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Summary
We model for the first time capillarity in fully compositional
three-phase flow, with higher-order finite-element (FE) methods.
Capillary pressure gradients may be an important driving force,
particularly in layered or fractured porous media, which exhibit
sharp discontinuities in permeability. We introduce a simple local
computation of the capillary pressure gradients, propose a frac-
tional-flow formulation in terms of the total flux, and resolve com-
plications arising from gravity and capillarity in the upwinding of
phase fluxes. Fractures are modeled with the crossflow equilib-
rium concept, which allows large timesteps and includes all physi-
cal interactions between fractures and matrix blocks. The pressure
and flux fields are discretized by the mixed hybrid finite-element
method, and mass transport is approximated by a higher-order
local discontinuous Galerkin (DG) method. Numerical-dispersion
and grid-orientation effects are significantly reduced, which
allows computations on coarser grids and with larger timesteps.
The main advantages in the context of this work are the accurate
pressure gradients and fluxes at the interface between regions
of different permeabilities. The phase compositions are com-
puted with state-of-the-art phase-splitting algorithms and stability
analyses to guarantee the global minimum of Gibbs free energy.
Accurate compositional simulation motivates the use of an implicit-
pressure/explicit-composition (IMPEC) scheme, and we discuss the
associated Courant-Friedrichs-Lewy (CFL) condition on the time-
steps. We present various numerical examples on both core- and
large-scale, illustrating the capillary end effect, capillary-driven
crossflow in layered media, and the importance of capillarity in frac-
tured media for three-phase flow.

Introduction
Multiphase flow in porous media is driven by viscous, gravita-
tional, diffusive, and capillary forces. For high flow rates in ho-
mogeneous media, the latter three forces play a relatively small
role. However, even in homogeneous media the interplay between
the various forces may be important. Displacement fronts may be
unstable to viscous or gravitational instabilities, resulting in fin-
gering. Such fingers may be stabilized by Fickian diffusion, which
is driven by compositional gradients, and either stabilized or
enhanced by capillarity, which is driven by saturation gradients.
In some cases, diffusion and capillarity are critical in heterogene-
ous media, in which steep compositional and saturation gradients
generally develop in the domain. Depending on the flow rate,
capillarity or diffusion may be the main driving force in fractured
or intensively layered domains (Yokoyama and Lake 1981).

In past work (Moortgat et al. 2009; Moortgat and Firoozabadi
2010; Moortgat et al. 2013), we have investigated Fickian diffu-
sion in heterogeneous and fractured media. Capillarity was
neglected because the focus was on CO2 injection, which has a
low surface tension and considerable species transfer with the oil
phase at most reservoir conditions. More recently, we have pre-

sented a compositional model for three-phase flow (Moortgat
et al. 2011, 2012), motivated by an interest in improved oil recov-
ery by CO2 injection in reservoirs with a high connate or residual
water saturation, and in the water-alternating-gas (WAG) process.
For the aqueous phase in particular, the surface tension may be
high and capillarity must be considered. In various applications,
such as coreflooding, the gas/oil capillary pressure may have a
significant impact as well. One example is the capillary end effect
in drainage of oil by gas injection: Because the capillary pressure
is (nearly) zero at a producing outlet and inside fractures, the
associated capillary pressure gradients result in oil saturations
remaining considerably above the residual oil saturation (ROS),
particularly at low injection rates (Hadley and Handy 1956). In
three-phase flow, each of the capillary-driven fluxes depends indi-
rectly on all three phase saturations.

In this work, we present for the first time the formulation for
capillarity in fully compositional three-phase flow, with higher-
order FE methods in an IMPEC scheme. Pressures and fluxes
are computed simultaneously by the mixed hybrid FE (MHFE)
method, and to the same order accuracy. Mass transport is
approximated by a higher-order DG method. This combination of
FE methods is a particularly natural choice for heterogeneous
media, in which phase properties may exhibit sharp jumps at the
discontinuities in permeability, whereas pressures and fluxes are
continuous. The methods naturally accommodate a permeability
tensor and can be readily implemented on complex unstructured
grids. Moreover, the higher-order accuracy is required to resolve
small-scale viscous and gravitational instabilities, which may be
suppressed by numerical dispersion in traditional lowest-order fi-
nite-difference (FD) methods. The robustness and accuracy of the
MHFE-DG method has been extensively demonstrated in our ear-
lier work, as well as by Hoteit and Firoozabadi (2005, 2006a, b)
for single- and two-phase compositional flow without capillarity,
and for incompressible two-phase flow with capillarity in homo-
geneous and fractured domains in Hoteit and Firoozabadi (2008a,
b). To model fractures, we adopt the crossflow equilibrium con-
cept (Tan and Firoozabadi, 1995a, b), which combines fractures
with a small neighborhood in the matrix into large computational
elements. This approach facilitates large timesteps and retains the
advantage of single-porosity models in treating all physical inter-
actions between fractures and the matrix the same as in unfrac-
tured domains. Any configuration of discrete fractures can be
modeled, unlike the sugar-cube configuration in dual-porosity
models [although this restriction may be relaxed (Moinfar et al.
2012)]. Several discrete fracture approaches are compared for a
three-phase black-oil model in Geiger et al. (2009).

In compositional multiphase flow, capillarity considerably
complicates the problem because of the high degree of additional
nonlinearity caused by the strong saturation and composition
dependence of the capillary pressures. We present a local compu-
tation of the capillary pressure gradients from cell-centered capil-
lary pressures and the harmonic average of an effective phase
mobility, on the basis of first-principle derivations. The approach
allows for discontinuous capillary pressure gradients, mobilities,
and saturations at element edges, but guarantees a continuous cap-
illary pressure and flux across edges. We propose a fractional-
flow formulation, in which we solve directly only for the total
flux. The subsequent construction of the phase fluxes from the
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total flux is a challenge when the flux consists of viscous, capil-
lary, and gravitational terms that allow countercurrent flow. We
present a new elegant scheme in this work that overcomes these
complications, and discuss various other subtleties in the model-
ing of capillarity for multiphase compositional flow.

In the following sections, we discuss the problem formulation
and numerical implementation and present six numerical exam-
ples to illustrate important features related to capillarity, such as
the capillary end effect; imbibition and drainage in layered media,
both parallel and perpendicular to the layers; and imbibition and
drainage in fractured domains.

Mathematical Formulation
The equations in this section hold in both the fractures and matrix.
An efficient discrete fracture discretization is discussed in the
following.

Pressures and Fluxes. The flow of water (w), oil (o), and gas (g)
in porous media is described by Darcy’s law for each of the phases:

ua ¼ "
kra

la
Kðrpa " qagÞ; a ¼ w; o; g; ð1Þ

where K is the absolute-permeability tensor of the porous me-
dium; kra, la, and qa are the relative permeability, viscosity, and
mass density of phase a, respectively; g is the gravitational vector
(positive in the downward direction), and pa is the pressure asso-
ciated with each phase. In fractured media, different absolute and
relative permeabilities are used in the fracture and matrix ele-
ments. In homogeneous media, capillarity may often be neglected
and p¼ pw¼ po¼ pg. In this work, we consider flow through
more-complicated heterogeneous and fractured media with capil-
larity. We define capillary pressures as

pc;go ¼ pg " po ð2Þ

pc;wo ¼ po " pw: ð3Þ

A third capillary pressure can be expressed in terms of the pre-
ceding definitions as pc,gw¼ pg – pw¼ pc,goþ pc,wo. In the flow
equations, we choose to work with pc,go, pc,wo, and the oil pressure
po as a reference. Eq. 1 can be written in terms of the capillary
pressures as

ug ¼ "
krg

lg
Kðrpo þrpc;go " qggÞ ð4Þ

uo ¼ " kro

lo
Kðrpo " qogÞ ð5Þ

uw ¼ " krw

lw
Kðrpo "rpc;wo " qwgÞ: ð6Þ

The capillary pressures in Eqs. 4 and 6 depend on two of the
phase saturations Sa, and (through the surface tension and wett-
ability) on the phase molar densities ca and molar composition
xi,a, with i being the index labeling species:

pc;go ¼ pc;goðSa; ca; xi;aÞ; a ¼ g; o; i ¼ 1;…nc " 1; ð7Þ

pc;wo ¼ pc;woðSa; ca; xi;aÞ; a ¼ o;w; i ¼ 1;…nc " 1: ð8Þ

The oil pressure is solved from the pressure equation by Acs
et al. (1985) and Watts (1986):

/jT
@po

@t
þ
Xnc

i¼1

viðr & Ui " FiÞ ¼ 0 ð9Þ

Ui ¼
X

a

ðcaxi;aua þ SaJi;aÞ; i ¼ 1;…; nc; ð10Þ

where / is the porosity and jT represents the total compressibility
of the three-phase mixture and the formation. When formation

compressibility is significant, / and jT depend on pressure. The
total partial molar volume of each species in the mixture is
denoted by vi. Expressions for jT and vi in three-phase were pre-
sented in Moortgat et al. (2012) and are evaluated in this work
with respect to the oil pressure. Diffusive fluxes are denoted by
Ji;a ¼ Ji;aðT; po; x1;a;…; xnc"1;aÞ and are computed from the full
matrix of composition-dependent diffusion coefficients in Moort-
gat and Firoozabadi (2010). T is the temperature, which is
assumed constant in this work. The ua term in Eq. 10 describes
the convective fluxes. Sink and source terms, which may represent
injection and production wells, are gathered in Fi.

