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The combination of successive substitution and the Newton method provides a robust
and efficient algorithm to solve the nonlinear isofugacity and mass balance equations
for two-phase split computations. The two-phase Rachford–Rice equation may some-
times introduce complexity, but the Newton and bisection methods provide a robust so-
lution algorithm. For three-phase split calculations, the literature shows that the com-
puted three-phase region is smaller than measured data indicate. We suggest that an
improved solution algorithm for the three-phase Rachford–Rice equations can address
the problem. Our proposal is to use a two-dimensional bisection method to provide
good initial guesses for the Newton algorithm used to solve the three-phase Rachford–
Rice equations. In this work, we present examples of various degree of complexity to
demonstrate powerful features of the combined bisection-Newton method in three-
phase split calculations. To the best of our knowledge, the use of the bisection method
in two variables has not been used to solve the three-phase Rachford–Rice equations
in the past. VVC 2010 American Institute of Chemical Engineers AIChE J, 57: 2555–2565, 2011
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Introduction

Three phase-split computations are important in a variety
of chemical engineering problems, including reservoir per-
formance and recovery studies. In such studies, phase behav-
ior effects become important in two different ways; the
transfer of species between the phases, and the effect of
change in phase composition on phase volumes, viscosity,
and interfacial tension. While in the past, the focus has been
on two-phase compositional simulation, there are important
needs for three-phase compositional models for the injection
of CO2, steam, steam-additives, and solvents. Due to the
high solubility of CO2 in both oil and water phases, and the
resulting density increase, rigorous three-phase compositional
modeling can be crucial to determine the breakthrough of
CO2 and its proper distribution in the reservoir. In some

CO2 -injection applications, a heavy hydrocarbon-rich liquid
phase and a light CO2 -rich liquid phase at high temperatures
(as high as 260�F) may form. There are cases where the
amounts of the two liquid phases and the gas phase are com-
parable. Three-phase regions may be much broader at higher
than at lower temperatures. Another important application of
three-phase computations is in asphaltene precipitation.

Phase-split computations and phase stability analysis can

take as much as 50% of the total CPU time in two-phase

reservoir simulations. In complicated problems, they may be

even more expensive. In three-phase compositional model-

ing, phase behavior computations can be even more time

consuming than in two-phase.

There has been much progress in two-phase stability and
two-phase split calculations based on equations of state.1,2

On the other hand, three-phase split calculations are not yet
mature enough for implementation in commercial composi-
tional reservoir simulators, despite a large number of publi-
cations on the subject.3–6 Michelsen and Møllerup7 point out
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that convergence of successive substitutions and its variants
may be problematic in multiphase flash computations.

The requirements in compositional simulations are: (1)
robustness, and 2 efficiency (i.e., fast computations for billions
of phase splits). Robust methods are often based on direct
minimization of Gibbs free energy but are too slow for large
scale reservoir simulations.8,9 More efficient methods are
available, but they do not have the required robustness.

There is a wide range of techniques available to solve the
algebraic nonlinear equations which define phase stability and
phase-split calculations. This article focuses on the latter. For
two-phase split calculations, the combination of successive
substitution and the Newton method has proved to be both ro-
bust and efficient.10 The Newton method has quadratic con-
vergence rate. If the Jacobian is not too small and the initial
guess is good enough, convergence is achieved in a few itera-
tions. Successive substitution has a linear convergence rate
and provides a good initial guess for the Newton method if it
is not available from the previous time step of the simulation.
It has been our experience that in simulations of gas injection
processes in complex problems such as fractured reservoirs,
there could be significant variations of composition between
time steps. Thus, there is a need for careful selection of techni-
ques for stability and phase-split calculations.

