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Summary

Computation of the distribution of species in hydrocarbon reservoirs from diffu-
sions (thermal, molecular, and pressure) and natural convection is an important
step in reservoir initialization. Current methods, which are mainly based on
the conventional finite-difference approach, may not be numerically efficient
in fractured and other media with complex heterogeneities. In this work, the
discontinuous Galerkin (DG) method combined with the mixed finite element
(MFE) method is used for the calculation of compositional variation in frac-
tured hydrocarbon reservoirs. The use of unstructured gridding allows efficient
computations for fractured media when the cross flow equilibrium concept
is invoked. The DG method has less numerical dispersion than the upwind
finite-difference methods. The MFE method ensures continuity of fluxes at the
interface of the grid elements. We also use the local DG (LDG) method instead of
the MFE to calculate the diffusion fluxes. Results from several numerical exam-
ples are presented to demonstrate the efficiency, robustness, and accuracy of the
model. Various features of convection and diffusion in homogeneous, layered,
and fractured media are also discussed.
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1 INTRODUCTION

Many reservoirs around the world exhibit compositional variations, vertically and laterally.1-3 These gradients can signif-
icantly affect the hydrocarbon characteristics such as the API gravity, producing gas-oil ratio (GOR), saturation pressure,
and the total hydrocarbons in place. Reservoir fluid initialization has a major impact on reservoir production predictions.
The number and location of offshore wells are critically related to the distribution of species in the subsurface formation.
For instance, Metcalfe et al4 reported significant compositional gradients in the Anschutz Ranch East field, which resulted
in different gas-oil-ratio behaviors observed at different wells in the field. In a big reservoir (43 km long, 23 km wide) in
the Middle East, Hamoodi et al5 observed large compositional variations in the areal extent. Some components showed
10-fold difference in composition across the reservoir. Similar phenomena have also been observed in many other fields.6-10

There are 3 distinct processes that affect species distribution in hydrocarbon reservoirs. These include (i) natural convec-
tion, (ii) different diffusion mechanisms, and (iii) reservoir filling and leakage.11 Natural convection is mainly affected
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by horizontal temperature gradient. Diffusions are from temperature, pressure, and composition gradients. Reservoir fill-
ing and leakage are from the sources outside the reservoir domain. Current practice in reservoir engineering is mainly
based on 1-dimensional (1D) vertical variation in composition with depth due to gravity and thermal gradients.12,13 Hori-
zontal species distribution is often ignored in the reservoir. When there is no reservoir filling and leakage, compositional
variations in connected hydrocarbon reservoirs are mainly from natural convection and Fickian, pressure, and thermal
diffusions. There are only a few studies in the literature that incorporate the effect of diffusions and natural convection on
hydrocarbon species distribution. Jacqmin14 investigated the compositional variation in homogeneous porous media in
accounting for natural convection and Fickian diffusion in a binary mixture. Riley and Firoozabadi15 studied the effect of
the thermal, pressure, and Fickian diffusion as well as natural convection for a single-phase 2-component fluid in a homo-
geneous cross-sectional reservoir with a given linear temperature distribution. For a methane (C1/normal) butane (nC4)
binary mixture, they reported that methane segregates toward the bottom-hot side of the domain. They also showed that a
small amount of convection could cause the horizontal composition gradient to increase until a certain limit, which varies
with permeability. They solved the steady-state mass conservation equation and Darcy's law using a successive iteration
approach based on Poisson's equation.15 This method is accurate in approximating the horizontal compositional varia-
tion. However, the convergence rate is slow, and therefore, it is computationally costly at high permeabilities. Ghorayeb
and Firoozabadi16,17 used the finite-difference (FD) method to investigate the diffusion and convection effects in multi-
component mixtures in homogeneous 2-dimensional (2D) rectangular domains. In their implementation, the steady-state
solution was obtained by solving the unsteady-state equations and iterating on time until reaching convergence. They
found that, unlike in binary hydrocarbons, methane in ternary or multicomponent mixtures can get to a higher concen-
tration at the cold top-side in a rectangular domain. Subsequently, Ghorayeb and Firoozabadi18 used the same numerical
approach to approximate the multicomponent diffusion and convection in a fractured rectangular domain. A uniform net-
work of connected and disconnected fractures was considered using a single-porosity model. Because of the length-scale
and permeability contrasts between the matrix and the fracture grid cells, the numerical discretization gave rise to large
and ill-conditioned linear systems. For a 30 m× 15 m fractured cross-section with a 1-mm fracture aperture, a grid of about
45 000 elements was required. Consequently, this approach may not be practical for compositional variation calculations
in fractured reservoirs of more realistic geometrical dimensions.

Ghorayeb and Firoozabadi16-18 assumed that the Oberbeck-Boussinesq approximation was valid for a limited range of
temperature, pressure, and composition. In this work, we consider the unsteady-state convection-diffusion flow equations
without Oberbeck-Boussinesq assumption. The fluid density is calculated using the Peng-Robenson equation of state
(PR-EOS). Our requirements for the numerical solution of the flow equations are (i) mass is conserved locally at the
cell level, (ii) numerical dispersion is low enough to study physical dispersion/diffusion, and (iii) unstructured grids are
used to provide flexibility to describe complicated geometries including fractures. In previous studies,19-21 we provided
a detailed description of the numerical approach in approximating pure convective multicomponent flow equations in
fractured media. The discontinuous Galerkin (DG) method was used to solve the convection-diffusion equations. The FD
method has poor accuracy on unstructured grids and lacks the flexibility to describe complicated geometries. Our objective
is to develop an accurate and efficient numerical method for calculating the compositional variation of multicomponent
mixtures, taking into account the diffusions and natural convection processes in homogeneous and fractured media with
connected and disconnected fractures.

Numerical approximations based on cell-centered finite volume (FV) methods compute the surface integrals (convec-
tion and diffusion fluxes) at the cell boundaries. Russell and Wheeler22 showed that the mixed finite element (MFE)
method, with a surface integration formula, becomes equivalent to the FD method on structured grids (see also the work
of Chavent and Roberts23). The formulation was used by Weiser and Wheeler24 to develop optimal convergence for both
pressure and velocity in cell-centered FD methods in rectangular grids. Arbogast et al25,26 extended this formulation to
full tensors in triangular and logically rectangular grids. In distorted quadrilaterals and hexahedra, a multipoint flux MFE
method was later developed by Wheeler et al.27,28 For unstructured grids, the MFE method is superior to the conventional
finite element and FV methods in terms of flux accuracy, particularly with a strong discontinuity in the transmissivity.29,30

In this study, we use the MFE method with the lowest-order Raviart-Thomas space.31 The main features of the MFE
method are (i) the pressure and fluxes are approximated simultaneously with the same order of convergence and (ii) a
locally conservative method suitable to model full permeability tensors. The MFE method may produce ill-conditioned
linear systems where the cell pressure averages and the interelement fluxes are the primary unknowns. To overcome this
issue, we use the hybridized MFE technique,32-34 where the primary unknowns are the edge pressure averages (pressure
traces). In this paper, we refer to the hybridized MFE method by the MFE method.