Solving for all three phase fluxes in Eq. 4 individually is com-
putationally expensive, and is complicated by the fact that each of
the phase mobilities, denoted as ka¼ kra/la, may vanish. Instead,
we solve directly for the total flux ut¼Ra ua. The notation
throughout this formulation is simplified by defining the effective
phase mobilities ka¼Kka, the total effective mobility kt¼Ra ka,
and the fractional-flow functions fa¼ ka/kt.

Summing the three equations in Eqs. 4 through 6, we find a
single relation for the total flux:

ut ¼ "ktðrpo " fwrpc;wo þ fgrpc;go "
X

a

faqagÞ ð11Þ

The fractional-flow formulation has the advantage that the
total effective mobility kt is positive definite, such that Eq. 11 can
be inverted in terms of rpo and solved together with Eq. 9.

Once the total flux ut is known, the phase fluxes can be con-
structed, independent of po, by

ua ¼ faðut " GaÞ;with

Gg ¼
X

a
~kaðqa " qgÞgþ ~kwrpc;wo þ ð~ko þ ~kwÞrpc;go

Go ¼
X

a
~kaðqa " qoÞgþ ~kwrpc;wo " ~kgrpc;go

Gw ¼
X

a
~kaðqa " qwÞg" ð~kg þ ~koÞrpc;wo " ~kgrpc;go

;

8
>><

>>:

& & & & & & & & & & & & & & & & & & & ð12Þ

with ~ka the effective phase mobility upwinded with respect to ua.
Determining the upwind direction for ~ka when the phase fluxes
are not known is the most challenging part of this formulation and
is discussed below.

In fractured media, fractures are combined with a small neigh-
borhood in the matrix into larger computational elements (dis-
cussed later). For these elements, Eq. 11 is computed for both the
fracture and the matrix contributions to the flux.

Mass Balance. Species balance is guaranteed by the mass-con-
servation equation in terms of the total molar density c and overall
molar composition of the three-phase mixture, zi

/
@czi

@t
þr & Ui ¼ Fi; i ¼ 1;…; nc: ð13Þ

Thermodynamic Equilibrium. Thermodynamic equilibrium
requires the equality of fugacities of each of the species i in all
three phases a. We neglect the effect of capillary pressure on the
phase behavior by performing all phase-split computations on the
basis of the oil pressure. This assumption should be relaxed for
nano-pores, in which the capillary pressure may be large com-
pared with the oil pressure. Choosing oil as a reference phase, we
define the equilibrium ratios Ki,g¼ xi,g/xi,o and Ki,w¼ xi,w/xi,o.
Equality of fugacities is equivalent to the relations:

lnKi;a ¼ lnui;o " lnui;a; i ¼ 1;…; nc; a ¼ g;w: ð14Þ

The molar fractions of each phase, ba, can be found from
X

a

ba ¼ 1 and zi ¼
X

a

baxi;a; i ¼ 1;…; nc: ð15Þ
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The overall and phase molar compositions are not independent
and satisfy the constraints
X

i

zi ¼
X

i

xi;g ¼
X

i

xi;o ¼
X

i

xi;w ¼ 1: ð16Þ

The phase molar densities are obtained from

ca ¼
pa

ZaRT
þ VSPa; ð17Þ

with R the universal gas constant and VSPa an empirical volume
shift parameter to improve the accuracy of the density of phase a.
VSPa is taken as the same for both oil and gas phases in this work
to improve the reliability in the near-critical region. Za is the com-
pressibility factor of phase a. For phases without associating spe-
cies (gas and oil), Za is given by the cubic Peng-Robinson (PR)
equation of state (EOS). For the aqueous phase, Za is obtained
from the cubic-plus-association (CPA) EOS, which accounts for
cross-association between CO2 and water molecules and self-
association of water. In the absence of water, the CPA-EOS
reduces to the PR-EOS. Challenges associated with the three-
phase stability analysis and phase-split routines are the subject of
a recent paper (Moortgat et al. 2012).

Boundary Conditions. The preceding equations (Eqs. 1–17) are
solved for the unknown phase pressures pa, fluxes ua, composi-
tions xi,a, and mole fraction of each phase ba, as well as the total
molar density c and composition zi of the mixture. The problem
statement is completed by initial and boundary conditions. We
prescribe either fully impermeable boundaries with all injection
and production wells described by sink/source terms in Fi (speci-
fying injection and production rates), or we consider a constant
pressure in the production wells, which implies nonoverlapping
Dirichlet (in production wells) and Neumann (everywhere else)
boundary conditions. Boundary conditions can be changed during
simulations, such as when switching from depletion (constant pro-
duction rate) to water or gas injection at a constant pressure, or
when turning injection and production wells on or off in different
locations. The initial condition is specified by a pressure field and
composition throughout the domain.

Numerical Implementation With Higher-Order
Methods
The flow equations are solved by higher-order FE methods and an
IMPEC scheme. Specifically, the mass-transport equation, Eq. 13,
is discretized by the local DG method. Darcy’s equation for the
total flux, Eq. 11, and the pressure equation for po are solved
simultaneously, and to the same order accuracy by the MHFE
method. We have successfully developed and tested this combina-
tion of higher-order methods before for three-phase compositional
flow in homogeneous and fractured media (Moortgat et al. 2011,
2012; Moortgat and Firoozabadi 2012), but neglecting capillarity.
In the following sections, we will highlight unique features of the
model and specific challenges encountered in incorporating capil-
larity in the model. We refer to earlier work where the proposed
implementation is similar.

DG Mass-Transport Update. We use a linear DG approxima-
tion on triangular elements and a bilinear DG approximation on
rectangular elements. The overall and phase compositions are
updated at either all nodes or all edge centers of each element.
Like other higher-order methods, the DG method considerably
reduces numerical dispersion, which allows the use of coarse
grids and larger timesteps. This is particularly important when
capillarity and Fickian diffusion are included, because these terms
incur stringent constraints on the timesteps in an IMPEC scheme
(discussed later in this paper). More important, in the context of
this work, is the discontinuous nature of the DG method. At each
edge, two different values of the state variables (e.g., composition,
density, saturation) are defined, one on either side. This is a cru-

cial feature in the treatment of heterogeneous, layered, and
fractured domains, in which these variables show sharp disconti-
nuities at the boundaries between regions of different permeability
(and porosity). The mass-conservation equation, Eq. 13, has the
same form as when capillarity is neglected, and the DG imple-
mentation is identical to that in Moortgat et al. (2011).

Mixed FE Method for Fluxes and Pressures. In this subsection,
we describe the MHFE implementation for unfractured 2D do-
mains. The extension to fractures is discussed in the next section.

The first step in the MHFE method is to decompose fluxes into
their normal components across edges E of each mesh element K
with boundary @K. We introduce the lowest-order Raviart-
Thomas basis vector fields wK,E (x¼ x, y) (Raviart and Thomas
1977), which satisfy wK,E & nK,E0¼ 1/jEj and r& wK,E¼ 1/jKj. In
two dimensions, jKj and jEj are the cell area and edge length,
respectively. The decomposed fluxes are constructed as
utðt; xÞ ¼

P
E2@KqK;EðtÞwK;EðxÞ, and similarly for phase fluxes ua

and kgrpc;goðt; xÞ! qc
go;K;E, kwrpc;woðt; xÞ! qc

wo;K;E, /SaJi;a

ðt; xÞ! qdiff
i;a;K;E, and gðxÞ! qg

K;E. We chose not to include

Ra ka, Kqa,K in the last definition for notational convenience in the
discussion of fractures in the next section.

In the next step, Darcy’s law for the total flux (Eq. 11) is put in
weak form by multiplying by wK,E and integrating over K. The
pressure gradient is integrated by parts, and the coefficients are
assumed to be element-wise constant. We define the element-
averaged oil pressure po,K¼ $K po and the edge-averaged oil pres-
sures $@Kpo¼RE$Epo¼REtpo,K,E. The discretized Darcy law takes
the form

qK;E ¼ hK;Epo;K "
X

E02@K

bK;E;E0 tpo;K;E0 þ cK;E; E 2 @K;

& & & & & & & & & & & & & & & & & & & ð18Þ

with hK,E and bK,E,E0 given in Appendix A and the capillary pres-
sures included in cK,E:

cK;E ¼ qg
K;E

X

a

ka;Kqa;K þ qc
wo;K;E " qc

go;K;E: ð19Þ

The computation of qc
wo;K;E and qc

go;K;E will be discussed in the
next subsection.

The MHFE discretization of the pressure equation proceeds
along the same lines. First, the phase fluxes are eliminated in
favor of the total flux expression, with Eq. 12. Then Eq. 9 is multi-
plied by wK,E and integrated over each element. The time deriva-
tive is discretized by the implicit backward Euler scheme with
timestep Dt. After algebraic manipulations, the final form of the
MHFE approximation to the pressure equation is

pnþ1
o;K ¼

Dt

~aKDtþ jT/jKj

"
jT/jKj

Dt
pn

o;K þ
X

E2K

~bK;Et pnþ1
o;K;E

þ~cK þ
X

i

vi Fi;K "
X

E

X

a

qdiff
i; a ;K;E

 !#
:

& & & & & & & & & & & & & & & & & & & ð20Þ

The coefficients are given in Appendix A and are evaluated at
the nth timestep.