A major difficulty in two-phase split computations is the
solution of the deceptively simple Rachford–Rice equation11

which is part of the successive substitution. Here, the New-
ton method is usually used to solve for the phase fraction.
The initial guess is an issue. The method can also run into
problems when the derivative with respect to phase fraction
is close to zero, as is true for the critical region. In such a
case, the bisection method provides a simple and robust so-
lution.12 The bisection method is very inexpensive and is
guaranteed to converge fast for the solution to the two-phase
Rachford–Rice equation. As a whole, the combination of sta-
bility analysis (for both phase stability testing and obtaining
an initial estimate of the equilibrium ratios), successive sub-
stitution, and the Newton method is both efficient and ro-
bust. In recent years, the use of the reduction variables has
added further efficiency.13,14

Examination of the literature shows that the computed
three-phase envelopes in pressure—composition space are
sometimes much smaller than the measured phase enve-
lopes.15–17 While one may suspect the deficiency of the
cubic equation used in computations, there may be computa-
tional problems that lead to the difference between measured
data and predictions. Surprisingly, the solution to the three-
phase Rachford–Rice equations that comprise part of the
successive substitution is believed to be the problem. The
Newton method requires good initial guesses for the phase
fractions and if they are not provided, the three-phase region
will not be computed properly.

The major goal of this work is to develop an efficient and
robust algorithm for three-phase split calculations. Although
our interests include both CO2–crude systems and water–
crude systems, the examples presented here are limited to
the former. For water–crude systems, simple cubic equations
of state such as the Peng-Robinson may not be adequate due
to high water polarity and resulting association. Recently,
the cubic plus association approach has been shown to
adequately describe the phase behavior of water-containing

reservoir fluids with and without CO2 when cross association
is taken into account.18

Despite the fact that some authors19,20 who have specifi-
cally dealt with three-phase split computations do not report
a problem, solving the three-phase Rachford–Rice expres-
sions is not trivial. Even for the two-phase Rachford–Rice
expression, Leibovici and Neoschil6 suggest the need for the
bisection method and a revised formulation of the two-phase
Rachford–Rice equation. These authors remark that the re-
vised formulation cannot be applied in the three-phase and
higher phase split calculations. Instead, they propose a modi-
fied Newton method. Michelsen5 suggested to formulate the
multiphase Rachford–Rice problem as a minimization prob-
lem of a convex function where the gradient vector consists
of the Rachford–Rice expressions. The approach has recently
been adopted by Leibovici and Nichita21 and Okuno et al.22

These authors use a Newton’s method with a line search
technique. However, there is no attempt to predict entire
phase envelopes (e.g., in pressure-composition space) that
will provide a true test of the algorithms.

This article is structured along the following. We first
present the problem formulation. Next, we briefly discuss the
solution procedure. A two-dimensional bisection algorithm
used to obtain an initial guess for the solution to the three-
phase Rachford–Rice expressions is then discussed in detail.
The two-dimensional bisection technique is only used to
generate an initial guess for the first iteration of a successive
substitution loop. Finally, we present complete phase-dia-
grams in pressure-composition space for different petroleum
fluids before concluding the article with a few remarks.

Problem Formulation

In a three-phase split calculation, we seek three different
phases in thermodynamic equilibrium, i.e., the fugacity of
each component is the same in all three phases,

fxi ¼ fyi ¼ fzi; i ¼ 1 � � �N: (1)

Here, fxi, fyi, and fzi are the fugacities of component i in
phases x, y, and z, respectively. N is the total number of
components. Choosing phase x to be the reference phase, we
can express equilibrium ratios Kyi ¼ yi/xi and Kzi ¼ zi/xi as

lnKyi ¼ ln/xi � ln/yi; i ¼ 1 � � �N;
lnKzi ¼ ln/xi � ln/zi; i ¼ 1 � � �N; (2)

where /xi, /yi, and /zi are the fugacity coefficients of
component i in phases x, y, and z, respectively. In this work,
the fugacity coefficients were calculated from the Peng-
Robinson equation of state and the van der Waal’s mixing
rules.

The system of non-linear equations in Eq. 2 is solved sub-
ject to mole fraction constraints which is readily expressed
by the three-phase Rachford–Rice equations

RRy ¼
PN
i¼1

ni Kyi�1ð Þ
1þby Kyi�1ð Þþbz Kzi�1ð Þ ¼ 0;

RRz ¼
PN
i¼1

ni Kzi�1ð Þ
1þby Kyi�1ð Þþbz Kzi�1ð Þ ¼ 0:

(3)
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In the above expressions, ni is the feed mole fraction of
component i, while by and bz are the mole fractions of
phases y and z, respectively. Note that a physical solution
requires both phase fractions and their sum to be between
zero and unity. Based on mass balance, the mole fractions xi
of the reference phase relate to the equilibrium ratios and
phase fractions by

xi ¼ ni

1þ by Kyi � 1
� �þ bz Kzi � 1ð Þ : (4)

The mole fractions in phases y and z can subsequently be
found by yi ¼ Kyixi and zi ¼ Kzixi.