With natural convection, the magnitude of the flow velocity is relatively very small (in the order of 10−10 m/s) compared
to the case when the field is under primary or secondary depletion. We found that high accuracy in approximating the
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convective fluxes is needed to capture the convective fluid circulations in the reservoir. We provide a numerical example
showing that the calculation of natural convective velocity by the standard 2-point FD approximation leads to inaccuracy
in the velocity field in heterogeneous media. Therefore, we recommend using the MFE method. One drawback of the
MFE method in calculating the diffusion fluxes is the size of the linear system, which is equal to the number of the mesh
edges. To overcome this difficulty, an alternative approach is to use the local DG (LDG) method. Other authors coupled
the DG and MFE methods35-37 for similar applications.

This work provides an original contribution to the numerical modeling of muticomponent fluid flow in fractured media
in the context of natural convection and diffusions. The main new contributions can be summarized in 2 aspects. (i) We
investigated the impact of reservoir heterogeneity and fractures with unstructured distribution on the fluid flow circu-
lation and hydrocarbon compositional variation in a reservoir from natural convection and diffusions. (ii) We proposed
a numerical approach that combines the MFE and LDG methods to solve the convection-diffusion equations, where
diffusions are described by a full diffusion tensor that is a function of pressure, temperature, and composition.

The LDG method was first introduced by Cockburn and Shu38 as an extension of the DG method to approximate the
convection-diffusion equation. This method is similar to the MFE method concerning the flux calculation; the primary
unknown and its gradient are approximated simultaneously. Unlike the MFE method, the LDG method allows a local
evaluation of the diffusion fluxes. However, we demonstrate that the MFE method is more accurate in approximating the
diffusion fluxes in nonsmooth finite element grids.

In this study, we use the concept of cross flow equilibrium to represent a flow in fractured media. The model based on
this concept has been referred to as “the discrete fracture model” and is an alternative to the single- or dual-porosity model.
It can be used to describe connected and disconnected fractures. Because the fracture aperture is very small compared to
the matrix size, this approach allows us to represent the fractures using 1D linear elements within a 2D system.39,40 Thus,
a fracture entity can be logically represented by the cell edges. This simplification of the fractures reduces significantly the
computational requirements. We use the MFE method to approximate the pressure and the velocity in the fractures. As a
result, the fluxes at the intersection of multifractures are correctly calculated. In this paper, we first present a mathematical
model describing the convection-diffusion flow of multicomponent fluids; we then briefly describe the numerical model
that combines the MFE and DG methods. Convection and diffusion fluxes are approximated by both the MFE and LDG
methods. We present numerical examples comparing the MFE and the 2-point FD methods for the convection fluxes
with the MFE and LDG methods for the diffusion fluxes. To demonstrate the efficiency and robustness of our numerical
approach, we provide examples that cover homogeneous, heterogeneous, and fractured media.

2 MATHEMATICAL MODEL

We consider a single-phase system with nc components. For each component i, the mass balance is expressed by the
following convection-diffusion equation:

𝜙
𝜕zic
𝜕t

+ ∇.(zic𝝑) + ∇.J i = 0 i = 1, … ,nc in Ω × (0, 𝜏), (1)

where 𝜙 is the porosity, c is the molar density, zi is the mole fraction of component i, Ji is the molar diffusion flux of
component i, Ω is the 2D computational domain, and 𝜏 denotes the simulation time.

The bulk velocity field 𝝑 is given by Darcy's law

𝜗 = −k
𝜇
(∇𝑝 − 𝜌g) in Ω × (0, 𝜏), (2)

where k is the absolute permeability tensor and 𝜇, p, and 𝜌 are the viscosity, pressure, and mass density, respectively. The
gravitational constant vector g is oriented downward.

The flow Equations 1 and 2 are coupled with the PR-EOS that models the density as a function of composition,
temperature, and pressure ⎧⎪⎨⎪⎩

𝜌 = cM,

c = 𝑝

ZRT
,

Z3 − (1 − B)Z2 + (A − 3B2 − 2B)Z − (AB − B2 − B3) = 0,
(3)

where M is the molecular weight, R is the gas constant, T is the temperature, and A and B are the PR-EOS parameters.41,42
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Ghorayeb and Firoozabadi43 expressed the diffusion mass flux Ji in a single-phase mixture in the general form

J i = −c

(nc−1∑
𝑗=1

DM
i 𝑗∇z 𝑗 + D𝑝

i ∇𝑝 + DT
i ∇T

)
, (4)

where DM
i 𝑗 , D𝑝

i , and DT
i are, respectively, the coefficients of the molecular diffusion between components i and j, pres-

sure diffusion, and thermal diffusion. Details of the diffusion coefficients are provided in the works of Ghorayeb and
Firoozabadi43 and Firoozabadi et al.44 Summing up Equation 1 over all components and using the facts that

∑nc
i=1 zi = 1

and
∑nc

i=1 J i = 0 lead to

𝜙
𝜕c
𝜕t

+ ∇.(c𝝑) = 0. (5)

This overall balance equation can replace the balance equation of one of the components in Equation 1 such as the
nc-th component. The system of balance equations for (nc − 1) components and the overall balance equation can then be
expressed in the form

𝜙
𝜕c
𝜕t

+ ∇.(c𝝑) = 0,

𝜙
𝜕ςi

𝜕t
+ ∇.(𝜍i𝝑) + ∇.J i = 0 i = 1, … ,nc − 1, (6)

where, 𝜍 i = czi for i = 1, … ,nc − 1. In this work, the reservoir boundaries are assumed impermeable. Therefore, the
convection and diffusion fluxes across the outer boundaries are zero, ie,

𝝑.n = 0 on Γ,
J i.n = 0 i = 1, … ,nc − 1 on Γ, (7)

where Γ denotes the outer boundary of Ω and n is the unit outward normal to Γ.

3 NUMERICAL APPROXIMATION

The DG and MFE methods are used to solve the coupled system of Equations 2,3,6, and 7. In previous works,19-21,45 a
detailed description of this method in approximating the pure convection flow equations (Ji = 0) in homogeneous and
fractured media was provided. In this work, we briefly review the numerical formulation and extend the method to approx-
imate the diffusion fluxes. We focus on the calculation of diffusion and convection fluxes. The governing equations are
solved by the implicit method for pressure and explicit method for composition (IMPEC).