A global matrix system for the pressures and fluxes is obtained
by requiring that the total fluxes qK,E and pressure traces tpo,K,E be
continuous across edges. The first constraint allows the elimina-
tion of qK,E from Eq. 18. For each edge E we collect the terms on
the right of Eq. 18 to find a linear system:

RTP"MTP ¼ I; ð21Þ

with the matrices defined in Appendix A. Similarly, we collect
the terms in Eq. 20 in a second linear system:

DP" ~RTP ¼ G: ð22Þ

. . . . . . . . .
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The coefficients of the matrices in Eq. 22, provided in Appen-
dix A, show that D is diagonal. This allows the elimination of P
from Eqs. 21 and 22 and finding a linear system for TP alone:

ðM" RTD"1 ~RÞTP ¼ RTD"1G" I: ð23Þ

In the full algorithm, Eq. 23 is solved first with an off-the-shelf
sparse matrix solver (Davis 2004). After finding the pressure
traces TP, the element-averaged pressures are obtained by inex-
pensive back substitution in Eq. 21, and the total fluxes are found
from Eq. 18.

The benefits of the MHFE method are the (1) accuracy of the
resulting velocity field, (2) natural incorporation of the permeabil-
ity tensor and any degree of heterogeneity, (3) straightforward
implementation on complex unstructured grids, and (4) an ana-
logues property to the DG discretization—the MHFE method pro-
vides not only the element-averaged pressure but also the
pressures on the edges.

Discrete Fracture Model. The details of our discrete fracture
model for compositional three-phase flow are discussed in Moort-
gat and Firoozabadi (2012). The basic concept is that fractures,
which may have an aperture of '1 mm, are combined with a small
slice (to the magnitude of 10 cm or larger) of the matrix blocks on
either side into larger computational elements. The assumption is
that a large transverse permeability instantaneously equilibrates
the fluid in the fracture with that in the immediate matrix neighbor-
hood. This is a good approximation as long as the width of the
aforementioned slices are small compared with the size of the ma-
trix blocks, and the matrix permeability is not too low ((0.1 md).
The computation element, referred to as crossflow-equilibrium
(CFE) element, has one saturation, density, and composition for
the mixed fracture and matrix fluids. However, the fluxes across
the CFE edges take into account the matrix and fracture mobilities
and permeabilities. Along the fracture direction, the fluxes are the
sum of the matrix and fracture fluxes, integrated over the fracture
aperture and cross section of the included matrix slices.

We denote the fracture aperture as Df, the width of the CFE
(perpendicular to the fracture) as E, ! as equal to Df/E, and super-
scripts f and m as the fracture and matrix properties, respectively.
The total Darcy flux across the edge E can then be written in
terms of the normal component of the gradient operator rE and
the phase pressures as

qa;K;E ¼ !qf
a;K;E þ ð1" !Þq

m
a;K;E

¼ "½!kf
a þ ð1" !Þk

m
a *ðrEpa " qaqg

K;EÞ

¼ "ktot
a ðrEpa " qaqg

K;EÞ: ð24Þ

In other words, the fluxes across edges that are intersected by a
fracture are obtained simply by replacing ka with the total effective
matrix-plus-fracture mobility ktot

a in hK,E, bK,E,E0, and cK,E in the
MHFE discretization (note the different notations of ktot

a for the ma-
trix-plus-fracture effective phase mobilities and kt for the sum of

effective phase mobilities). In the direction perpendicular to the frac-
tures, the computation of the fracture-to-matrix flux is avoided by
the crossflow equilibrium assumption. The flux across edges
between CFE and matrix elements is computed from the matrix per-
meability and mobility. We emphasize that through Eq. 24 we allow
for different relative permeability and capillary pressure relations for
the fracture and matrix contributions inside a single CFE element.

Capillary Pressures. The element-averaged capillary pressures
pc,go,K and pc,wo,K are computed from the element-averaged satu-
rations Sa,K. There is no robust theory describing the exact func-
tional dependence in Eqs. 7 and 8, particularly in a three-phase
setting. In the numerical examples, we will use capillary pressures
of the form (Bentsen and Anli 1976)

pc;goðSoÞ ¼ rgo

ffiffiffiffi
/
K

r
logSo;eff; with So;eff ¼

So " Swc " Srog

1" Swc " Srog " Srg

& & & & & & & & & & & & & & & & & & & ð25Þ

pc;woðSwÞ ¼ "rwo

ffiffiffiffi
/
K

r
logSw;eff; with Sw;eff ¼

Sw " Swc

1" Swc " srow
;

& & & & & & & & & & & & & & & & & & & ð26Þ

with rgo and rwo as the gas/oil and water/oil surface tensions,
respectively; Swc as the connate or residual water saturations; Srog as
the ROS to gas; Srow as the ROS to water; and Srg as the residual
or critical gas saturation. Alternatively, our simulator allows for
tabulated relative permeability and capillary pressure data. For
mixed-wet media, the water/oil capillary pressure curve may have a
positive part at low water saturations and a negative part at higher
water saturations. For such conditions, the behavior changes dramat-
ically as the saturation passes through the zero-point of the capillary
pressure curve. We assume a constant water/oil surface tension and
gas/oil surface tension that is either constant or computed from the
phase compositions, molar densities, and parachors Pi as

rgo½in N=m* ¼ 10"27
Xnc

i¼1

Piðcoxi;o " cgxi;gÞ
" #4

: ð27Þ

Other functional relationships may be used, such as Brooks
and Corey (1964), in which Pc;wo / S"1=n

w;eff . A more sophisticated
computation of three-phase capillary pressures and relative per-
meabilities, including hysteresis effects, was proposed in Hustad
and Browning (2010).

A complexity arises from the computation of capillary pres-
sure gradients. Hoteit and Firoozabadi (2008b) propose to use the
same MHFE approximation that is used for the oil pressure.
Although this approach has desirable features, it involves the
CPU-intensive solution of a second global matrix system. To gen-
eralize this approach to three-phase flow, we would have to solve
three global linear systems, for tpo,K,E, tpc,go,K,E, and tpc,wo,K,E.
Instead, we propose a local computation of the capillary pressure
gradients from the gradients within each element, together with
the constraints of mass conservation (flux continuity) at edges and
continuity of the capillary pressure. We emphasize that in multi-
phase flow and/or in heterogeneous media, the capillary pressure
gradient itself is generally not continuous.

We derive the expression for qc
go;K;E. The computation of

qc
wo;K;E is similar. Consider two neighboring elements K1 and K2

with common edge E and average capillary pressures pc;go;K1
and

pc;go;K2
and capillary pressure traces tpc,go,K,E, as in Fig. 1. We

require the capillary pressure to be continuous across edges E,
such that tpc;go;K1 ;E ¼ tpc;go;K2;E ¼ tpc;go;E.

If DxK1
and DxK2

are the widths of elements K1 and K2, respec-
tively, we can compute qc

go;K;E from the local gradients inside
each element as

qc
go;K1;E

¼ "kg;K1;E
t pc;go;E " pc;go;K1

DxK1
= 2

and

qc
go;K2;E

¼ "kg;K2;E
pc;go;K2

" t pc;go;E

DxK2
=2

: & & & & & & & & & & & & ð28Þ

. . . . . . . . . . . . . .

. . . . . . . . . . . . . . . .

. . . . . .

tpc, K1, E3

tpc, E

qc, E

tpc, K2, E3

tpc, K1, E4

tpc, K1, E2 tpc, K2, E1

pc, K1 pc, K2

tpc, K2, E4

Fig. 1—Element average capillary pressure pc and capillary
pressure traces tpc, with tpc,K1,E1

5tpc,K2,E2
5tpc,E and similarly

qc
K1,E1

5qc
K2,E2

5qc
E . Either gas/oil or water/oil capillary pressures

can be represented by pc and tpc. The phase index is dropped
for brevity.
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Eq. 28 is for structured grids. In unstructured grids, the expres-
sion should be modified with the angles corresponding to the nor-
mal component of the flux with respect to edge E, and Dx would
refer to the distance to the center of the element. We further
require the capillary-driven flux to be continuous, such that
qc

go;K1 ;E
¼ "qc

go;K2;E
(q is defined with respect to the normal). Note

that both the phase mobilities and the absolute permeabilities may
be different in neighboring elements, such that the continuity of
capillary pressure can be guaranteed only by discontinuous phase
saturations at the edge E. From the condition of continuous fluxes,
we can solve Eq. 28 for tpc,go,E and substitute the solution back
into Eq. 28 to find

qc
go;K1;E

¼ "qc
go;K2 ;E

¼ "kkg;effk
pc;go;K2

" pc;go;K1

ðDxK1
þ DxK2

Þ = 2
ð29Þ

kkg;effk ¼
ðkg;K1;EKK1

Þðkg;K2;EKK2
ÞðDxK1

þ DxK2
Þ

DxK1
kg;K1;EKK1

þ DxK2
kg;K2 ;EKK2

: ð30Þ

Note that in Eq. 30, kkg;effk is the harmonic average of the
effective gas mobilities in elements K1 and K2. An equivalent
expression can be derived for qc

wo. With Eq. 29, we avoid the
explicit computation of the capillary pressures on edges. Note that
if one uses Eq. 30, there is no capillary-driven flux across an edge
E when the gas phase is absent or immobile in K1 or K2. This
underestimates the effect of capillarity in heterogeneous or frac-
tured media. A more physical approach is to use the upwind value

of the gas mobility ðkg;K1;E ¼ kg;K2;E ¼ ~kg;EÞ with the harmonic
average of the absolute permeability, which also satisfies Eqs.
28–30.