Solution Procedure

Our three-phase split algorithm is divided into the follow-
ing steps:

1. Initial estimate of the equilibrium ratios: The initial
estimate can be obtained from correlations, stability analysis
or previous time steps.

2. Two-dimensional bisection: The algorithm is used to
obtain an initial guess for the phase fractions from the equi-
librium ratios.

3. Successive substitution: The method updates the phase
fractions and equilibrium ratios iteratively. Note that within
each successive substitution the Rachford–Rice equations are
solved by the Newton method. In other words, the two-
dimensional bisection algorithm is only applied once, i.e.,
before the first successive substitution.

4. Newton method: Once the switching criterion is
met, the successive substitution algorithm is abandoned
and the Newton method is used on the system of equa-
tions formed by the iso-fugacity and Rachford–Rice equa-
tions. The method is used until the convergence criterion
is met.

Figure 1. A plot of the search domain and the solutions
to the three-phase Rachford–Rice equation.

The equations are simultaneously satisfied at the intersection
between the two lines.

Figure 2. A cartoon showing how a triangle (top) is di-
vided in two by connecting the midpoint of
the hypotenuse and the opposite corner
(middle).

A subtriangle is discarded (bottom) if either three-phase
Rachford–Rice equation does not change sign on its three
corners.

AIChE Journal September 2011 Vol. 57, No. 9 Published on behalf of the AIChE DOI 10.1002/aic 2557



Figure 3. A cartoon showing how the bisection algo-
rithm quickly locates the solution when the
lines defined by RRy 5 0 and RRz 5 0 inter-
sect at a sufficiently large angle.

The snapshots are taken after 2, 5, and 9 iterations.

Figure 4. A cartoon showing how the bisection algo-
rithm fails to find the solution when the lines
defined by RRy 5 0 and RRz 5 0 are essen-
tially parallel.

The snapshots are taken after 2, 5, and 9 iterations.
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In the following, we discuss the successive substitution
and Newton algorithms in some detail. An elaborate discus-
sion of the two-dimensional bisection technique is deferred
to the next section.

In a Newton iteration, the equilibrium conditions in Eq. 2
and the Rachford–Rice expressions in Eq. 3 are solved
simultaneously. For an N- component mixture, Eqs. 2 and 3
form a set of 2N þ 2 equations in 2N þ 2 unknowns. We
choose our primary unknowns to be the phase fractions by,
and bz, and the natural logarithm of the equilibrium ratios
Kyi, and Kzi. Equilibrium ratios are preferred over mole frac-
tions because the latter choice leads to an ill-defined Jaco-
bian close to the phase boundaries, and using the natural log-
arithm stabilizes the Newton method when the equilibrium
ratios span several orders of magnitude. In the Newton algo-
rithm, we define the residual vector ~e as

~e ¼
eyi
� �
RRy

� �
ezi½ �
RRz½ �

2
664

3
775; (5)

where

eyi ¼ lnKyi � ln/xi þ ln/yi; (6a)

ezi ¼ lnKzi � ln/xi þ ln/zi:
(6b)

In each iteration, equilibrium ratios and phase fractions are
updated by solving for ~D in the following matrix equation,

J �~D ¼ �~e: (7)

Here ~D contains the increments of our primary variables,
i.e.,

~D ¼
D lnKyi

� �
Dby
� �
D lnKzi½ �
Dbz½ �

2
664

3
775; (8)

and J is the Jacobian defined by

J ¼

@eyi
@ lnKyj

h i
@eyi
@by

h i
@eyi

@ lnKzj

h i
@eyi
@bz

h i

@RRy

@ lnKyj

h i
@RRy

@by

h i
@RRy

@ lnKzj

h i
@RRy

@bz

h i

@ezi
@ lnKyj

h i
@ezi
@by

h i
@ezi

@ lnKzj

h i
@ezi
@bz

h i

@RRz

@ lnKyj

h i
@RRz

@by

h i
@RRz

@ lnKzj

h i
@RRz

@bz

h i

2
6666666664

3
7777777775

: (9)

The Newton method has a quadratic convergence rate and,
in our work, it generally converges in 2–3 iterations. How-
ever, the convergence radius is small and the Newton
method is only applied after a sufficiently good initial esti-
mate has been obtained by successive substitutions.