The domain Ω is discretized into an unstructured triangular or rectangle mesh with no restrictions on the geometrical
shape of the cells. We consider the following notations:

K : mesh cell,
E : edge of cell K,

Ne : number of edges for each cell (Ne = 3 or 4),
NK : number of cells in a mesh,
NE : number of edges in a mesh.

The construction of the numerical process is organized as follows:

1. discretization of Darcy's law by the MFE method,
2. discretization of the flow equations by the DG method,
3. system construction.

3.1 Discretization of Darcy's law
In the MFE method, both the pressure and its gradient are approximated simultaneously; the velocity field is approximated
in the so-called Raviart-Thomas space of the lowest order (RT0). With this method, the velocity over each cell can be
expressed in terms of the fluxes across the edges. Additional details of the MFE method was presented our other works.19-21
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Using the Raviart-Thomas approximation space, the vectors 𝝑 and g can be expressed as

𝝑 =
∑

E∈𝜕K
qK,EwK,E and g =

∑
E∈𝜕K

qg
K,EwK,E, (8)

where wK,E is the RT0 basis function, qK,E is the total volumetric convection flux across edge E, and qg
K,E is the flux from

the gravitational force. The basis function wK,E has the following properties:

∇.wE = 1|K| , (9)

wE.nE′ =

{
1∕|E|, if E = E′

0, if E ≠ E′.
(10)

Therefore, the velocity field over each cell is determined by the normal fluxes across the cell edges (see Equation 8).
Multiplying Equation 2 by the test function wK,E and integrating by parts, the total flux qK,E through edge E is given as a
function of the cell average pressure pK and the edge average pressures tpK,E in cell K, ie,

qK,E = 𝛼K,E𝑝K −
∑

E′∈𝜕K

(
B−1

K
)

E,E′ t𝑝K,E′ − 𝛽K,EE ∈ 𝜕K, (11)

where

(BK)E,E′ = ∫
K

wK,EK−1
K wK,E′

(B̃K)E,E′ = ∫
K

wK,EwK,E′

𝛼K,E =
∑

E′∈𝜕K

(
B−1

K
)

E,E′

𝛽K,E = −𝜌K
∑

E′∈𝜕K

(
B−1

K B̃K
)

E,E′q
g
K,E′ .

Note that the coefficients (BK)E,E′ , (B̃K)E,E′ , and 𝛼K,E depend on the geometrical shape of the elements and the local mobility
coefficient. By imposing the flux continuity across the cell interfaces, (qK,E = qK′,E; E = K ∩ K′), one can eliminate
the flux unknowns qK,E from Equation 11. As a result, the following linear system with primary unknowns, ie, the cell
average pressures in P and the edge average pressures in TP, becomes

RTP − MTP − I = 0, (12)

where
R =

[
RK,E

]
NK ,NE

; RK,E = 𝛼K,E E ∈ 𝜕K,

M =
[
ME,E′

]
NE ,NE

; ME,E′ =
∑

E,E′⊃𝜕K

(
B−1

K
)

E,E′ ,

I = [IE]NE
; IE =

{
𝛽K,E E ∈ Γ
𝛽K,E + 𝛽K′,E E = K ∩ K′.

3.2 Discretization of the flow equations
The DG method is used to discretize the flow equations, ie, Equation 6. For simplicity, we apply the DG method to the
flow equation of component i (i < nc). Over each cell K, the unknown 𝜍 is approximated in a piecewise discontinuous
linear (on triangles) or bilinear (on quadrilaterals) finite element space so that

𝜍K,i =
Ne∑
𝑗=1

𝜍
𝑗

K,i𝜑K,𝑗 , (13)

where 𝜑K, j is the finite element shape functions. Multiplying the flow equation 6 by the test functions 𝜑K,l and integrating
by parts produces volume and surface integrals that have to be evaluated over each cell, ie,

∫
K

𝜙
𝜕𝜍K,i

𝜕t
𝜑K,l − ∫

K

𝜍K,i𝝑.∇𝜑K,l + ∫
𝜕K

𝜍K,i𝜑K,l𝝑.n − ∫
K

J i.∇𝜑K,l + ∫
𝜕K

𝜑K,lJ i.n = 0 l = 1, … ,Ne. (14)
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The volume integrals in Equation 14 can be readily calculated. However, due to the discontinuity of the functions at finite
element boundaries, the surface integrals describing the convection and diffusion fluxes have to be properly defined. The
convection and diffusion fluxes are modeled differently, as described in the following sections.

3.2.1 Convection fluxes
An accurate convection flux is essential for properly simulating the flow equations. For this reason, we choose to
approximate the flow velocity by the MFE method. Using Equation 10, the convection flux in Equation 14 simplifies to

∫
𝜕K

𝜍K,i𝜑K,l𝝑.n = ∫
𝜕K

𝜍K,i𝜑K,l

(∑
E

qK,EwK,E

)
.n

=
∑

E
qK,E ∫

E

𝜍K,i𝜑K,𝑗wK,E.nE =
∑

E

qK,E|E| ∫
E

𝜍K,i𝜑K,𝑗 . (15)

Since the concentration variable 𝜍 i,K|E at the cell boundary E is allowed to be discontinuous, this term is treated by an
upwind scheme, ie,

𝜍i,K||E =

{
𝜍 in

i,K , if qK,E > 0
𝜍out

i,K , otherwise.
(16)

The 2-point unwinding technique is sufficient to keep the DG method stable when using piecewise constant approxima-
tions. However, for higher-order approximations, an efficient slope limiter is needed.19,46

The volumetric flux is computed from Equation 11 as a function of the cell average pressure and the average edge
pressures. For structured grids, one can prove that the flux in the MFE with some approximations of the integrals is
equivalent to the flux in the FD method.22 However, for unstructured grids, the FD method looses accuracy. For gas
injection problems, we showed in our other work19 that using the 2-point FD technique to approximate fluxes as an
alternative to the MFE method can be useful in grids of good quality (such as equilateral triangles). This study shows
that, to model natural convection, the FD approximation leads to inaccuracies in the velocity field even when using grids
with good quality. The main reason is that, with natural convection, the velocity field is often very small (in the order of
10−10 m/s). Therefore, to get meaningful simulations, the numerical errors generated by the method have to be smaller
in magnitude than the velocity values, which were found to be a challenge for the FD method. A numerical example
(Example 1) is introduced to clarify this statement.

