three directions. Themassm* and size
parameter σ* are set to 1 for both phases. A cutoff distance of 3.0
is employed, where the LJ potential is shifted to 0. The energy
parameter εff for fluid is 1. εss is set to 16 to maintain the
structure of the solid, while εsf is set to 1.2 and 4.0 to represent
weak and strong solid−fluid interactions, respectively. The
temperature ranges from 0.8 to 1.2, and pressure in the z-
direction varies from 0.1 to 1.5. The values are selected to ensure
the two-phase coexistence and cover a similar range in the
literature.36 For each condition, the system is initialized with an
NpT ensemble for 4 × 106 steps and then switched to an NpzT
ensemble for 2 × 106 steps.27 The time step is 0.005. In anNpzT
ensemble, the dimensions in the x- and y-directions are kept
constant; the dimension in the z-direction is allowed to change.
The pressure in the z-direction is kept constant using the
Parrinello−Rahman barostat.41 The Nose−́Hoover thermostat

Figure 2. Configuration of the solid−fluid system and the
corresponding bulk solid phase for stress calculation. (a) 4200 solid
(10× 10× 10 fcc cells) and 3000 fluid particles. (b) 4000 solid particles
(10 × 10 × 10 fcc cells). The extra 200 solid particles in panel (a)
compared to that in panel (b) is to keep the solid structure symmetrical
in the z-direction.
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is applied.42,43 The damping parameters for barostat and
thermostat are both 0.5. The length of the Nose−́Hoover
chain is 3. The three directions are independent in the NpT
simulations. Then, we perform a second round of simulations
using the NpT ensemble (1 × 106 steps) and then the NpzT
ensemble (1 × 106) to investigate equilibration in the
dimensions, temperature, and pressure. Another 1 × 106 steps
in the NpzT ensemble are performed to collect the data.
We have also carried out the simulations for the solid phase in

vacuum without the fluid phase. The system has the same size
(10 × 10 × 10 cells) as the model given in Figure 2a but without
fluids. The volume of the void space is about 15.5 × 15.5 × 19.0
in order to avoid the interaction across the periodic boundary in
the z-direction. The simulations are conducted in an NVT
ensemble with 2 × 106 steps for relaxation and 1 × 106 steps for
data production.
In calculations of interfacial energy, each snapshot from the

molecular dynamics (MD) simulations is analyzed by the free-
energy perturbation method. The interfacial free energy is
calculated based on the working expression in terms of stress in
eq 12. The first term in eq 12 is estimated based on the average of
1000 snapshots. The ratio ΔA/A is set to 0.0001 in this study.
The stress of the solid phase in the second term is analyzed
through an independent simulation for the bulk solid phase
(Figure 2b). The purpose of performing the independent
simulation is mainly to avoid the effect of the interfacial tension
on the bulk solid phase, which helps avoid the complexities of
local stress calculation in a subregion of the whole system. The
bulk solid phase has exactly the same dimension as in the two-
phase system (Figure 2a) in the x- and y-directions. The size in
the z-direction is close to the thickness of the solid slab, as shown
in Figure 2a. For this particular case, the bulk solid phase given in
Figure 2b has 10 × 10 × 10 cells (4000 atoms). The pressure in
the z-direction is controlled by a barostat using the same setting
as mentioned before. We performed 1 × 106 steps for relaxation
and another 1 × 106 steps for stress calculation.
The NpzT simulation starts from the last step of the NpT

simulation, where the cross-sectional area has randomness. For
example, the mean dimension in the x-direction of the system in
Figure 2a is 15.5018, and the standard deviation is 0.0086 based
on 1 ns simulation. Because the dimensions in the x- and y-
directions are kept constant in the NpzT ensemble, the stress in
the solid phase has minor deviations from the average stress over
the NpT step. There is also a difference in stress between the
tangential and normal directions to the interface. For each
condition, we apply an additional strain of ±0.5% from the
original condition along either the x- or y-direction to further

examine the effect of deformation, in which the displacement is
about ±0.08. In general, stress is sensitive to strain in solids.
Equation 12 shows that the accuracy of the interfacial free
energy can be affected by Lz,s. We perform simulations at
different conditions of solid deformation. The interfacial free
energy can be determined by fitting the following function