In a successive substitution, the equilibrium ratios are first
assumed constants and the three-phase Rachford–Rice equa-
tions are solved for the phase fractions by and bz. The updated
phase fractions allow us to update the mole fractions and hence
the fugacity coefficients of each component in the three phases.
The equilibrium ratios are then updated by the use of Eq. 2.
Successive substitutions have a linear convergence rate and the
change in phase fractions between iterations is often small. In
our experience, the phase fractions from one iteration is a good
enough initial estimate for the phase fractions at the next itera-
tion to allow for the use of the Newton method to solve the
Rachford–Rice equations. The method generally converges in
2–5 iterations. The problem is that when the initial estimate of
the equilibrium ratios comes from a correlation or from stabil-
ity analysis, we do not have an initial estimate for the phase
fractions for the first iteration of the successive substitution.
Our solution to the problem is the introduction of a two-dimen-
sional bisection technique.

Two-Dimensional Bisection

When the equilibrium ratios are kept constant, each three-
phase Rachford–Rice equation is a function of two independ-
ent variables, i.e., by and bz. The solution to these equations
will therefore form a line in the by-bz -plane (see Figure 1).

Table 1. Mole Fractions (xi, yi, and zi) and Phase Fractions (bj) for a Liquid–Gas–Water Example

ni xi yi zi Kiy Kiz

C2 0.20 6.7344 � 10�2 2.9260 � 10�1 – 4.3449 –
C3 0.50 5.0745 � 10�1 5.7674 � 10�1 – 1.1366 –
C4 0.20 4.2509 � 10�1 1.2932 � 10�1 – 0.3042 –
H2O 0.10 1.1495 � 10�4 1.3308 � 10�3 1 11.577 8699.3
bj 0.2823 0.6185 0.0991

The labels x, y, and z refer to first liquid, gas, and water phases, respectively. Feed mole fractions (ni) and equilibrium ratios (Kiy and Kiz) are from Michelsen.5

Table 2. Mole Fractions (xi, yi, and zi) and Phase Fractions (bj) for a Liquid–Liquid–Gas Example

ni xi yi zi Kiy Kiz

C1 0.66 1.0014 � 10�1 9.7613 � 10�1 6.9548 � 10�1 9.7474 6.9448
C2 0.03 1.5340 � 10�2 4.3470 � 10�3 6.6386 � 10�2 0.2834 4.3275
C3 0.01 4.1399 � 10�3 1.6052 � 10�4 2.4111 � 10�2 0.0388 5.8241
CO2 0.05 7.3085 � 10�2 1.2983 � 10�2 7.3598 � 10�2 0.1776 1.0070
H2S 0.25 8.0729 � 10�1 6.3769 � 10�3 1.4043 � 10�1 0.0079 0.1740
bj 0.2422 0.3873 0.3706

The labels x, y, and z refer to first liquid, gas, and second liquid phases, respectively. Feed mole fractions (ni) and equilibrium ratios (Kiy and Kiz) are from
Michelsen.5
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The three-phase Rachford–Rice equations are simultaneously
satisfied where the two lines intersect. Three-phase solutions
must lie inside an equilateral triangle defined by the by-bz-
coordinates (0,1), (0,0), and (1,0). In our implementation of
the two-dimensional bisection technique, the search domain
is limited to this triangle.

In the first step of the bisection algorithm, we propose to
divide the initial domain into two subdomains. This is done
by connecting the midpoint of the hypotenuse and the oppo-
site corner (see Figure 2). The approach divides the parent
triangle into subtriangles of identical shapes. Thus, the
refined mesh exhibits no directional bias. Next, the three-
phase Rachford–Rice expressions are evaluated on the cor-
ners of each subtriangle. If either one of them has the same
sign on all three corners, we assume it does not equal zero
anywhere inside that subtriangle and the subtriangle is dis-
carded. In subsequent iterations, the above procedure is
repeated for each accepted subtriangle. Note that dividing a
triangle in two only requires calculating the coordinates of
one additional point. The other coordinates are available
from the parent triangle. The same is true for the values of
the three-phase Rachford–Rice expressions. Thus, each itera-
tion is very inexpensive. Due to the additional dimension,
two-dimensional bisection refines the domain by a factor offfiffiffi
2