3.2.2 Diffusion fluxes
Using the expression for Ji, the total diffusion flux in Equation 4 is expanded to

∫
K

𝜑K,lJ i.n = −
nc−1∑
𝑗=1 ∫

𝜕K

𝜑K,lD̃M
i𝑗 ∇z𝑗 .n − ∫

𝜕K

𝜑K,lD̃𝑝

i ∇𝑝.n − ∫
𝜕K

𝜑K,lD̃T
i ∇T.n, (17)

where D̃M
i𝑗 = cDM

i𝑗 , D̃𝑝

i = cD𝑝

i , and D̃T
i = cDT

i . The thermal, pressure, and Fickian fluxes are approximated differently as
described in the following.

Thermal diffusion flux
The thermal diffusion is expressed using the integral

𝑓T
i = −∫

𝜕K

𝜑K,lD̃T
i ∇T.n . (18)

We assume that the temperature T is known in the domain. Usually, T is considered to be a linear function of the spatial
coordinates. The coefficient D̃T

i at the cell interface E is determined according to the upstream direction of the driving
force, ie,

D̃T
i
||E =

{
D̃T,in

i , if ∇T.nE > 0
D̃T,out

i , otherwise.
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Pressure diffusion flux
The pressure diffusion flux is expressed by

𝑓
𝑝

i = −∫
𝜕K

𝜑K,lD̃𝑝

i ∇𝑝.n . (19)

The MFE approximation allows expressing the pressure gradient vector by flux q𝑝

K,E across the edge so that

−∇𝑝 =
∑

E⊂𝜕K
q𝑝

K,EwK,E . (20)

Similar to Equation 11, q𝑝

K,E is written as a function of the cell average pressure and the pressure traces

q𝑝

K,E = 𝛼̃K,E𝑝K −
∑

E′∈𝜕K

(
B̃−1

K
)

E,E′ t𝑝K,E′ E ∈ 𝜕K, (21)

where (B̃K)E,E′ = ∫KwK,EwK,E′ and 𝛼̃K,E =
∑

E′∈𝜕K(B̃−1
K )E,E′ . Using Equations 20 and 10, we get

𝑓
𝑝

i =
∑

E

q𝑝

K,E|E| ∫
E

D̃𝑝

i 𝜑K,𝑗 . (22)

This expression is similar to the convection flux given in Equation 15. The coefficient D̃𝑝

i is evaluated as

D̃𝑝

i
|||E =

{
D̃𝑝,in

i , if q𝑝

K,E > 0
D̃𝑝,out

i , otherwise.
(23)

We note that the pressure unknown in Equation 22 is modeled implicitly.

Molecular diffusion flux
We express the molecular diffusion flux of component i as follows:

𝑓M
i = −∫

𝜕K

𝜑K,lD̃M
ii ∇zi.n . (24)

Other fluxes for cross-diffusion are treated in a similar way. We present 2 distinct approaches to approximate Equation 24
by both the MFE and LDG methods. Each approach has advantages and drawbacks as explained in the following.

Diffusion flux by the MFE method
We denote by zK = 1|K|∫K zi and tzK,E = 1|E|∫E zi the cell and edge averages of zi, respectively. Note that the subscript

i is dropped to simplify the notation. We also introduce an auxiliary variable 𝜗z as

𝜗z = −D̃M
ii ∇zi. (25)

Using the Raviart-Thomas basis function, 𝜗z can be expressed in terms of the flux unknowns

𝜗z =
∑

E
qz

K,EwK,E . (26)

Multiplying Equation 25 by function wK,E and integrating by parts yields

qz
K,E = 𝛼z

K,EzK −
∑

E′∈𝜕K

(
B−1

K
)z

E,E′ tzK,E′ E ∈ 𝜕K, (27)

where (BK)z
E,E′ = ∫KD̃M

ii wK,EwK,E′ and 𝛼̃z
K,E =

∑
E′∈𝜕K(B−1

K )z
E,E′ .

Following the same technique used to discretize Darcy's law, we impose the continuity of the fluxes qz
K,E to construct

the following linear system:

M̂TZ = R̂TZ, (28)
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where

R̂ = [R̂K,E]NK ,NE, R̂K,E = 𝛼z
K,E E ∈ 𝜕K

M̂ = [M̂E,E′ ]NE ,NE , M̂E,E′ =
∑

E,E′⊃𝜕K

(
B−1

K
)z

E,E′

Z = [zK]NK
, and TZ = [tzE]NE

.

The procedure is then complete to compute the fluxes. For a given compositional distribution Z, TZ is calculated by solving
the linear system in Equation 28. The flux qz

K,E can then be computed locally from Equation 27. Although matrix M̂ is
symmetric and a positive definite, solving Equation 28 for each time step and for each component can potentially be
expensive. However, by using the upstream values of the coefficients at the cell boundaries, M̂ becomes dependent on the
finite element geometries only. Therefore, one way to accelerate the calculation is to store the Cholesky decomposition
of M̂ (once at the start of the simulation); the calculation of the fluxes for each component is then reduced to the cost of
solving 2 triangular linear systems. In the following section, we present an alternative approach to evaluate Equation 24
by using the LDG method.

Diffusion fluxes by the LDG method
The LDG method possesses features that are similar to the MFE method. One of them is that the primary unknown

and its gradient are approximated simultaneously. The LDG method conserves mass locally and is flexible for high-order
approximations. The main difference between the LDG and MFE methods is that, in the LDG method, the fluxes can be
calculated locally, whereas different fluxes approximated by the MFE are computed through a global linear system. For
each cell K, we introduce the auxiliary variable 𝜐K so that

𝜐K = −D̃M
ii ∇zi,K . (29)

Letting 𝜐K = (qx,K, qy,K)T and substituting into Equation 24, we obtain

𝑓M
i = ∫

𝜕K

𝜑K,l𝜐K .nK

= ∫
𝜕K

𝜑K,l(qx,Knx,K + q𝑦,Kn𝑦,K), (30)

where nK = (nx,K,ny,K) is the outward unit vector to the boundary E. Due to the discontinuity of 𝜐K at the interface,
Equation 30 is replaced by

𝑓M
i = ∫

𝜕K

𝜑K,l𝜐̂.nK

= ∫
𝜕K

𝜑K,l(q̂xnx,K + q̂𝑦n𝑦,K) . (31)

Multiplying Equation 30 by a test function 𝜑 and integrating by parts, we obtain

∫
K

1
D̃M

ii

qx,K𝜑 = ∫
K

zi,K
𝜕𝜑

𝜕x
− ∫

𝜕K

𝜑 ẑinx,K ,

∫
K

1
D̃M

ii

q𝑦,K𝜑 = ∫
K

zi,K
𝜕𝜑

𝜕𝑦
− ∫

𝜕K

𝜑 ẑin𝑦,K .