When threshold capillary pressure is significant, the fluxes qc
go

and qc
wo may not be continuous, and additional terms have to be

added to the preceding equations. In this work, we consider appli-
cations with negligible threshold capillary pressures, such as
imbibition by water injection into oil.

Upwinding. The most significant complication in incorporating
capillarity in the fractional-flow formulation for three-phase flow
turns out to be the construction of the phase fluxes from the total
flux with Eq. 12. As already discussed, the total flux ut is continu-
ous across edges by MHFE design. However, from Eq. 12 it is
clear that the phase fluxes are continuous only if a unique value of
the phase mobilities is assigned to each edge E. One choice could
be the average mobility, but this significantly underestimates the
flux when a phase is mobile in one element but not in the neigh-
boring element. A second choice could be the upwind mobility
with respect to the known total flux ut, but this leads to erroneous
and unstable results when there is countercurrent flow caused by
gravity or capillarity. The only physically justifiable option is to
use the upwind mobilities with respect to the phase fluxes.
Unfortunately, the phase fluxes may change rapidly enough that
even the directions cannot be reliably obtained from results at the
previous timestep. A rigorous approach requires upwind mobili-
ties with respect to the phase fluxes at the current timestep.

Determining even the sign of the phase fluxes before the
upwind mobilities are known is a challenge. The gravity and cap-
illary terms in Eq. 12 may have either sign and are of unknown
magnitude when the mobility is not known. In the absence of
capillarity, we devised a scheme on the basis of the known phase
densities, which determine which phase flux has the same sign as
ut (Moortgat et al. 2011). For the other two phases, we try both
combinations of mobilities and select the self-consistent solution.
Here, we generalize this method to include capillarity. We define
the potential differences as

Ugo ¼ pc;go þ ðqo " qgÞgz ð31Þ

Uwo ¼ pc;wo þ ðqw " qoÞgz ð32Þ

Uwg ¼ pc;wg þ ðqg " qwÞgz ¼ "ðUgo þ UwoÞ; ð33Þ

and further simplify the notation by defining the unit vector
I¼ [1, 1, 1]T and

qr ¼
qg = ~f

tot

g

qo = ~f
tot

o

qw = ~f
tot

w

0

BB@

1

CCA; U ¼
Ugo

Uwo

Uwg

0

B@

1

CA; ~k
tot ¼

~k
tot

g

~k
tot

o

ktot
w

0

BB@

1

CCA;

& & & & & & & & & & & & & & & & & & & ð34Þ

with the understanding that qa¼ 0 when ~f
tot

a ¼ 0 (this definition is

purely for notational convenience). The effective mobilities ~k
tot

a

and fractional-flow functions ~f
tot

a ¼ ~k
tot

a =
X

a
~k

tot

a may include both

matrix and fracture contributions, as in Eq. 24. The fractional-flow
functions are incorporated in the left side of the equation because
we are interested in finding the direction (sign) of the phase fluxes,

which does not depend on the overall fractional-flow factor. ~f
tot

a is
evaluated after all upwind directions have been determined.

With these definitions, Eq. 12 can be written succinctly in vec-
tor or matrix notation (with + the outer product) as

qr ¼ qtI" ~k
tot +rU ¼ qtIþW~k

tot
; with

W ¼
0 "rUgo rUwg

rUgo 0 "rUwo

"rUwg rUwo 0

0

B@

1

CA: & & & & & & & & & & & ð35Þ

The full upwinding algorithm proceeds in the following steps
for an element K with neighboring element K0:

1. From Eq. 35, we can determine the sign of the flux of one of

the phases a priori, irrespective of the unknown ~k
tot

a . Specifically,
we first find the phase flux parallel (jj) to the total flux and label
this phase by a1. If qt> 0, then
, If Ugo ' 0 and Uwg ( 0; then qgkqtð8UwoÞ
, If Ugo ( 0 and Uwo ' 0; then qokqtð8UwgÞ
, If Uwo ( 0 and Uwg ' 0; then qwkqtð8UgoÞ,

and similarly for qt< 0 (note that because of Eq. 33, this covers
all possible combinations of signs for Ugo; Uwo; and Uwg). Be-

cause qa1
kqt, we know the upwind mobility: ~k

tot

a1
¼ ktot

K;a1
, if qt (

0, and ~k
tot

a1
¼ ~k

tot

K0;a1
, for qt< 0.

2. If one of the phases is absent or immobile in both K and K0,
we denote the second mobile phase by a2 and find the sign of qa2

by evaluating the appropriate relation with Eq. 35, with the ~k
tot

a1

obtained in Step 1, and skip to Step 8.
3. When all phases are mobile in K or K0 (but not necessarily

in both), we cannot determine the sign of either of the remaining
two phases directly. In this case, we pick either choice of upwind

mobility, i.e., we choose either ~k
tot

a2
¼ ktot

K;a2
or ~k

tot

a2
¼ ktot

K0;a2
. In the

next steps, we verify whether the resulting signs of the phase
fluxes are consistent with this choice of upwind mobility. If they
are not, we return to this step and choose the opposite choice for

the upwind direction of ~k
tot

a2
.

4. With ~k
tot

a2
from Step 3 and ~k

tot

a1
from Step 1, compute the sign

of the third phase flux qa3
.

5. From the sign of qa3
determine the upwind value for ~k

tot

a3
.

6. With ~k
tot

a1
from Step 1 and ~k

tot

a3
from Step 5, determine the

sign of phase flux qa2
.

7. If the sign of qa2
is consistent with the selection in Step 3,

we proceed to Step 8. If the sign is inconsistent (i.e., we selected
~k

tot

a2
¼ ktot

K;a2
but qa2

< 0, or we chose ~k
tot

a2
¼ ktot

K0;a2
but qa2

( 0), we

choose the second option in Step 3 and repeat Steps 4 through 6.

8. With all upwind ~k
tot

a known, compute ~f
tot

a and, finally, the
phase fluxes qa.

We note that (capillary) pressure gradients may be strongly
discontinuous across grid-cell edges, particularly in heterogene-
ous and fractured domains. There may be an issue with computing
the phase fluxes directly from Darcy’s law by finite differencing,
and determining the upwind phase mobilities from the difference
in phase potentials (paþ qagz) between elements K and K0. As the

. . . .

. . .

. . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

. . . . . .
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simplest example, the phase potential in K may be higher than in
K0, but not result in flow of the phase from K to K0 if the gradient
of the potential inside K is zero. Similarly, the average potential
may be the same in both elements, but the potential gradient may
be nonzero on either side of the edge. In the MHFE fractional-
flow formalism proposed here, we first compute a vector field for
the total flux that is continuous at every point in the domain. The
method provides both a continuous pressure and continuous flux
at each edge, which in turn determines the continuous phase
fluxes through the procedure described previously. This feature
makes the MHFE approach particularly attractive for heterogene-
ous and fractured porous media.

CFL Condition. The explicit mass-transport update incurs a
CFL constraint on the timestep (Courant et al. 1928) in guarantee-
ing numerical stability. In single-phase and immiscible multi-
phase flow, this is a motivation to use fully implicit methods,
which may be unconditionally stable. However, for multicompo-
nent multiphase flow, the linear system that has to be solved in a
fully implicit method becomes very expensive and poses addi-
tional complications with phase-stability analysis and accurate
initial guesses to perform the phase-split computations (Moortgat
et al. 2012). For these and other reasons, the IMPEC approach
appears to be favored for compositional multiphase flow.

In our model, we include convective, diffusive, and capillary
fluxes, each of which carries its own constraint on the timestep.
Although the CFL condition for the convective flux is linear in
the mesh size, the diffusive and capillary fluxes require more-
severe timestep limits, quadratic in the mesh size. This applies to
both lower-order FD and finite-volume methods and to higher-
order methods. However, the higher-order methods allow consid-
erably coarser mesh sizes, which alleviate the CFL condition. The
CFL limits on the convective and diffusive fluxes are discussed in
Moortgat and Firoozabadi (2012). For the capillary flux, a CFL
condition is given in Coats (2003). The overall timestep is set by
the minimum of the convective, diffusive, and capillary CFL con-
ditions. We note that the CFL condition is a sufficient, but not
necessary, condition for numerical stability. An alternative ap-
proach is to adopt an adaptive timestep selection scheme on the
basis of fluctuations in pressure and other variables, as in Hoteit
and Firoozabadi (2008b). This may allow for larger timesteps and
is commonly used in commercial simulators. In large-scale frac-
tured reservoirs, we find that the CFL condition is generally deter-
mined by the convective flow through the fractures.