p
per iteration while its one-dimensional counterpart

refines the domain by a factor of 2. In our three-phase split
algorithm, we use 20 bisection iterations. At that point, the
average value of the coordinates of the remaining triangles
are used as an initial guess for the Newton method. Provided
the mixture is not too close to a bicritical point where two
of the phases have almost identical compositions, the combi-
nation of two-dimensional bisection and the Newton method
proves to be a robust and efficient way of solving the three-
phase Rachford–Rice equations. Figure 3 shows snapshots of
our proposed bisection technique for a noncritical mixture.
Using 20 bisection iterations is a very conservative choice.
In most cases, 5–10 iterations is more than sufficient. Thus,
implementing a switching criterion to dynamically determine
the number of bisection iterations is an alternative.

Close to a bicritical point, two of the phases have very
similar compositions. If one of these phases is the reference
phase x, one set of equilibrium ratios Kyi or Kzi will be close
to unity. If not, the two sets of equilibrium ratios are close
to one another. In a bicritical case, the two lines defined by
the three-phase Rachford–Rice expressions will be close to
parallel. As a result, finding the solution requires a very high
resolution perpendicular to the lines. The two-dimensional
bisection method does not have a directional bias. Conse-
quently, there will be a large number of triangles clustering
along the lines (see Figure 4). This will eventually make
each bisection iteration unacceptably expensive, both in
terms of memory usage and CPU time. One solution to the
problem is to introduce a directional bias by using triangles
with a very small aspect ratio, i.e., with a much smaller
dimension perpendicular to the lines than parallel to them.
We choose an alternative approach. If at any iteration the
number of accepted triangles in the two-dimensional bisec-
tion algorithm exceeds 50, we assume the mixture is close to
a bicritical point and exit the loop. Then, we perform a one-
dimensional bisection along a straight line lying very close
to the near-parallel solutions RRy ¼ 0 and RRz ¼ 0. When
Kyi ^ 1 (or Kzi ^ 1) an inspection of Eq. 3 reveals that the
solution must lie very close to the line bz ¼b (or by ¼b)
where b is the solution to the two-phase Rachford–Rice
equation. When Kyi ^ Kzi, it is helpful to rewrite Eq. 3 in
the following way:

RRy ¼
PN
i¼1

ni Kyi�1ð Þ
1þ byþbzð Þ Kyi�1ð Þþbz Kzi�Kyið Þ ¼ 0;

RRz ¼
PN
i¼1

ni Kzi�1ð Þ
1þ byþbzð Þ Kzi�1ð Þ�by Kzi�Kyið Þ ¼ 0:

(10)

Note that the rightmost term in both denominators are
negligible when Kyi ^ Kzi. Thus, both three-phase Rach-
ford–Rice expressions are essentially equal to their two-
phase counterpart. Conclusively, the solution must lie very
close to the line by þ bz ¼b. Performing a one-dimensional

Table 3. Mole Fractions (xi, yi, and zi) and Phase Fractions (bj) for a Liquid–Liquid–Solid Example

ni xi yi zi Kiy Kiz

C1 0.66 9.7801 � 10�2 7.9150 � 10�1 – 8.0930 –
C2 0.03 7.7979 � 10�3 3.5193 � 10�2 – 4.5132 –
C3 0.01 1.9961 � 10�3 1.1872 � 10�2 – 5.9477 –
CO2 0.05 5.1475 � 10�2 4.9655 � 10�2 – 0.9646 15.318
H2S 0.25 8.4093 � 10�1 1.1178 � 10�1 – 0.1329 1.1972
bj 0.1896 0.8104 0

The labels x, y, and z refer to first liquid, second liquid, and solid phases, respectively. Feed mole fractions (ni) and equilibrium ratios (Kiy and Kiz) are from
Michelsen.5

Table 4. Feed Mole Fractions (n), Critical Temperatures TC, Critical Pressures PC, Acentric Factors x and Nonzero Binary
Interaction Coeffcients kij for Sour Gas