(32)

The terms 𝜐̂ and ẑi (with “hats”) are the numerical fluxes at the boundary that link the 2 elements. A crucial aspect of
the LDG method for stability is the proper choice of these numerical fluxes. Different choices are possible to define the
numerical fluxes; here, we adopt the formulation given in the work of Hoteit et al.46 At each edge E separating 2 cells
K and K ′ (E = K ∩ K′), the unknowns zi and 𝜐 calculated within K and K ′ are discontinuous. The numerical fluxes are
defined in terms of the jumps and the averages at the cell boundaries. The jump and average are defined separately for
scalars and vectors. For a vector, the jump and average at E are, respectively, defined as follows:

{zi} = 1
2
(zi,K + zi,K′ )

[zi,K] = zi,KnK + zi,K′nK′ .

(33)
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For a scalar, the jump and average are
{𝜐} = 1

2
(𝜐K + 𝜐K′ )

[𝜐] = 𝜐K .nK + 𝜐K .nK′ .

(34)

Note that the jump of a scalar is a vector and that the jump of a vector is a scalar. The numerical fluxes appearing in
Equations 31 and 32 are then

ẑi = {zi} + 𝛾.[zi], 𝜐̂ = {𝜐} − 𝛽.[𝜐]. (35)
Here, we set 𝛾 = (1, 1) and 𝛽 = 1 to achieve an optimal convergence.47 These terms control the introduced numerical
dispersion necessary to keep the method numerically stable. By neglecting these terms and using structured grids, the
method reduces to the conventional cell-centered FD method.37 Using Equations 32 and 35, the numerical fluxes can be
computed by solving a local linear system. However, due to the discontinuity of velocity at the interelements, the LDG
method loses accuracy as compared with the MFE method. A numerical test in Example 2 is devoted to compare the MFE
and LDG methods.

3.3 System construction
The Newton-Raphson method is used to linearize the coupled systems from Equations 3, 12, and 15. An IMPEC scheme
is implemented, in which the pressure unknowns are modeled implicitly and the composition unknowns are modeled
explicitly in time. The diffusion fluxes, except for the pressure diffusion, are explicitly in time, and therefore, they are
treated as a sink/source terms. A full description of the algorithm is provided in other works.19-21,45

4 NUMERICAL RESULTS

In this section, we present the results of calculations from the algorithm described above for various examples cover-
ing homogeneous, heterogeneous, and fractured media. Two-, three- and ten-component fluid mixtures are used in the
examples. One of the examples is a tilted reservoir.

Example 1. In this example, we investigate the accuracies of the velocity fields approximated by the MFE and the
conventional 2-point FV method. We consider a rectangular cross-sectional domain saturated with a hydrocarbon
mixture of C1∕nC4 (see Table 1). The permeability in the domain is 1 mD, except in one zone where its value is 10−3 mD
(see Figure 1). The domain is discretized into an unstructured triangular mesh. Two different cases are considered. In
the first case, no fluid injection was considered and the fluid flow is solely from natural convection. Figure 1A shows
the velocity field from the 2-point FV approximation. Although, the mesh quality is good as all triangular cells are
almost equilateral, inaccuracy in the velocity field is clearly observed. In Figure 1B, the velocity field approximated
by the MFE method has no apparent inaccuracy. The poor accuracy of the FV method is related to the magnitude of
the velocity field, which is apparently within the order of magnitude of the numerical error introduced by the method
(approximately 5×10−10 m/s). To examine this hypothesis, we introduce a second case where the velocity is increased
in the domain by injecting C1 in the left lower corner and producing C1∕nC4 from the diagonally opposite corner.
The injection rate is 10−2 m3/day, and the velocity is in the order of 10−7 m/s. In this case, the FV and MFE methods
provide nearly the same results. Figure 2 shows the velocity fields calculated by both methods. We conclude that a
method with a higher order of approximation such as the MFE method is required to accurately approximate the
velocity field in natural convection.

TABLE 1 Data for Examples 1-3 and 5

Pressure at domain center 111.4 bar
Temperature at domain center 339.15 K
Horizontal temperature gradient 3.34 K/1000 m
Vertical temperature gradient 6.67 K/100 m
Porosity 25%
Composition at domain center 20%C1, 80%nC4

Permeability 0-1000 mD
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(A) (B)

FIGURE 1 Velocity field by the finite-volume (FV) and mixed finite element (MFE) methods; natural convection;
max velocity ≈ 5 × 10−10 m/s; Example 1, Case 1. A, Two-point FV; B, MFE [Colour figure can be viewed at wileyonlinelibrary.com]

(A) (B)

FIGURE 2 Velocity field by the finite-volume (FV) and mixed finite element (MFE) methods; gas injection at the lower left corner, fluid
production through the opposite corner; max velocity ≈ 10−7 m/s; injection rate = 10−2 m3/day; Example 1, Case 2. A, Two-point FV; B, MFE
[Colour figure can be viewed at wileyonlinelibrary.com]

Example 2. In this example, we investigate the accuracy of MFE and LDG methods in calculating the Fickian diffu-
sion flux. The main advantage of the LDG method is in its flexibility to compute the fluxes locally with a high-order
approximation. For computational efficiency, we use a first-order approximation. In the DG method, local linear sys-
tems are solved to compute the fluxes. In the MFE method, however, a global linear system is solved to compute the
fluxes. The LDG method is more efficient, but it is generally less accurate than the MFE method. The superiority of
the MFE method was reported in the work of Fagherazzi et al.47

We consider a vertical domain of dimensions (Lz = 100 m, Lx = Δx m) saturated with a binary mixture C1∕nC4
(Table 1). The domain is discretized into 1 column of right-angled triangles (see Figure 3A). We fix the number of
cells in the mesh (ie, fixed Δz) and vary the column base, Δx. The accuracies of the LDG and MFE methods are
investigated when the ratio 𝜅 = Δx∕Δz is varied. When 𝜅 increases, the triangles tend to flatten. In Figure 3B, C1
composition versus height calculated from the LDG and MFE methods is presented for different values of 𝜅. The
change in C1 composition profiles as a function of 𝜅 in the LDG solution is unphysical. This variation is a result of
mesh dependency. On the other hand, the MFE method shows almost no mesh dependency (Figure 3B). The mesh

L
z 

(m
)

20

40

60

80

100

Δ
Δ z

x

(A) (B)

FIGURE 3 Mesh consisting of 1 column of right-angled triangles and distribution of C1 composition computed by the local discontinuous
Galerkin (LDG) and mixed finite element (MFE) methods as a function of the ratio 𝜅; Example 2. A, Mesh; B, C1 mole fraction versus height
[Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 4 Variation of C1 composition as a function of 𝜅 at a fixed point (at height = 0) in the domain by using the local discontinuous
Galerkin (LDG) and mixed finite element (MFE) methods; Example 2 [Colour figure can be viewed at wileyonlinelibrary.com]

dependency can be further examined by showing C1 composition at a fixed point in the domain for different values
of 𝜅. Figure 4 demonstrates that there is very little change in the MFE solution compared with the LDG solution. The
example illustrates the superiority of the MFE method in approximating the diffusion flux in distorted grids. For good
quality grids, the LDG method is preferred because of its superior efficiency. In this example, the LDG method was
40% to 50% faster than the MFE method.