Numerical Experiments
We present six numerical examples to verify our model by com-
paring with the work of others and by investigating known fea-
tures of capillarity: (1) the capillary end effect for two-phase gas/
oil flow in both core- and large-scale domains; (2) the effects of
permeability discontinuities perpendicular to the flow; (3) gas and
water injection in a large-scale oil-saturated domain with layers

parallel to the flow, in which we compare with results for a similar
example in Hoteit and Firoozabadi (2008b) for incompressible
two-phase flow; (4) capillary water imbibition in a fractured
core; (5) drainage through depletion from large-scale fractured
domains; and (6) depletion, water imbibition, and CO2 injection
in a fractured domain. To provide easily reproducible examples
that clearly highlight important aspects of capillarity, we neglect
Fickian diffusion and consider fluids that do not exhibit strong
phase-behavior effects. Reinfiltration caused by gravity and capil-
larity are automatically taken into account in fractured media.

The computations are carried out on a 2.8-GHz quad-core
Core i7 processor with 12-GB RAM. The code is parallelized, but
for easier comparison, we report CPU times for serial runs.

Example 1: Capillary End Effect. It is well known that capillar-
ity causes an impediment to flow at the outlet, because of the steep
capillary pressure gradient at the producing boundary [e.g., Huang
and Honarpour (1998)]. As a result, the saturation near the outlet
may remain close to the initial value. How far into the domain this
effect extends depends on the injection rate. Injection at a high rate
can more effectively counter the capillary end effect. In this exam-
ple, we study the end effect for drainage of an oil-saturated core by
injection of a nonwetting gas phase. Specifically, we model meth-
ane (C1) injection into a vertical core saturated with normal decane
(n-C10) at a temperature of 310 K and initial (bottom) pressure of
100 bar. At this condition, evaporation of n-C10 into the C1 gas
phase is low. The core dimensions are 30- 200 cm, discretized by
3- 200 elements (for essentially 1D displacement). C1 is injected
uniformly from the top boundary, and production is from the bot-
tom at constant pressure. The capillary pressure, in terms of sur-
face tension rgo¼ 5 dyne/cm, is given by Eq. 25 with porosity
/¼ 20% and permeability K¼ 10 md. We assume linear relative
permeabilities, no connate water, and an ROS to gas of 30%. At
the given condition, the viscosity ratio between C1 and n-C10 is 18,
which results in early breakthrough and requires many pore vol-
umes (PV) to recover the mobile oil, even without capillarity. To
speed up the computation, we assume (artificial) relative perme-
ability endpoints of unity for oil and 0.27 for gas, such that the mo-
bility ratio is kg/ko is approximately 5.

We consider three injection rates: 0.1, 0.5 and 2.5 PV/D. Injec-
tion is continued for 3 PV, such that the saturation in the core
reaches a steady state. We compare with a simulation in which
capillarity is neglected (which is independent of injection rate).
The CPU times are <1 minute without capillarity and 1, 4, and 9
minutes for the simulations with capillarity for the three injection
rates, respectively.

Fig. 2a shows the steady-state oil saturation and Fig. 2b the oil
recovery for all four simulations (the horizontal axis has the injec-
tor on the left and the producer on the right). Without capillarity,
oil is recovered down to the ROS (and an additional small amount
near the injection well caused by evaporation by the many local
PV of C1 that passed through those elements). When capillarity is
accounted for, a considerable amount of oil is stranded. At the
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Fig. 2—Example 1: Capillary end effect for drainage. A nonwetting gas phase (C1) is injected in the top of a 30 3 200-cm domain
saturated with a wetting oil phase (n-C10). Steady-state oil saturations at 3 PVI (a) and oil recoveries (b).
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highest injection rate, the end effect mainly affects the wetting-
phase saturation near the production side. At lower rates, how-
ever, capillarity considerably reduces flow of oil throughout the
domain and the final recovery is only half of the nonresidual oil.
These results are similar to the findings in Huang and Honarpour
(1998) for oil displacing water. In large-scale applications, the im-
portance of the capillary end effect is not significant.

Example 2: Gas/Oil Flow Perpendicular to Permeability
Discontinuities. The effect of capillarity is most pronounced in
heterogeneous media, because of discontinuities in permeability,
saturation, and capillary pressure gradients. We extend the previ-
ous example to layered media with all parameters the same,
except for the permeability. The injection rate is 0.5 PV/D. First,
we consider two layers of 100 md and 1 md and the effect of the
layer order. We denote the permeability in the top layer (1
m< z< 2 m) by K1 and the permeability in the bottom layer (0
m< z< 1 m) by K2 and consider both K1>K2 and K1<K2. The
relation in Eq. 25 implies that continuity of the capillary pressure

requires So;2 ¼ S
ffiffiffiffiffiffiffiffiffiffi
K2=K1

p
o;1 at the interface.

Fig. 3a shows the steady-state oil saturation at 3 PV injected
(PVI) and Fig. 3b the oil recovery for both configurations with
and without capillarity. Without capillarity, the result is the same
for both configurations and the same as for injection into a homo-
geneous core with a harmonically averaged permeability (i.e., as
in the preceding example). The differences are pronounced when
capillarity is accounted for. For the configuration in which the first
layer has the high permeability (CPU time is 3 minutes), all mo-
bile oil is recovered from the top layer, but some oil remains in
the low permeability bottom layer because of the end effect. The
oil recovery in this case is close to that without capillarity (CPU
is <1 minute). When the top layer has a low-permeability (CPU
time is 8 minutes), a large amount of oil is trapped in both layers
because of the capillary pressure gradient at the interface, and re-

covery is significantly reduced. These findings agree well with the
results presented in Corrêa and Firoozabadi (1996).

Next, we consider 10 alternating layers, with the same perme-
abilities as previously discussed, starting from the bottom with a
high-permeability layer. Fig. 4 illustrates that for multiple layers,
oil is recovered efficiently from the high-permeability layers, but
remains trapped in the low-permeability layers (CPU time is 7
minutes with capillarity). The sharp kink in the oil-recovery plot
indicates the early time at which the high-permeability layers
have been drained.

This effect applies to larger-scale domains as well, as illus-
trated in Fig. 5, in which the simulation is repeated for a
30- 200-m domain, with an injection rate of 0.05 PV/yr (CPU
time is 1 hour).

Example 3: Water/Oil and Gas/Oil Flow Parallel to
Permeability Discontinuities. We compare our simulation re-
sults with Example 3a in Hoteit and Firoozabadi (2008b), which
considers immiscible and incompressible water injection in a hori-
zontal 500- 270-m layered domain, discretized by 50- 90 rectan-
gular elements. The domain has 9 layers with alternating
permeabilities of 100 md (starting from the bottom layer) and 1
md. The porosity is 20% in all layers, the injection rate is 11% PV/
yr, all residual saturations are zero, and the relative permeabilities
are quadratic with unit endpoints. The initial pressure is 300 bar,
the temperature is 288 K, and we choose n-C10 as the nonwetting
phase. At this condition, the water viscosity and density are 1.14
cp and 1.0 g/cm3, respectively, and the oil viscosity and density
are 0.34 cp and 0.74 g/cm3. We perform compositional simulations
with fluid compressibility and assume the same logarithmic de-
pendence of the capillary pressure on water saturation as in Hoteit
and Firoozabadi (2008b).

The wetting aqueous phase is injected uniformly from the left
boundary, displacing the nonwetting oil phase to the right.
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Fig. 3—Example 2: Capillary effect on drainage in two-layer core. A nonwetting gas phase (C1) is injected in the top of a 30 3 200-
cm domain saturated with a wetting oil phase (n-C10). Steady-state oil saturations at 3 PVI (a) and oil recoveries (b).
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Production is at constant pressure from five wells in the high-per-
meability layers on the right boundary. Fig. 6 shows the water sat-
uration at 0.5 PVI, with (CPU time is 30 minutes) and without
(CPU time is 3 minutes) capillarity. When capillarity is neglected,
water flows predominantly through the high-permeability layers,
and breakthrough occurs at approximately 0.55 PVI. The steep
contrast in saturation between the high- and low-permeability
layers, however, drives considerable crossflow when capillarity is
accounted for (Yokoyama and Lake 1981), and we observe a
nearly uniform displacement. The results are in excellent agree-
ment with Hoteit and Firoozabadi (2008b), despite small differen-
ces in fluid parameters and different modeling approaches. We
see the same transverse flow in Fig. 6 in the thin regions around
the permeability discontinuities, as reported in Hoteit and Firoo-
zabadi (2008b).

Next, we generalize the problem to the more complicated case
with gravity, and considering both strongly water-wet capillary
pressures, which are positive for all water saturations, and a
mixed-wet curve, which is negative at high water saturations. The
modeling of imbibition under mixed-wet conditions is the most
challenging problem because of the steeper gradients in capillary
pressure as a function of saturation. Fig. 7 shows the water satura-
tion at 0.5 PVI for simulations without capillarity (Fig. 7a; CPU
time is 1 minute), with the same strongly water-wet capillary pres-
sure used in Fig. 6b (Fig. 7b; CPU time is 19 minutes), and for the
mixed-wet case (Fig. 7c; CPU time is 3 hours). The capillary pres-
sure curves are given in Fig. 7d for K¼ 100 md. Because of the
relatively high injection rate and low effective vertical permeabil-
ity, there is no significant crossflow between the layers from grav-
ity. The saturation profile for the water-wet case is similar to that
without gravity. The more interesting observation is the sweep for
the mixed-wet case, which is in between the results without capil-
larity and with water-wet capillarity. The reason is that at low
water saturations, the capillary pressure curves for the water-wet
and mixed-wet cases are similar, and capillarity drives crossflow

between the layers. However, at high saturations, the capillary
pressure gradients across the layer interfaces change sign and
oppose further crossflow.