Component n TC (K) PC (bar) x ki,CO2
ki,N2

ki,H2S

CO2 0.7059 304.2 73.9 0.225 –
N2 0.0703 126.2 33.5 0.040 �0.020 –
H2S 0.0197 373.2 89.4 0.081 0.120 0.200 –
C1 0.0686 190.6 45.4 0.008 0.125 0.031 0.100
C2 0.1056 305.4 48.2 0.098 0.135 0.042 0.080
C3 0.0297 369.8 41.9 0.152 0.150 0.091 0.080
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bisection on the three-phase Rachford–Rice expressions
along the appropriate line, provides the initial guess for the
Newton method. In our experience, the approach always puts
the initial guess inside the convergence radius of the Newton
method. This simple procedure makes our proposed method
very robust, even in the bicritical region.

Note that the three different kinds of bicritical regions, Kyi

^ 1, Kzi ^ 1, and Kyi ^ Kzi, are a result of phase labeling.
In our implementation, we only treat the case when Kyi ^
Kzi. If the cases Kyi ^ 1 or Kzi ^ 1 are encountered, we
simply switch the reference phase.

Results

The challenge of finding a good initial guess for the three-
phase Rachford–Rice equation is nearly ignored in the litera-
ture. One notable exception is Michelsen5 who obtains phase
fractions from the minimization of an alternative objective
function. The approach is valid for any number of phases.
Moreover, as the objective function is convex, a unique solu-
tion is guaranteed to exist. Michelsen argues that the main
complexity of calculating the phase distribution in multi-
phase problems is that phases may appear or disappear

Figure 5. A plot showing how the phase amounts of
liquid 1 (disks), liquid 2 (triangles), and vapor
(squares) change across the three phase en-
velope for the sour gas at T 5 178.8 K.

The CO2 mole fraction is fixed at 0.60.

Figure 6. A plot showing how the phase amounts of
liquid 1 (disks), liquid 2 (triangles), and vapor
(squares) change across the three phase en-
velope for Oil B at T 5 307.6 K.

The CO2 mole fraction is fixed at 0.75.

Figure 7. A plot showing how the phase amounts of
liquid 1 (disks), liquid 2 (triangles), and vapor
(squares) change across the three phase en-
velope for the Maljamar separator oil at T 5
305.4 K.

The CO2 mole fraction is fixed at 0.977.

Figure 8. A plot showing how the phase amounts of
liquid 1 (disks), liquid 2 (triangles), and vapor
(squares) change across the three phase en-
velope for the Maljamar reservoir oil at T 5
305.4 K.

The CO2 mole fraction is fixed at 0.90.
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between iterations. Thus, he finds it convenient to treat all
phase fractions as independent unknowns. Conclusively, for
a given number of phases, Michelsen’s approach involves
one more unknown than the corresponding Rachford–Rice
equation where the fact that the sum of all phase fractions
equals unity is used to eliminate one of them. Our solution
procedure does not have issues with the number of phases
changing between iterations. The two-dimensional bisection
algorithm is only used to provide initial guesses for the

phase fractions for the first successive substitution. Subse-
quent iterations use phase fractions from the previous itera-
tion as initial guesses.

Michelsen5 provides the results of four example calcula-
tions. In addition to feed compositions and phase fractions,
he also reports the fugacity coefficients of each component
in all phases for each mixture. After choosing a reference
phase, the information can be used to calculate equilibrium
ratios. We can then compare Michelsen’s results to those

Figure 9. A phase diagram for the sour gas at T 5
178.8 K showing the single-phase, two-
phase, and three-phase regions. V denotes
vapor and L1 and L2 denote the two liquid
phases.

The three-phase region terminates at the points where the
three single-phase regions touch the three-phase boundary.

Figure 10. A phase diagram for Oil B at T 5 307.6K
showing the single-phase, two-phase and
three-phase regions.

V denotes vapor and L1 and L2 denote the two liquid pha-
ses.The three-phase region terminates at a bicritical point
(l) and at the point where the single liquid-phase region
touches the three-phase boundary.

Figure 11. A phase diagram for the Maljamar separator
oil at T 5 305.4 K showing the single-phase,
two-phase and three-phase regions.

V denotes vapor and L1 and L2 denote the two liquid pha-
ses.The three-phase region terminates at a bicritical point
(l) and at the point where the single liquid-phase region
touches the three-phase boundary.