Example 3. In this example, we investigate the permeability effect on the compositional variation of a binary mix-
ture of methane and normal butane in a vertical cross-section (Lz = 150 m, Lx = 3000 m). The input data are provided
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FIGURE 5 Contours of methane composition (mole fraction) for different permeabilities and velocity field corresponding to k = 1000 mD,
binary mixture at steady state; (Lx = 3000 m; Lz = 150 m); Example 3. A, convection free; B, k = 0.5 mD; C, k = 2 mD; D, k = 30 mD; E,
k = 1000 mD; F, velocity field for k = 1000 mD [Colour figure can be viewed at wileyonlinelibrary.com]
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in Table 1. The diffusion coefficients, DM
i𝑗 , D𝑝

i , and DT
i (Equation 4) are calculated as a function of pressure, tem-

perature, and composition. The methane composition contours at steady state, for different values of permeability
(k = 0, 0.5, 2, 30, 1000 mD), are presented in Figure 5. The results are in good agreement with those presented in the
work of Riley and Firoozabadi.15 The increase of permeability k has only a minor effect on the performance of our
algorithm performance. Methane tends to segregate more in the hotter region of the domain mainly due to the ther-
mal diffusion in Figure 5A. For high permeabilities (k > 30 mD), the natural convection becomes more dominant,
almost leading to a homogeneous distribution of the fluid (see Figure 5D and 5E). Figure 5F shows the velocity dis-
tribution in the domain for k = 1000 mD, for calculations performed on a structured mesh with 671 elements. The
CPU time is about 250 seconds with permeability, k = 1000 mD. All calculations were performed on a 64-bit IntelⓇ
XeonⓇ PC. Although the increase of permeability reduces the time-step size because of the Courant-Friedrichs-Lewy
condition, the CPU time required for the other cases (k = 0.5, 2, 30 mD) is of the same order. With lower permeability,
more iterations on the transient equations were needed to reach the steady state.

Example 4. In this example, we compute the compositional variation in a vertical cross-section for 2 different mix-
tures. Our results are compared with the work of Ghorayeb and Firoozabadi.17 In Example 4a, we use a ternary mixture
of C1∕C2∕nC4 and, in Example 4b, a 10-component mixture. Tables 2 and 3 provide respective relevant data. In all
our simulations, the diffusion coefficients, as well as the density, are allowed to vary in space and in time, unlike in
the numerical model introduced in the aforementioned work.17 In Example 4a, the composition of the ternary mix-
ture at the center of the reservoir is C1 25%, C2 25%, and C3 50% (moles). In Figure 6, the composition contour plots
for C1 are depicted for different permeabilities (k = 0, 1, 10, 100 mD). We observe that C1 is more segregated in the
hot area on the right side of the domain similar to what we observe for a binary mixture. There is almost no vari-
ation in composition with an increase in permeability. In all runs, calculations are performed on a uniform grid
of 671 elements. In this run and all the other runs, there is practically no change in the results from finer gridding. The

TABLE 2 Data for Example 3

Pressure at domain center 70 bar
Temperature at domain center 315 K
Horizontal temperature gradient 1.8 K/1000 m
Vertical temperature gradient 3.5 K/100 m
Porosity 25%
Composition at domain center 25%C1, 25%C2, 50%nC4

Permeability 0-100 mD
Domain dimensions Lz = 150 m, Lx = 1500 m

TABLE 3 Data for Example 4

Pressure at domain center 466 bar
Temperature at domain center 422 K
Horizontal temperature gradient 1.5 K/1000 m
Vertical temperature gradient 2.75 K/100 m
Porosity 25%
Composition at domain center 3.229%CO2

62.53%C1

9.644%C2

9.080%C3-nC4

3.436%C5-C6

5.979%C7-C10

2.450%C11-C14

2.085%C15-C20

1.288%C21-C29

0.556%C30+

Permeability 0-10 mD
Domain dimensions in the x-z plane Lz = 1500 m, Lx = 10 000 m
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FIGURE 6 Composition contour plot for C1, with different permeability cases, ternary mixture (25%C1, 25%C2, 50%nC4 at the center);
(Lx = 1500 m; Lz = 150 m); Example 4a. A, convection free; B, k = 1 mD; C, k = 10 mD; D, k = 100 mD [Colour figure can be viewed at
wileyonlinelibrary.com]

CPU time was about 400 seconds. In this run and all the other runs, there was practically no change in the results from
finer gridding. Example 4b presents the results obtained with large-scale field dimensions; relevant data are listed in
Table 3. Figure 7 shows composition profiles of C1, C5-C6, and C30+ for permeabilities k = 0 (convection free) and
k = 10 mD. The results are in good agreement with those in the work of Riley and Firoozabadi.15 Methane, which has
the maximum variation, segregates toward the top of the domain. However, the other components, except C30+, have
no significant compositional variation. Note that natural convection reduces segregation. The domain is discretized
into a rectangular mesh consisting of 3321 elements. The CPU time was about 3200 seconds.
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FIGURE 7 Composition contour plot for C1, C5-C6, and C11-C14, with different permeability cases, 10-component mixture; (Lx = 10 000 m;
Lz = 1500 m); Example 4b. A, C1, convection free; B, C1, k = 10 mD; C, C5-C6, convection free; D, C5-C6, k = 10 mD; E, C11-C14, convection
free; F, C11-C14, k = 10 mD [Colour figure can be viewed at wileyonlinelibrary.com]
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TABLE 4 Data for Example 6

Pressure at domain center 890 bar
Temperature at domain center 360.1 K
Horizontal temperature gradient 1.8 K/1000 m
Vertical temperature gradient 3.5 K/100 m
Porosity 25%
Composition at domain center 20%C1, 80%nC4