For gas/oil drainage, capillary pressure always opposes cross-
flow between layers. We carried out simulations for gas injection
in the same setup as previously discussed, and the results (not
shown) are similar with and without capillarity.

Example 4: Water Injection in Fractured Stacked Blocks. We
consider water injection in a fractured domain composed of
stacked blocks, saturated with a light oil. The initial oil composi-
tion and EOS parameters are given in Table 1. The initial pres-
sure is 300 bar, and the temperature is 400 K. The domain is
2- 10 m and consists of four matrix blocks separated by four dis-
crete fractures, as illustrated in Fig. 8. The matrix permeability
and porosity are 4 md and 44%, respectively. The fractures have
an aperture of 5 mm and the CFE computational fracture elements
have a width of 5 cm. The fractures have residual oil and water
saturations of 10% and linear relative permeabilities with unit
endpoints. In the matrix, the ROS to water is 50%, the endpoint
relative permeabilities are k0

row ¼ 0:3 and k0
rw ¼ 1, and the expo-

nents are nw¼ now¼ 3. The water-wet capillary pressure is of the
form in Eq. 26 with rwo¼ 50 dyne/cm.

We consider the effect of various parameters on oil recovery.
The simulations are carried out on 9- 55-element (Mesh 1) and
19- 103-element (Mesh 2) grids to check convergence, and both
with and without accounting for the capillary pressure. Three PV
of water are injected either from the bottom or the top fracture at
constant rates of either 8 PV/yr or 80 PV/yr, and production is
from the fracture on the other end at a constant pressure. Finally,
we consider the impact of fracture permeability by considering
first Kf¼ 4 darcies and then Kf¼ 100 darcies. The oil recovery
from all simulations with water injection from the bottom is given
in Fig. 9, and for injection from the top in Fig. 10. Next, we will
discuss the results in more detail.
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The oil-recovery curves in Figs. 9 and 10 serve to illustrate a
few key points. First, oil recovery is improved considerably by
capillarity during imbibition in fractured media by driving cross-
flow between the high-permeability fractures and low-permeabil-
ity matrix, similar to the layered media discussed previously.
Inside the matrix blocks, capillarity drives flow from high to low
water saturations. Without the capillary-driven crossflow, gravity
is the main driver of flow between fracture and matrix blocks.
This process, however, is relatively slow and inefficient at high
fracture permeability. This is apparent from Fig. 11, which shows
the water saturation on the fine grid after injecting 0.3 and 1 PV
from the bottom fracture with Kf¼ 4 darcies and Kf¼ 100 darcies.

The effect of capillary-driven crossflow is illustrated in Fig.
12, which shows the water saturation on Mesh 2 after injecting
0.3 PV for both the low and high injection rates and both fracture
permeabilities. We find that at the lower injection rate and frac-
ture permeability, the flow in the matrix is actually faster than in
the fracture and the sweep is highly efficient. This translates into
the early recovery of nearly all mobile oil (Fig. 9b). Importantly,
the results are nearly identical for fracture permeabilities from 4
to 100 darcies. Also beneficial is that, unlike gravitational drain-
age, the crossflow does not depend on the orientation of the frac-
tures or the direction of flow in the fractures. Specifically, the oil
recovery is equally efficient for injection from the bottom or top,

as shown in Fig. 13 and Fig. 10b. The main dependence is on the
injection rate. At high rates, there is less time for the crossflow to
operate and the oil recovery is reduced. Conversely, without
capillarity, injection from the top is even less efficient because
gravitational drainage is less effective (Fig. 10a).

Finally, we find that most of the results have converged even
on the coarse 9- 55 Mesh 1. For the simulations at the low frac-
ture permeability, breakthrough occurs slightly earlier on the
coarse grid because of some numerical dispersion, but the final oil
recovery is the same. For all other simulations, the results are
indistinguishable on Mesh 1 and Mesh 2. The CPU times are
nearly the same for simulations with and without capillarity
because the CFL condition is determined by the convective flow
in the fractures (CFE elements). On Mesh 1, the CPU times for
simulations with and without capillarity are approximately 5
minutes, and on Mesh 2 the CPU times are approximately 25
minutes.

Example 5: Gravity Drainage of Fracture Domain. We con-
sider the impact of capillarity on gravity drainage of a fractured
domain. The domain is saturated with a light oil with composition
and EOS parameters provided in Table 2. The temperature is 400
K and the initial pressure at the bottom is 350 bar, which is just
above the saturation pressure of 341 bar.
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Fig. 7—Example 3: Compressible water injection in oil-saturated layered system with gravity. Water saturation at 0.5 PVI, without
capillarity (a), with strongly water-wet capillary pressure (b), and with mixed-wet capillary pressure (c). The capillary pressure
curves are given in (d).

TABLE 1—INITIAL COMPOSITIONS AND EOS PARAMETERS FOR ALL COMPONENTS IN EXAMPLE 4

Species
Composition,

n (mol%)
Acentric
Factor, x

Critical
Temperature,

Tc (K)

Critical
Pressure,
Pc (bar)

Molar
Weight,

Mw (g/mol)

Critical
Volume,

Vc (cm3/g)

Volume Shift
Parameter,

VSP

Nonzero
Binary Interaction
Coefficients With

Respect to
C1þN2, kC1þN2; j

H2O 0.00 0.344 647 221 18 2.14 — —

C1þN2 0.45 0.011 190 46 16 6.14 –0.154 —

C2 – C3 0.12 0.118 328 47 35 4.73 –0.095 0.037

C4 – C6 0.07 0.234 458 34 70 4.32 –0.047 0.040

C7 – C9 0.08 0.370 566 26 108 4.24 0.038 0.047

C10 – C15 0.12 0.595 651 19 166 4.31 0.115 0.056

C16þ 0.16 1.427 824 10 386 3.75 0.277 0.072
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Example 5a: Sugar-cube Fracture Configuration. We first
consider a 50- 50 m domain, with a sugar-cube-type configura-
tion with 5- 5 m matrix blocks. The grid, fractures, and well are
shown in Fig. 14. The matrix blocks have a porosity of 20%, per-
meability of 1 md, and are discretized by 36 elements each (the
mesh has 71- 71 elements). The fractures have a permeability of
100 darcies and aperture of 1 mm, whereas the width of the CF

fracture elements is 40 cm. The oil-to-water relative permeability
has a power of 3 and endpoint of unity; the water relative perme-
ability has a power 2 and endpoint of 0.3. The ROS to water is
30% in the matrix and 10% in the fractures. To emphasize the
effect of capillarity, we assume a rather high surface tension of
rgo¼ 10 dyne/cm.

In the simulations, the domain is depleted from the bottom frac-
ture (at the left boundary) for 10 years at a constant production rate
of 0.06 PV/yr until the pressure has dropped to 120 bar. Figs. 15
and 16 show the gas saturation at 2, 5, and 10 years for a simulation
without and with capillarity, respectively. It is clear that capillarity
reduces the amount of gravitational segregation to the top of the do-
main. The detrimental result is earlier breakthrough of liberated
gas and a reduction in oil recovery, as shown in Fig. 17.

The lower degree of gravitational segregation may appear to
run counter to our discussion earlier on gas injection in layered
media, in which we observed fast flow of gas through the high-
permeability layers and little crossflow between the high- and
low-permeability layers. However, the process is different in this
case. In the fractures, the capillary pressure is low and the flow in
the fractures is similar with or without capillarity. It is in the ma-
trix that the effect of capillarity is pronounced. Gas appears in the
matrix blocks as a result of the pressure drop rather than through
convective flow. The gradients in gravitational potential drive
segregation of gas toward the top and oil to the bottom, but the
flow is opposed by gradients in the gas/oil capillary pressure in
the opposite direction. As a result, much of the liberated gas
remains trapped in the matrix blocks, as can be seen in Fig. 16.
For this simulation the CPU time with capillarity (2 hours) is
actually lower than without capillarity (2.8 hours) because the
convective fluxes are reduced.

Example 5b: Configuration of Discrete Fractures. One of the
features of our crossflow equilibrium model is that we can model
any configuration of discrete fractures. To provide an example,
we consider now a 100- 100-m domain with 35 discrete fractures
and a relatively fine mesh of 100- 100 elements. The mesh and
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Fig. 8—Example 4: Mesh 1 (a) and Mesh 2 (b) and location of
fractures, injection wells, and production wells.
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Fig. 9—Example 4: Oil recovery for simulations without capillarity for Kf 5 4 darcies (a) and Kf 5 100 darcies (b) and with capillarity
for Kf 5 4 darcies (c) and Kf 5 100 darcies (d). Results are shown for water injection from the bottom at 8 and 80 PV/yr, and 9 3 55
(Mesh 1) and 19 3 103 (Mesh 2) grids.
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the locations of the fractures and the production well (bottom-left
corner) are illustrated in Fig. 18. All other parameters are the
same as previously discussed. Particularly, the production rate is
again 0.06 PV/yr, which corresponds to a lower volumetric rate
for this larger domain, and results in a more pronounced effect of
capillarity.