γ γ σ= + Δ
L

2sf
z s

TA
,

(14)

where γTA represents the first term on the right side of eq 12 from
the conventional test area method. The term Δσ = (σxx + σyy)/
2−σzz is the deviatoric stress representing the stress difference
between the tangential and normal directions to the interface.
The deviatoric stressΔσ is obtained by the simulations using the
bulk solid phase in Figure 2b. The interfacial free energy γsf is
calculated from the intercept. The error bars are based on the
95% confidence interval of the fitting. An example is presented in
Figure S1.

2.3. Validation. To validate the method, we perform two
types of simulations: surface tension of the solid−vacuum
system and size dependency examination for the solid−fluid
system.
We use direct stretching of a solid slab and the bulk solid

phase (see Figure 3). A quasi-static extension in the x-direction
is simulated.44,45 TheNVT simulation is performed for the solid
slab, while an NpzT simulation is carried out for the bulk solid
phase. The dimensions in the x- and y-directions for the bulk
solid phase are kept the same as in the solid−vacuum model.
The pressure in the z-direction is set to 0. Ten stages are
simulated for each model, where the strain of each stage is 0.001.
The temperature is set to 1.0. In each stage, we carry out 1 × 105

steps for relaxation and another 1× 105 steps for data collection.
We may assume that the stress difference between the two
systems is fully contributed by the surface tension. Then, the
surface tension can be estimated based on

τ =
* − *p p N

L

( )

2
x x

y

,slab ,bulk slab

(15)

where px, slab* and px, bulk* are the stress per atom of the solid slab
and the bulk solid phase, respectively. Nslab is the number of
atoms of the solid slab. The calculated surface tension is 5.92 ±
0.26, and the surface free energy based on the proposed method
is 6.01 ± 0.09. The error bar of the surface tension is obtained
based on the standard deviation from the results within the strain
of 0.5%. The relationship between surface free energy and
surface tension for solids is described by the Shuttleworth

Figure 3. Sketch for surface tension calculation. (a) Solid−vacuum system with a nonperiodic boundary. (b) Bulk solid phase with a periodic
boundary. (c) Difference of stress per atom under tension between the two models in (a) and (b).
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equation τ γ= + γ∂
∂( )A

.46,47 Surface tension at unstrained or

low-strain conditions is equal to the surface energy. The validity
of the Shuttleworth equation at high strain is under debate.47 In
our simulations, the surface tension and surface free energy are
close. It implies that the second term in the Shuttleworth
equation may be negligible for small strains.
The size dependency is examined based on five different sizes

(see Figure 4). The corresponding size and number of atoms are
listed in Table 1. The error bars are based on the 95% confidence

interval of the fitting. The conditions are as follows:T* = 1.0, pz*
= 0.1, and εsf = 1.2. The results show that the solid−fluid
interfacial free energy is nearly independent of size in the
proposed method. The variation among these systems may be
mainly from the inherent uncertainty of MD simulations.

3. RESULTS AND DISCUSSION
A comparison of the calculated interfacial free energy based on
the conventional test area and our proposed method is
presented in Figure 5. The results reveal that there is a

significant difference between the two methods at different
temperatures and pressures. Without consideration of deforma-
tion (the conventional test area method), the calculated
interfacial free energy can be either positive or negative,
depending on the stress condition. The negative values are
unphysical and in violation of thermodynamic stability. The γTA
from the test area method, without consideration of
deformation, may not have the correct trend with respect to
temperature and pressure.
The first term in eq 12, γTA, represents the conventional test