Permeability 0-105 mD

Example 5. Ghorayeb and Firoozabadi18 investigated the effect of fractures on the compositional variation of binary
systems. They studied natural convection and diffusion in fractured media by using the single-porosity model in FD
in which the fractured medium is treated as a heterogeneous medium with distinct matrix and fracture permeabili-
ties. The authors reported that the discretization of the governing equations by the FD model led to ill-conditioned
large systems because of (i) a sharp variation in permeability between the matrix and fractures and (ii) a small fracture
aperture compared to the matrix size. Therefore, the single-porosity approach has limitations from a numerical per-
spective. The discrete fracture model appears to be an attractive and simpler alternative to the single-porosity model
where fractures are represented by (n-1)-dimensional elements in an n-dimensional domain. We compute the compo-
sitional variation of a binary mixture C1∕nC4 in a rectangular domain of 15 m × 30 m, where the matrix permeability
is km = 1 mD, and the fracture aperture is fa = 1 mm (see Table 4). Several configurations of fractures are used to study

(A) (B)

(C) (D)

FIGURE 8 Different fracture configurations; binary mixture (20%C1, 80%nC4); Example 5a. A, Configuration 1; B, Configuration 2; C,
Configuration 3; D, Configuration 4
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FIGURE 9 Methane mole fraction with different fracture permeabilities; (Lx = 30 m; Lz = 15 m); configuration 1, Example 5a.
A, kf = 1 mD; B, kf = 103 mD [Colour figure can be viewed at wileyonlinelibrary.com]
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the effect of the fracture connectivity and that of the fracture permeability, which varies from kf = 1 mD (no fractures)
to kf = 105 mD (Figure 8). In configuration 1 (Figure 8A), one fracture is considered around the domain boundaries.
In configurations 2 and 3, (Figure 8B and 8C) the fractures are disconnected, and configuration 4 (Figure 8D) repre-
sents a sugar cube geometry consisting of 50 matrix blocks surrounded by fractures. The methane contour lines with
low fracture permeabilities are shown as references in configuration 1 (Figure 9). Figure 10 shows the methane dis-
tribution and velocity field, at steady state, for all configurations with fracture permeabilities of 104 and 105 mD. In
Figure 10B, the velocity field consists mainly of one loop. The results show that the increase in fracture permeability
makes the composition uniform, as expected. Disconnected fractures in configurations 2 and 3 (Figure 10D and 10F)
have less effect on compositional variation. In configuration 4 (Figure 10H), composition distributions show that,
unlike in configuration 1, the mole fraction contours take an “S” shape when the fracture permeability increases.
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FIGURE 10 C1 mole fraction and velocity profiles with different fracture permeabilities and configurations, (Lx = 30 m; Lz = 15 m);
Example 5a. A, Configuration 1 (kf = 104 mD); B, Configuration 1 (kf = 105 mD); C, Configuration 2 (kf = 104 mD); D, Configuration 2
(kf = 105 mD); E, Configuration 3 (kf = 104 mD); F, Configuration 3 (kf = 105 mD); G, Configuration 4 (kf = 104 mD); H, Configuration 4
(kf = 105 mD) [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 11 C1 mole fraction and velocity profiles with different fracture permeabilities; (Lx = 6000 m; Lz = 150 m); Example 5b. A,
Unfractured (C1 composition); B, Unfractured (flow lines); C, Sugar cube configuration (C1 composition); D, Sugar cube configuration (flow
lines); E, Partially fractured configuration (C1 composition); F, Partially fractured configuration (flow lines) [Colour figure can be viewed at
wileyonlinelibrary.com]

Our results are in good agreement with those reported in the work of Ghorayeb and Firoozabad.17 One advantage of
our model is that the decrease in fracture thickness does not impact the computational efficiency. However, in the
single-porosity model, as the contrast between the matrix and fractures increases, more refined gridding is needed.
We note that the CPU time required for our calculations in configuration 4 is about 150 seconds in a uniform grid of
450 elements. The CPU times for the other cases are less than 3 minutes. The performance of our model is 2 to 3 orders
of magnitude faster than the FD-based single-porosity model. The speedup is essentially due to a smaller number of
grid cells needed in our model.

To show the robustness of our model, we increase the domain dimensions (150 m × 6000 m). The fracture aperture
and permeability are, respectively, fa = 0.1 mm and kf = 104 mD. We consider 3 configurations: (1) homogeneous,
(2) fractured with a sugar cube geometry, and (3) partially fractured domain with 2 subdomains, ie, one unfractured
side and the other fractured with sugar cube configuration. The compositional variations and the flow line profiles
for all configurations are shown in Figure 11. In the unfractured domain (configuration 1), there is a significant hor-
izontal variation in the methane mole fraction at the steady state (Figure 11A and 11B). In the fractured domain
(configuration 2), C1 compositional variation is insignificant (Figure 11C and 11D). In configuration 3, C1 composi-
tion contour lines are vertical in the homogeneous unfractured region and they display an “S” shape in the fractured
zone (Figure 11E and 11F). The key conclusion is that the presence of fractures results in more effective mixing from
natural convection. As a result, less compositional segregations from diffusion are observed. The CPU time for all
these configurations, which are discretized uniformly into 1300 gridlocks, is about 700 seconds.

Example 6. In the last example, we investigate the compositional variation of a ternary mixture of
C1∕C2∕nC4(C135%,C235%,nC430%) in a tilted domain where different configurations for heterogeneities and
fractures are considered. The relevant reservoir and fluid data are listed in Table 4. In Example 6a, we consider 3
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FIGURE 12 Domain with different permeable zones; (Lx = 1500 m, Lz = 600 m); Example 6a. A, Configuration 1; B, Configuration 2; C,
Configuration 3 [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 13 C1 composition and velocity profiles for configurations 1 to 3, (Lx = 1500 m, Lz = 600 m); Example 6a. A, Configuration 1 (C1
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FIGURE 14 Permeability distributions for 2 configurations, (Lx = 1500 m, Lz = 600 m); Example 6b. A, Configuration 1; B, Configuration 2
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FIGURE 15 C1 composition and velocity profiles for configurations 1 and 2, (Lx = 1500 m, Lz = 600 m); Example 6b. A, Homogeneous (C1

composition); B, Homogeneous (flow lines); C, Configuration 1 (C1 composition); D, Configuration 1 (flow lines); E, Configuration 2 (C1

composition); F, Configuration 2 (flow lines) [Colour figure can be viewed at wileyonlinelibrary.com]

configurations with different permeable zones, as shown in Figure 12. The domain is discretized into an unstruc-
tured grid of quadrilaterals. The corresponding C1 composition and velocity fields for all configurations are shown in
Figure 13. Different convective loops are observed at steady state. Due to the tilted geometry in configuration 2, the
contour lines have opposite slopes in the inclined zones (Figures 12A and 13B). The small velocity in the tight zone in
configurations 2 and 3 preclude observation. In Example 6b, the domain in configurations 1 and 2 is discretized into
a triangular mesh with heterogeneous permeabilities (Figure 14). The contrasts in permeability in configurations 1
and 2 are 3 and 7 orders of magnitude, respectively. In Figure 15, we compare the contour lines with the case where
the domain is assumed homogeneous with a permeability k = 0.1 mD. The plots show that, in all cases, there is only
one main convection cell.