Figs. 19 and 20 show the gas saturation at 2, 5, and 10 years
for simulations without and with capillarity, respectively (CPU of
approximately 1 day). We find the same behavior in terms of

reduced gravitational segregation and lower oil recovery (Fig. 21)
because of the capillary pressure gradients. Without capillarity,
we further see that when we have discrete fractures that do not
span the full height of the domain, much of the gas from the
underlying matrix block escapes toward the top through the frac-
tures. We note that the fracture model incorporates all physical
interactions between fractures and matrix blocks explicitly, the
same as for an unfractured domain. Specifically, reinfiltration
from a fracture to neighboring matrix blocks is computed
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Fig. 10—Example 4: Oil recovery for simulations without capillarity for Kf 5 4 darcies (a) and Kf 5 100 darcies (b) and with capillarity
for Kf 5 4 darcies (c) and Kf 5 100 darcies (d). Results are shown for water injection from the top at 8 and 80 PV/yr, and 9 3 55 (Mesh
1) and 19 3 103 (Mesh 2) grids.
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Fig. 11—Example 4: Water saturation at 0.3 PVI (a and c) and 1 PVI (b and d) for simulations without capillarity and with fracture
permeability of 4 darcies (a and b) and 100 darcies (c and d). Water is injected at 8 PV/yr from the bottom fracture.
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Fig. 12—Example 4: Water saturation at 0.3 PVI for simulations with capillarity and with fracture permeability of 4 darcies (a, b) and
100 darcies (c, d) and either 8-PV/yr (a, c) or 80-PV/yr injection rate from the bottom fracture.
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Fig. 13—Example 4: Water saturation at 0.3 PVI for simulations with capillarity and with fracture permeability of 4 darcies (a, b) and
100 darcies (c, d) and either 8-PV/yr (a, c) or 80-PV/yr injection rate from the top fracture.

TABLE 2—INITIAL COMPOSITIONS AND EOS PARAMETERS FOR ALL COMPONENTS IN EXAMPLE 5

Species
Composition,

n (mol%)
Acentric
Factor, x

Critical
Temperature,

Tc (K)

Critical
Pressure,
Pc (bar)

Molar
Weight,

Mw (g/mol)

Critical
Volume,

Vc (cm3/g)

Volume Shift
Parameter,

VSP

Nonzero
Binary Interaction
Coefficients With

Respect to
C1þN2, kC1þN2; j

H2O 0.00 0.344 647 221 18 2.14 — —

C1þN2 0.57 0.012 189 46 16 6.09 –0.157 —

C2 – C3 0.16 0.120 330 46 35 4.73 –0.094 0.035

C4 – C6 0.08 0.233 455 35 69 4.32 –0.048 0.040

C6 – C10 0.09 0.428 584 24 120 4.25 0.055 0.048

C11þ 0.11 1.062 751 13 293 4.10 0.130 0.077
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automatically. This phenomenon, which has challenged dual-po-
rosity models, will be quantified in more detail in future work.

Example 6: Gravity Drainage, Water Imbibition, and CO2

Injection in Fracture Domain. In the final example, we com-
bine all the processes discussed so far in a compositional three-
phase problem in a fractured domain, with both drainage and
imbibition capillary pressures (with rwo¼ 50 dyne/cm). We con-
sider the same setup as in Example 5a, but model depletion fol-
lowed by waterflooding and then CO2 injection. Specifically, the

domain is depleted from the bottom for 4 years at 0.06 PV/yr until
the pressure in the production well has dropped to 207 bar and a
gas cap has developed in the top of the domain. In the next stage,
0.4 PV of water is injected from the bottom at a constant rate of
0.05 PV/yr and production is at a constant pressure from the top.
The ROS to water is 50%, so we expect breakthrough to occur
around this time through the fractures. In the final stage, the injec-
tion and production wells are switched and CO2 is injected from
the top at the same rate, with production from the bottom. The
locations of injection and production wells are chosen on the basis
of the relative densities of the fluids at the pressure of 207 bar,
which is held constant during injection: qg¼ 164 kg/m3< qCO2

¼
394 kg=m3 < qo¼ 618 kg/m3< qw¼ 949 kg/m3.

The gas saturation at the end of the depletion stage is similar
to that shown in Figs. 19b and 20b. In the water-injection stage,
there is three-phase flow and both imbibition (water/oil) and
drainage (gas/oil) capillary pressures are considered. Fig. 22
shows the water saturation at the end of water injection (0.4 PVI,
4 years) for simulations without and with capillarity. Similar to
the previous examples, we find that imbibition drives considerable
crossflow between the fractures and the matrix blocks and flow
inside the matrix blocks. Although breakthrough has occurred
without capillarity, in the simulation with capillary we see that
the capillary-driven flow in the matrix blocks may exceed the con-
vective flux in the fractures, delaying breakthrough.

Figs. 23 and 24 show, respectively, the water and gas satura-
tion at one PVI (i.e., after depletion, 0.4 PVI of water injection,
and 0.6 PVI of CO2 injection; CPU time of approximately 12
hours). From the water saturation, we see that water production
will be higher without capillarity. Because of the water/oil capil-
lary pressure gradients, a substantial amount of water from imbi-
bition remains trapped in the matrix blocks during CO2 injection.
The interpretation of the CO2-injection stage is less straightfor-
ward because it depends on the combined effects of the flow of all
three phases, both drainage and imbibition capillary pressures, as
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Fig. 14—Example 5a: Mesh and location of fractures and pro-
duction well.
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Fig. 15—Example 5a: Gas saturation for simulation without capillarity at 2 years (a), 5 years (b), and 10 years (c).
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Fig. 16—Example 5a: Gas saturation for simulation with capillarity at 2 years (a), 5 years (b), and 10 years (c).
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well as strong phase behavior. Fig. 25 shows the oil and gas recov-
eries. The latter is the recovered fraction of the initial gas in place
at surface conditions (i.e., produced CO2 is subtracted). The gas/
oil, water/oil, and water/gas (cumulative) ratios are given in Fig.
26, and the (instantaneous) overall compositions of water and CO2

in the production well are shown in Fig. 27. The trends during
depletion and waterflooding are clear. Oil recovery from depletion
is higher without capillarity and gas/oil ratio is lower, caused by
more-pronounced gravitational segregation. During water injec-
tion, first the gas cap is produced and the oil recovery is initially
low, after which the recovery curve with capillarity is considerably
steeper because of capillary imbibition. The earlier breakthrough
time of water without capillarity is apparent in Fig. 27.

The higher oil recovery with capillarity during CO2 injection
is surprising. We carried out an additional simulation in which we
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Fig. 18—Example 5b: Fracture configuration (a), mesh, and location of fractures and production well (b).
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Fig. 19—Example 5b: Gas saturation for simulation without capillarity at 2 years (a), 5 years (b), and 10 years (c).
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Fig. 20—Example 5b: Gas saturation for simulation with capillarity at 2 years (a), 5 years (b), and 10 years (c).
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Fig. 17—Example 5a: Oil recovery with and without capillarity.
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assume that the gas/oil capillary pressure is negligible for the
CO2-rich gas phase in the CO2-injection stage (CO2 has a high
solubility of 56% in oil at 207 bar, and the surface tension is low
at high pressures). We refer to the capillary pressures for the latter
case by Pc2 in the figures. From carefully studying the production
data (and Fig. 23), it is apparent that the higher oil recovery dur-
ing the CO2-injection stage from capillarity is because of the
imbibition rather than the drainage capillary pressure. From the
gas recovery (Fig. 25b), water- and gas-breakthrough times (Fig.
27), and water/gas ratio (Fig. 26) we find that the gas/oil capillary
pressure does not strongly affect the flow of water and gas during
CO2 injection. Oil recovery is again negatively impacted by gas/
oil capillary pressure: The vanishing capillary pressure in the frac-
tures reduces the drainage of oil from the matrix blocks, similar to
the capillary end-effect discussed in Example 1. This also

50

40

30

20

10

0 10 20
x(m)
(a)

z(
m

)

30 40 50

50

40

30

20

10

0 10 20
x(m)
(b)

z(
m

)

30 40 50

0.90
0.85
0.80
0.75
0.70
0.65
0.60
0.55
0.50
0.45
0.40
0.35
0.30
0.25
0.20
0.15
0.10
0.05
0.00

Sw

Fig. 22—Example 6: Water saturation at 0.4 PV of water injection without (a) and with capillary pressure (b).
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Fig. 21—Example 5b: Oil recovery with and without capillarity.
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Fig. 23—Example 6: Water saturation at 0.4 PV of water and 0.6 PV of CO2 injection without (a) and with capillary pressure (b).
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Fig. 24—Example 6: Gas saturation at 0.4 PV of water and 0.6 PV of CO2 injection without (a) and with capillary pressure (b).
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explains the lower gas/oil and water/oil ratios for Pc2. The benefi-
cial effect of imbibition capillary pressure can be seen in Figs.
26b, 26c, and 27a. To emphasize capillary effects, we have
assumed no residual water saturations in this example. Without
capillarity, most of the water from the waterflood is produced dur-
ing CO2 injection. Capillary pressure gradients at the fracture/ma-
trix interface trap water in the matrix. Instead, oil drains from the
matrix blocks, resulting in higher recovery.