Figure 12. A phase diagram for the Maljamar reservoir
oil at T 5 305.4 K showing the two-phase
and three-phase regions.

V denotes vapor and L1 and L2 denote the two liquid
phases. The three-phase region terminates at two bicritical
points (l).
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obtained from our own three-phase split calculations.
Michelsen’s first example is a three-phase four-component
mixture (see Table 1). One of the phases is pure water. The
calculated phase fractions are in perfect agreement with
those reported by Michelsen. Example 2a is a four-phase
mixture in five components (see Table 2). The solid phase is
only present in a tiny amount and, as our algorithm is only
applicable to three-phase mixtures, we simply ignored it.
The calculated phase fractions show excellent agreement
with Michelsen’s results. Example 2b is the only case where
our results do not agree with those reported from Michelsen.
He finds a three-phase mixture with two liquid and one solid
phases, while in our case, there is no solid present (see Table
3). Taking a closer look at Michelsen’s results reveals that
the sum of mole fractions in the solid phase does not equal
unity, implying that the solution is not valid. This may be
due to an error in the reported fugacity coefficients. All
example calculations were initialized with five bisection iter-
ations. The subsequent algorithm for the solution of the
three-phase Rachford–Rice equations requires five newton
iterations.

The above example calculations are very useful for bench-

marking purposes. However, they do not give any indication

of the robustness of the method. For instance, all of the mix-

tures are far away from any bicritical points. A more thor-
ough test is to use the three-phase split algorithm to compute

three-phase envelopes. The procedure involves phase split

calculations across the three-phase regions. We constructed

three-phase envelopes of four CO2 -hydrocarbon mixtures:

(1) Sour gas from Robinson et al.23 with the modified com-

position from Pan and Firoozabadi,24 (2) Oil B from Shelton

and Yarbourough,25 (3) Maljamar separator oil from Orr

et al.,26 and (4) Maljamar reservoir oil also from Orr et al.26

We provide the composition, critical properties, acentric fac-

tors, and nonzero binary interaction coefficients for the oils

in Tables 4–7.
The sour gas has the largest three-phase region of the

four petroleum fluids (see Figure 9). Its three-phase enve-
lope is terminated at three points where the three single-
phase regions touch the three-phase boundary. The same
three points separate the three two-phase regions. The sour
gas phase diagram is the most complex in the sense that it
contains all possible equilibrium states. On the other hand,
there are no bicritical points. Therefore, the sour gas three-
phase envelope is the easiest one to compute. Figure 5
shows variations in phase fractions for a given feed com-
position.

Oil B has a fairly narrow three-phase region (see Figure
10). Unlike the sour gas, there is a bicritical point on the
three-phase boundary. Our three-phase split algorithm is able
to get very close to either side of the bicritical point. The
three-phase envelope for Oil B is fundamentally different
from that of the sour gas. It is terminated at only two points,
i.e., the bicritical point where the vapor and one of the liquid
phases become indistinguishable and the point where the sin-
gle liquid phase region touches the three-phase boundary.
Figure 6 shows an example of how phase fractions change
across the three-phase region.

Table 5. Feed Mole Fractions (n), Critical Temperatures TC, Critical Pressures PC, Acentric Factors x and Nonzero Binary
Interaction Coeffcients kij for Oil B

Component n TC (K) PC (bar) x ki,CO2
ki,N2

ki,C1

CO2 0.0011 304.2 73.9 0.225 –
N2 0.0048 126.2 33.5 0.040 �0.020 –
C1 0.1630 190.6 45.4 0.008 0.075 0.080 –
C2 0.0403 305.4 48.2 0.098 0.080 0.070 0.003
C3 0.0297 369.8 41.9 0.152 0.080 0.070 0.010
iC4 0.0036 408.1 36.0 0.176 0.085 0.060 0.018
nC4 0.0329 425.2 37.5 0.193 0.085 0.060 0.018
iC5 0.0158 460.4 33.4 0.227 0.085 0.060 0.025
nC5 0.0215 469.6 33.3 0.251 0.085 0.060 0.026
C6 0.0332 506.4 33.9 0.299 0.095 0.050 0.036
PC1 0.1813 566.6 25.3 0.389 0.095 0.100 0.049
PC2 0.1614 647.1 19.1 0.529 0.095 0.120 0.073
PC3 0.1253 719.4 14.2 0.691 0.095 0.120 0.098
PC4 0.0954 784.9 10.5 0.878 0.095 0.120 0.124
PC5 0.0579 846.3 7.5 1.101 0.095 0.120 0.149
PC6 0.0228 919.4 4.8 1.448 0.095 0.120 0.181

