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A  key  element  of  efficient  and  robust  three-phase  split  calculation  is  the  initialization  of  phase  mole
fractions.  While  the  initial  guess  of  equilibrium  ratios  is made  from  two-phase  split  calculation  and  two-
phase  stability  testing,  initializing  phase  fractions  through  solving  three-phase  Rachford–Rice  equations
vailable online 14 July 2012

eyword:
hree-phase split computation

can  be  a  challenge  especially  close  to  the  bicritical  points  and  phase  boundaries.  In this  research,  we
examine  three  different  methods:  the  improved  two-dimensional  bisection  method,  the  minimization
method,  and  the  direct  Newton  method.  We  present  a large  number  of three-phase  examples  of  various
degrees  of  complexity  to demonstrate  both  robustness  and  efficiency  of  all these  methods.  The  direct
Newton  method  combined  with  the  starting  guess  of  phase  fractions  from  two-phase  split calculation
and  two-phase  stability  testing  is  the  most  efficient  approach.
. Introduction

Three-phase equilibrium computation has become increasingly
mportant in a large number of problems in hydrocarbon energy
roduction and various chemical processes. One important applica-
ion relates to CO2 injection in hydrocarbon reservoirs for improved
il recovery where a gas phase and two liquid phases may  form.
he effect of three different phases with different mobilities may
e considerable on flow path and oil recovery. Phase equilibrium
omputations are often performed billions of times in large-scale
ompositional reservoir simulation. Michelsen suggested a step-
ise procedure to implement phase equilibrium computation
here stability analysis and phase split calculations are performed

lternatively [1].  Fig. 1 schematically shows the procedure of equi-
ibrium computation for two and three phases. In our recent work,
ingle-phase stability testing, two-phase split calculation, and two-
hase stability testing are presented for efficiency and robustness
2]. One important aspect of three-phase split calculation, i.e., the
nitialization of phase fractions, is discussed in this paper.

Three-phase split calculation is constructed based on two sets
f equations. The first set represents the equilibrium condition that
elates the equilibrium ratios to the fugacity coefficients
ln Ki,y = ln ϕi,x − ln ϕi,y

ln Ki,z = ln ϕi,x − ln ϕi,z
(i = 1, . . . , C). (1)
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C is the number of components. {Ki,y = yi/xi} and {Ki,z = zi/xi} are the
equilibrium ratios of components in phases y and z with respect
to phase x, respectively. {xi}, {yi} and {zi} are the mole fractions of
components in phases x, y and z, respectively. {ϕi,x}, {ϕi,y} and {ϕi,z}
are the corresponding fugacity coefficients of components. The sec-
ond set known as the Rachford–Rice (RR) equations [3] describes
the material balance⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

RRy =
C∑

i=1

(yi − xi) =
C∑

i=1

ni(Ki,y − 1)
1 + ˇy(Ki,y − 1) + ˇz(Ki,z − 1)

= 0

RRz =
C∑

i=1

(zi − xi) =
C∑

i=1

ni(Ki,z − 1)
1 + ˇy(Ki,y − 1) + ˇz(Ki,z − 1)

= 0

. (2)

{ni} are the overall mole fractions of components. ˇy and ˇz are the
mole fractions of phases y and z, respectively. Note that RRy and
RRz are monotonic with respect to only ˇy and ˇz, respectively. For
given {Ki,y}, {Ki,z}, ˇy and ˇz, {xi}, {yi} and {zi} are determined from

xi = ni

1 + ˇy(Ki,y − 1) + ˇz(Ki,z − 1)
,  yi = Ki,yxi,

zi = Ki,zxi (i = 1, . . . , C). (3)