We have attempted to reproduce aspects of Examples 4
through 6 with two of the most widely used commercial reservoir
simulators. However, we find that they fail for problems of this
complexity, because of both the phase behavior and the matrix
inversion in the pressure solve with fractures. In a separate paper,
we will compare less-complicated simulations with other models
and experiments, where available, and study in more detail the
effects of hysteresis and gravitational and capillary reinfiltration.

Conclusions
We have presented a model for capillarity in three-phase compo-
sitional flow in homogeneous, heterogeneous, and fractured po-
rous media. The main features of the new formulation are
1. Both gas/oil and water/oil capillary pressures are considered.
2. The capillary pressure can be computed in each element from

the phase saturations, rock properties, and a composition-
dependent surface tension. Any tabular or functional depend-

ence of relative permeabilities and capillary pressure on satura-
tions can be readily accommodated.

3. The computation of capillary pressures at edges (particularly at
interfaces between regions of different permeability) is based
on the continuity of capillary pressures and fluxes. The gra-
dients in capillary pressure, mobilities, and saturations, how-
ever, are discontinuous. From the cell-centered capillary
pressure and the capillary pressures at the edges, the capillary
pressure gradient can be computed within each element. In
practice, only the capillary-driven flux qc / kKrpc at the
edges is required. These fluxes are derived, independent from
the capillary pressure at the edges, from the harmonic average
of the effective mobility kK and difference in capillary pres-
sure between the neighboring elements.

4. For computational efficiency, we propose a fractional-flow for-
mulation in terms of the total flux. The subsequent computa-
tions of the phase fluxes from the total flux depend on the
upwind mobilities with respect to the phase fluxes, and that
direction cannot be determined a priori when gravity and capil-
larity allow for countercurrent flow. We present an algorithm
in which one phase direction can be determined from the gra-
dients in potential differences, whereas the other two directions
are the self-consistent solution of two trial orientations.

5. We can model capillarity in (discrete) fractured domains at
approximately the same CPU efficiency as without capillarity.
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Fig. 25—Example 6: Oil (a) and gas (b) recovery with and without capillarity. Pc2 has zero gas/oil capillary pressure for CO2-rich
gas phase.
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Fig. 26—Example 6: Gas/oil (a), water/oil (b), and water/gas ratios with and without capillarity. Pc2 has zero gas/oil capillary pres-
sure for CO2-rich gas phase.
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Fig. 27—Example 6: Overall water (a) and CO2 (b) composition in production stream with and without capillarity. Pc2 has zero gas/
oil capillary pressure for CO2-rich gas phase.
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The implementation of capillarity in fractured domains relies
on the crossflow equilibrium concept. Fractures are combined
with a small slice of the matrix on either side to form large
computational elements. These larger elements alleviate the
CFL condition on the timesteps and speed up the solver step
for the pressures, because of the reduced contrast in size and
effective permeability between matrix and fracture grid cells.

6. The model offers the benefits of earlier MHFE-DG implemen-
tations (without capillarity) in terms of low numerical-disper-
sion and grid-orientation effects, and an accurate continuous
flux field across heterogeneities and fractures.

Nomenclature
g ¼ gravitational acceleration vector
K ¼ absolute permeability tensor
R ¼ universal gas constant
T ¼ (isothermal) temperature
/ ¼ rock porosity (intrinsic porosity inside fractures is 1)

Phase Properties
ca ¼ molar density

fa = ka/kt ¼ fractional flow function
~f

tot

a ¼ fractional flow function from both fracture and matrix
contributions in crossflow element

Ga ¼ auxiliary variable defined in Eq. 12
Ji,a ¼ diffusive flux

ka¼Kka ¼ effective mobility
kra ¼ relative permeability
~k

tot

a ¼ effective mobility from both fracture and matrix
contributions in crossflow element, as defined in Eq.
24

Ki,a ¼ equilibrium ratio (Eq. 14)
pa ¼ pressure
Sa ¼ saturation (volume fraction)
ua ¼ convective flux (Eq. 1)

VSPa ¼ volume shift parameter
xi,a ¼ species molar fraction
Za ¼ compressibility factor
ba ¼ phase molar fraction

ka¼kra/la ¼ mobility
la ¼ viscosity
qa ¼ mass density

ui,a ¼ fugacity coefficient

Properties in Multiphase Mixture
c ¼ total molar density

Fi ¼ sink/source term
||keff|| ¼ weighted effective mobility across an edge E, as

defined in Eq. 30
kt¼Raka ¼ total effective mobility

pc,go ¼ gas/oil capillary pressure (Eqs. 2 and 25)
pc,gw ¼ gas/water capillary pressure
pc,wo ¼ water/oil capillary pressure (Eqs. 3 and 26)

Pi ¼ parachor
So,eff ¼ effective oil saturation (Eq. 25)

Srg ¼ critical or residual gas saturation
Srog ¼ residual oil saturation to gas
Srow ¼ residual oil saturation to water
Swc ¼ connate or residual water saturation

Sw,eff ¼ effective water saturation (Eq. 26)
ut ¼ summed convective phase fluxes (Eq. 11)
Ui ¼ total convective plus diffusive flux (Eq. 10)
" i ¼ total partial molar volume
zi ¼ total molar fraction

jT ¼ total fluid compressibility (may also include rock
compressibility)

rgo ¼ gas/oil surface tension (Eq. 27)
rwo ¼ water/oil surface tension
Ugo ¼ gas/oil potential difference (Eq. 31)

Uwg ¼ water/gas potential difference (Eq. 33)
Uwo ¼ water/oil potential difference (Eq. 32)

Discretization Parameters
E ¼ grid edge
K ¼ grid element, with boundary @K

nK,E ¼ outward normal with respect of edge E of element K
po,K ¼ element averaged oil pressure

qa,K,E ¼ discretized phase convective flux across E (given in
Eq. 24 for a CF element)

qc
go,K,E ¼ discretized gas/oil capillary contribution to the flux

across E (Eq. 29)
qc

wo,K,E ¼ discretized water/oil capillary contribution to the
flux across E (similar to Eq. 29)

qdiff
ia,K,E ¼ discretized diffusive phase flux across E of species i
qg

K,E ¼ discretized gravitational contribution to the flux
across E

qK,E ¼ discretized total convective flux across E (Eq. 18)
tpo,K,E ¼ edge averaged oil pressure

wK,E ¼ lowest-order Raviart-Thomas basis vector field
Df ¼ width of crossflow element
Dt ¼ timestep
Dx ¼ grid size
! ¼ Df / |E|

Subscript
a ¼ phase index
c ¼ capillary
g ¼ gas

go ¼ gas/oil
i ¼ species index

nc ¼ total number of components
o ¼ oil
w ¼ water

wg ¼ water/gas
wo ¼ water/oil

Superscript
c ¼ capillary
f ¼ fracture properties
g ¼ gravitational
m ¼ matrix properties
n ¼ timestep
~x ¼ upwind value of parameter x
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Appendix A: Coefficients in MHFE Expansion of
Convective Fluxes and Pressures
The bK,E,E0 and hK,E coefficients in Eq. 18 are given by

bK;E;E0 ¼ kt;K

ð

K

wK;EK"1
K wK;E0

0

@

1

A
"1

and hK;E ¼
X

E0
bK;E;E0 :

& & & & & & & & & & & & & & & & & & & ðA-1Þ

To provide the coefficients in Eq. 20, we first introduce the
notation

mi;K;E ¼
X

a

ca;K;Exi;a;K;Efa;K;E;

~vK;E ¼
Xnc

i¼1

vimi;K;E; and

si;K ¼
X

a

ca;K;Exi;a;K;Efa;K;EGa;K;E; & & & & & & & & & & & ðA-2Þ

where ~si;K;E ¼
ð

E
si;K & nK;E and ca,K,E, xi,a,K,E, and fa;K;E are the

molar density, molar composition, and fractional flow function
evaluated at edge E, respectively. The contributions from capillar-
ity are incorporated in Ga,K,E, from Eq. 12, with capillary pressure
gradients at each edge E written in terms of discretized qc

go;K;E and
qc

wo;K;E terms. The coefficients in Eq. 20 are expressed in terms of
the previously discussed definitions as

~aK ¼
X

E2K

~vK;EhK;E; ~bK;E ¼
X

E02@K

~vK;EbK;E;E0 ; and

~cK ¼
X

E2@K

~vK;EcK;E þ
Xnc

i¼1

vi~si;K;E

 !
: & & & & & & & & & & & & ðA-3Þ

For NK grid elements and NE edges, P is the NK-sized vector of
element-averaged oil pressures and TP is a NE-sized vector of the
oil pressure traces at all the edges. For the global MHFE system
of equations, the coefficients in Eqs. A-1 and A-3 are collected in
the following matrices:

R 2 RNK NE ; RK;E ¼ hK;E; ðA-4Þ

M 2 RNE;NE ; ME;E0 ¼
X

K:E;E02@K

bK;E;E0 ðA-5Þ

I 2 RNE ; IE ¼
X

K:E2@K

cK;E ðA-6Þ

D 2 RNK ;NK ; DKK ¼
jT/jKj

Dt
þ ~aK ðA-7Þ

~R 2 RNK NE ; ~RK;E ¼ ~bK;E ðA-8Þ

G 2 RNK ; GK ¼ jT/jKj pKðtoldÞ
Dt

þ ~cK : ðA-9Þ
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