Table 6. Feed Mole Fractions (n), Critical Temperatures TC, Critical Pressures PC, Acentric Factors x and Nonzero Binary
Interaction Coeffcients kij for the Maljamar Separator Oil

Component n TC (K) PC (bar) x ki,CO2

CO2 – 304.2 73.9 0.225 –
C5–7 0.2354 516.7 28.8 0.265 0.115
C8–10 0.3295 590.0 23.7 0.364 0.115
C11–14 0.1713 668.6 18.6 0.499 0.115
C15–20 0.1099 745.8 14.8 0.661 0.115
C21–28 0.0574 812.7 12.0 0.877 0.115
C29þ 0.0965 914.9 8.5 1.279 0.115
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As for Oil B, the three-phase envelope is terminated at a
bicritical point and at the point where a single liquid-phase
region touches the three-phase boundary. Therefore, the
three-phase envelope for the Maljamar separator oil can be
perceived as lying between those of the sour gas and Oil B.
As we will discuss shortly, our computed three-phase enve-
lope is wider than those detected by other authors. The rea-
son may be that when the three-phase region becomes very
narrow, the phase fractions change rapidly with composition
and pressure. Consequently, the phase fractions from one
three-phase split calculation is not necessarily a good guess
for the next one. In our approach, the problem is alleviated
by using two-dimensional bisection to provide the initial
guess. Figure 7 shows phase fraction variations near the
bicritical point.

The three-phase region associated with the Maljamar res-
ervoir oil is completely immersed in a two-phase region (see
Figure 12). This is due to the fact that the three-phase region
is terminated by two bicritical points. There is, therefore, a
smooth transition between the two two-phase regions at
either extreme of the three-phase region. Figure 8 shows
variations in phase fractions for a fixed feed composition
(Figure 8).

In the past, a number of authors have computed the
three-phase region for Oil B.15,16,27 Nghiem and Li,15 and
Cultinho et al.16 compute a narrower region for the three-
phase region than we do. Nichita et al.27 do a fine job
except toward the bicritical point on the right side of
Figure 6 and they fail to detect the single phase liquid at
the extreme right in.11 For the Maljamar separator oil, Cul-
tinho et al.16 show a termination of the three-phase region
to the left different from ours. Perschke28 computes a
much narrower three-phase region than we do.

Concluding Remarks

There are two ways of solving the three-phase split prob-
lem. One approach is based on minimization techniques.
Another approach is based on a direct solution of the
Rachford–Rice expressions. In this work, we show that a
combination of a two-dimensional bisection technique and
Newton’s method provides a robust and efficient solution
algorithm for the second approach. The robustness is demon-
strated by consistent phase diagrams, which is perhaps the

best measure of validity. In our algorithm, each iteration of
the bisection method is very inexpensive. Moreover, the
two-dimensional bisection is only used to provide an initial
guess the first time the Rachford–Rice expressions are solved
within a successive substitution loop. Subsequently, the ini-
tial guess is taken from the previous iteration. Thus, the
computational overhead is negligible. Problems in the bicriti-
cal region are avoided by putting an upper limit on the num-
ber of triangles. If the limit is exceeded, we perform a one-
dimensional search along a straight line to which the solu-
tion must be close. In our testing, the bisection method never
failed. Without the use of the bisection method we would
not be able to construct complete three-phase regions.
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Notation

~e ¼ vector of residuals
f ¼ fugacity
J ¼ Jacobian
K ¼ equilibrium ratio
N ¼ number of components
n ¼ feed mole fraction

RR ¼ Rachford–Rice residuals
x ¼ mole fraction (first phase)
y ¼ mole fraction (second phase)
z ¼ mole fraction (third phase)
b ¼ phase fraction
~D ¼ vector of updates of the independent variables for the Newton

method
/ ¼ fugacity coefficient

Subscripts

i ¼ component label
x ¼ phase label (first phase)
y ¼ phase label (second phase)
z ¼ phase label (third phase)
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