In Example 6c, we consider 3 configurations of connected and disconnected fractures (Figure 16). The contour
lines for C1 composition and the velocity fields are represented in Figure 17. The results are similar to those for the
rectangular domain with structured fractures. However, from a numerical perspective, this highlights the flexibility of
our numerical algorithm to model unstructured domains, including those with connected and disconnected fractures.
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FIGURE 16 Models with different fractured configurations; (Lx = 1500 m, Lz = 600 m); Example 6c. A, Configuration 1; B, Configuration
2; C, Configuration 3
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FIGURE 17 C1 composition and velocity profiles for configurations 1 to 3, (Lx = 1500 m, Lz = 600 m); Example 6c. A, Configuration 1 (C1

composition); B, Configuration 1 (flow lines); C, Configuration 2 (C1 composition); D, Configuration 2 (flow lines); E, Configuration 3 (C1

composition); F, Configuration 3 (flow lines) [Colour figure can be viewed at wileyonlinelibrary.com]



554 HOTEIT AND FIROOZABADI

5 CONCLUSIONS

An efficient and robust numerical approach using the DG and MFE methods has been presented for computing
compositional variation of multicomponent mixtures in homogeneous, heterogeneous, and fractured porous media.
With this numerical approach, we solve the unsteady-state convection/diffusion equations without adopting the
Oberbeck-Boussinesq approximation. The diffusion coefficients and density are considered variables in space and time.
We use the DG method to approximate the flow equations, which produces less numerical dispersion than the conven-
tional upwind FD method. The MFE method is used to approximate the pressure unknown and the convective fluxes
(velocity field). From our numerical experiments, we conclude that the MFE method in computing the convection fluxes
has a high accuracy for systems having high contrast in permeability (107) or nonsmooth gridding. In contrast, the 2-point
FD and FV approximations are not accurate enough to approximate the velocity field on unstructured grids even if the
mesh is smooth.

To approximate the molecular diffusion fluxes, an alternative approach to the MFE method based on the LDG concept
is implemented. The MFE and LDG methods are similar on the fact that both approximate the main unknown and its
gradient simultaneously. The main difference between them is that the MFE method leads to a global system to calculate
the fluxes, whereas, in the LDG method, the fluxes are calculated locally. Therefore, the LDG method is less costly from a
numerical perspective. However, numerical comparisons show that the MFE is superior, especially for nonsmooth grids.

For fractured media, the discrete fracture model is implemented so that the fractures are treated as 1D entities. This
approach reduces dramatically the CPU time because it avoids the complexities of the single-porosity model (eg, sharp
spatial variations of parameters in matrix and fractures, refined gridding due to the length-scale difference between matrix
and fractures).
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APPENDIX

Modeling Fractures

A key step in the discrete fracture modeling is to represent 2D fracture cells with 1D elements, as shown in Figure A1.
From the cross flow equilibrium concept,19-21,45,48,49 the pressure in a fracture cell and the pressures in the neighboring
matrix cells are assumed equal. By integrating the governing equations over the control volume that includes the fracture
and the corresponding matrix cells alleviates the computation of the matrix-fracture fluxes. This technique is accurate
and more efficient than the single porosity.

K

matrix

fracture

I

e

E

FIGURE A1 Geometric simplification of 2-dimensional fracture cells into 1-dimensional fracture cells

Let K be a grid block that contains a 1D fracture element I. By applying the mixed hybrid finite element formulation
to Darcy's law over K, the flux qK,E across the edge E of K can be expressed as a function of the cell pressure average pK
and the edge pressure averages (pressure traces)tpK,E, as shown in Equation 11. The same approach can be applied to
discretized Darcy's law in the fracture element I. The flux qI,e across the extremity e of I can then be written as

qI,e = 𝛼I,e𝑝I −
∑

e′∈𝜕I
𝛽I,e,e′ t𝑝I,e′ − 𝛾I,e e ∈ 𝜕I, (A1)

where pI and tpI,e are respectively the pressure average on I and the pressure traces at the extremities of I. In the grid cells
that contain fractures, the block pressure average and the fracture slice average are equal, ie, pK = pI. By imposing the
continuity of the fluxes, the flux unknown can then be eliminated and a linear system with the pressure average P and
the pressure trace TP is obtained, as in Equation 12.

The second step is to discretize the material balance equations. The integration of the second flow equation in Equation 6
over the matrix and fracture elements gives⎛⎜⎜⎝∫K 𝜙

𝜕𝜍K,i

𝜕t
+ ∫

I

𝜙
𝜕𝜍I,i

𝜕t

⎞⎟⎟⎠ +
⎛⎜⎜⎝∫K 𝜍K,i𝝑 + ∫

I

𝜍I,i𝝑

⎞⎟⎟⎠ +
⎛⎜⎜⎝∫K ∇.J i + ∫

I

∇.J i

⎞⎟⎟⎠ = 0, i = 1, … ,nc − 1. (A2)

Using the divergence theorem (see Equation 8) and assuming that the average concentrations in the matrix and fracture
cells are equal, Equation A2 simplifies to

(𝜙K|K| + |I|𝜙I)
d𝜍̄i,K

dt
+

∑
E⊂𝜕K

qK,E 𝜍̃K,E + 𝜀
∑
e⊂𝜕I

qI,e𝜍̃I,e +
∑
𝜕K

𝑓
T,𝑝,M
i + 𝜀

∑
𝜕I

𝑓
T,𝑝,M
i = 0, (A3)

where |K| and |I| are respectively the volumes of matrix and fracture cells; 𝜀 is the fracture aperture; 𝜍̄i,K is the cell averages
of 𝜍 i,K; 𝜍̃K,E and 𝜍̃I,e are the concentrations from the upstream matrix and fracture cells, respectively; and 𝑓

T,𝑝,M
i represent

the thermal, pressure, and molecular diffusion fluxes in the matrix and fractures. The expressions of these fluxes are given
in Equations 18, 19, and 24. Note that the integration of the first equation in Equation 6 can be done similarly but without
the diffusion term.