The most robust and efficient algorithm to solve Eqs. (1) and (2)
combined with Eq. (3) for the 2C + 2 unknowns, {Ki,y}, {Ki,z}, ˇy and
ˇz, is a hybrid approach based on the successive substitution iter-

ation (SSI) method followed by the Newton method [2].  The SSI is
used to provide a good enough estimate for the Newton method.
At each SSI step, {Ki,y} and {Ki,z} are updated through Eq. (1) in the
outer loop. ˇy and ˇz are updated through solving Eq. (2) by the

dx.doi.org/10.1016/j.fluid.2012.06.021
http://www.sciencedirect.com/science/journal/03783812
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Fig. 1. Schematic flow chart of equilib

ewton method in the inner loop with updated {Ki,y} and {Ki,z}.
nce the accuracy in the SSI meets a predefined switching crite-

ion, we turn to the Newton method to solve for all the unknowns
imultaneously until the accuracy meets a preset tolerance. In both
SI and Newton methods, {xi}, {yi} and {zi} are updated through
q. (3) to calculate the fugacity coefficients (and fugacity coeffi-
ient derivatives). In order to start the SSI, the initial guess of {Ki,y},
Ki,z}, ˇy and ˇz is required. The best initial guess of {Ki,y} and {Ki,z}
s directly made from two-phase split calculation and two-phase
tability testing [1,2]. The details on how to get the initial guess of
y and ˇz robustly and efficiently are provided in this article.

The initialization of ˇy and ˇz requires solving the deceptively
imple-looking Eq. (2) for ˇy and ˇz corresponding to the initial
uess of {Ki,y} and {Ki,z}. Three types of algorithms have been sug-
ested. To avoid the confusion, we use the ‘starting guess of ˇy and
z’ to represent the input (initial estimate) of the algorithm since

he output (solution) will be the ‘initial guess of ˇy and ˇz’ to start
he SSI in three-phase split calculation. Haugen et al. [4] proposed
he idea of a geometric approach – the two-dimensional (2D) bisec-
ion method, to solve Eq. (2).  This approach does not require the
tarting guess of ˇy and ˇz and in principle should always work. In
his paper, we significantly improve the work by Haugen et al. [4]
nd make it both robust and efficient. Eq. (2) can be solved directly
y the Newton algorithm; a starting guess of ˇy and ˇz is required.
elson [5] and Bunz et al. [6] solved a transform of Eq. (2) by using

he Newton method. The starting guess of ˇy and ˇz is from the two-
hase split. Leibovici and Neoschil [7] used the Newton approach

ncluding the line search and stated that any feasible point can be
he starting guess of ˇy and ˇz. The feasible region is defined by
he poles where the denominators in Eq. (2) are zero and RRy and
Rz cannot be defined. Convergence problem may  occur close to
he poles. In this paper, we suggest using the conventional Newton
lgorithm to solve Eq. (2) directly with the starting guess of ˇy and
z from two-phase split calculation and two-phase stability testing.

t is mathematically similar to that by Nelson [5] and Bunz et al. [6]
xcept that these authors did not incorporate two-phase stability

esting. Solving Eq. (2) also can be formulated as the minimization
f a convex function whose gradients consist of {−RRy, −RRz}; a
tarting guess of ˇy and ˇz is needed. Michelsen [8] presented the
ethod first and adopted the Newton algorithm with line search to
omputation for two  and three phases.

locate the minimum. Leibovici and Nichita [9] extended the method
to negative flash by using the feasible region consisting of the poles
as in Ref. [7]. They used a constrained optimization software to solve
the minimization and 1/3 as the starting guess of ˇy and ˇz. Conver-
gence difficulty still may  occur close to the poles. Okuno et al. [10]
improved the method further by defining a smaller feasible region
without the poles and used the line-search Newton approach. They
also described how to get a starting guess of ˇy and ˇz.

The remainder of this article is organized as follows. In Section
2 we introduce the fundamentals of the improved 2D bisection
method, the minimization method by Okuno et al. [10], and the
direct Newton method. In Section 3 we  evaluate these methods by
many three-phase examples with various degrees of complexity. In
Section 4 the main results and conclusions are summarized.