area method. The second term is the contribution from solid
deformation. The contribution of each term in eq 12 under
various stress conditions is presented in Figure 6. The results
based on highΔσmay give a clear picture. The higher deviatoric
stress Δσ is obtained by performing an additional deformation
(±0.5%) in the x- or y-direction from the original conditions in
the MD simulations shown in Figure 2a. With higher Δσ, γTA
from the test area method deviates more from γsf. Higher tension
in the x- or y-direction results in much higher γTA, which has
positive deviatoric stress Δσ in eq 14. If Δσ is positive, which
implies a net tension along the plane of the interface, the net
effect of stress is in the same direction as the interfacial tension.
The test area method may overestimate the interfacial energy.
Otherwise, the net effect is along the opposite direction to the
interfacial tension due to negative Δσ. In such a condition, high
compression leads to negative values. The contributions of the
second term are much less under low-stress conditions. The
contribution of solid deformation can only be zero if (σxx + σyy)/
2 = σzz or (εxx + εyy)/2 = εzz. It is difficult to control the stress
(σxx and σyy) in the solid phase independently in the NpzT

Figure 4. Configurations of the solid−fluid systems for the examination of size dependency. The size and number of particles are listed in Table 1.

Table 1. Interfacial Free Energy Based on Different Sizes of
the System

no. solid (cells)
number of

particles (solid)
number of

particles (fluid)
interfacial
energy

(a) 10 × 10 × 5 2200 2000 5.73 ± 0.13
(b) 10 × 10 × 10 4200 3000 5.77 ± 0.17
(c) 10 × 10 × 20 8200 6000 6.00 ± 0.30
(d) 10 × 20 × 10 8400 6000 5.80 ± 0.09
(e) 10 × 40 × 10 16,800 12,000 5.84 ± 0.02

Figure 5. Interfacial free energy vs temperature and pressure in the z-direction from the conventional test area method and the proposed method. (a)
pz* = 0.1; εsf = 1.2. (b) T* = 1.0; εsf = 1.2.
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ensemble because the dimensions in the x- and y-directions are
kept constant (see Figure S2).
Solid−fluid interactions are represented by the energy

parameter εsf. To examine the effect of εsf on interfacial energy,
we perform simulations with εsf of 1.2 and 4.0. The results in
Figure 7 reveal that εsf may change the trend of interfacial free

energy with respect to temperature. This effect is related to
adsorption. For the solid phase, as temperature increases, the
particles in the solid vibrate more, and the cohesion decreases.
The surface free energy decreases with temperature increase
accordingly. The thickness Lz,s of the solid slab can be estimated
from eq 14. The mean thickness of the simulations shown in
Figure 7 is 16.566 with a standard deviation of 0.038.
Higher εsf generally results in stronger adsorption. In weak

adsorption (εsf = 1.2), the interfacial free energy is close to the
solid−vacuum surface free energy. There is an appreciable
reduction at relatively low temperatures due to adsorption. In
strong adsorption (εsf = 4.0), the interfacial free energy is
reduced significantly. In both cases, as the temperature
increases, the adsorption decreases. Then, the interfacial free
energy increases as temperature increases, which approaches the
solid−vacuum surface free energy at high temperature. Overall,
adsorption is a key parameter in the lowering of interfacial
energy.

4. CONCLUSIONS
The main conclusions drawn from this study are as follows:

(1) The incorporation of solid deformation in the expression
for Helmholtz free energy is to compute the surface free
energy and interfacial free energy density from the free-
energy perturbation method. Our results demonstrate a
significant effect from solid deformation in the calculated
interfacial free energy.

(2) The size dependency of the proposed method is low as
expected.

(3) The interfacial free energy density calculated from the
conventional test area method without solid deformation
contribution may lead to unphysical results.

(4) Adsorption has a pronounced effect on solid−fluid
interfacial energy. In weak adsorption, the interfacial
free energy is close to the solid−vacuum surface free
energy. Strong adsorption results in a significant
reduction in interfacial energy. As the temperature
increases, the adsorption decreases, and the interfacial
free energy increases.

A key conclusion from this work is that different fluids may
have a significant effect on the interfacial free energy density due
to adsorption. Because interfacial free energy density affects the
mechanical stability of deformable materials, fluids with
significant adsorption reduce the toughness of these materials.
This work establishes a working expression that can be used in

molecular simulations for the interfacial free energy of solid−
fluid systems with various industrial and technological
applications.
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