2. Mathematical background

2.1. Improved 2D bisection method

Fig. 2 (upper panel) presents the surfaces of both RRy and RRz. In
the triangle defined by the vertices (0,1), (0,0) and (1,0) that is the
solution domain, the lines RRy = 0 and RRz = 0 intersect each other
which is the solution of Eq. (2),  as shown by Fig. 2 (lower panel).
In the 2D bisection method, at each step, the mother-triangle is
equally divided into two sub-triangles by connecting the middle of
the hypotenuse and the right-angle vertex.

Haugen et al. [4] proposed that a sub-triangle is kept if both
RRy and RRz have different signs at the three vertices and discard
it otherwise. This criterion may  keep a sub-triangle not containing
the solution and may  discard a sub-triangle containing the solution.
Fig. 3 presents a case for which both RRy and RRz have different
signs at the three vertices of a sub-triangle but the lines RRy = 0
and RRz = 0 do not intersect. Close to the bicritical point, there will
be a large number of such sub-triangles since the lines RRy = 0 and
RRz = 0 nearly overlap. Fig. 4 presents a case that RRy (RRz) may  have

the same signs at the three vertices of a sub-triangle but the lines
RRy = 0 and RRz = 0 may  cross each other. It is because the line RRy = 0
(RRz = 0) may  intersect one side of the sub-triangle twice due to the
non-monotonicity of RRy (RRz) in ˇz (ˇy) direction.
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ig. 2. Upper panel: the surfaces of RRy and RRz intersect the triangular solution d
nd  (1,0) contains the two lines RRy = 0 and RRz = 0. Their intersection is the solution

In our modification, at each dividing step, if sub-triangles belong
o the Type I as shown in Fig. 5 (left panel) where the hypotenuse
s parallel to one of the axes, they are kept due to the complexity
hown in Fig. 4. If sub-triangles belong to the Type II as shown in
ig. 5 (right panel) where both right-angle sides are parallel to the
xes, the following criterion is applied to determine whether they
hould be kept or discarded.

When both RRy and RRz have different signs at the three ver-
ices of a sub-triangle, if the lines RRy = 0 and RRz = 0 cross each
ther, their intersections with the sides of the sub-triangle have
xed positions. If the line RRy = 0 (RRz = 0) intersects a side, RRy (RRz)
as different signs at the two vertices of that side. Fig. 6 shows the
ix possibilities where the solution is in a sub-triangle for one of the
onfigurations of Type II. We  use the first possibility as an exam-
le. If a sub-triangle contains the solution, on the vertical side, the
ntersection of blue line should be above that of the green line and
n the horizontal side the intersection of the blue line should be on
he left of the green line. The coordinates of all the four intersec-
ions in the first row and of only two intersections in the second
. Lower panel (schematic): the solution domain defined by the vertices (0,1), (0,0)
. (2). {ni}, {Ki,y} and {Ki,z} are provided in Table 1.

row are required, as marked in the figure. There are 24 possibilities
for all the four configurations of Type II with six possibilities for
each configuration.

When RRy has the same signs at the three vertices of a sub-
triangle, if the line RRy = 0 intersects the vertical side (ˇz direction)
or the hypotenuse twice (RRy is monotonic in ˇy direction),
∂RRy/∂ˇz has different signs at the two vertices of that side. And
RRy at the extremum (∂RRy/∂ˇz = 0) between these two  vertices
has a different sign than the vertices. Similarly, when RRz has the
same signs at the three vertices of a sub-triangle, the signs of RRz

and ∂RRz/∂ˇy are used to determine whether the line RRz = 0 inter-
sects the horizontal side (ˇy direction) or the hypotenuse twice
(RRz is monotonic in ˇz direction). The sub-triangle is kept if both
lines RRy = 0 and RRz = 0 appear but may  not intersect, i.e., one of the
three conditions is satisfied: (1) the line RRy = 0 intersects one side

twice and RRz has different signs at the three vertices; (2) RRy has
different signs at the three vertices and the line RRy = 0 intersects
one side twice; (3) both lines RRy = 0 and RRz = 0 intersect a side or
sides twice.
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Fig. 3. A sub-triangle is kept because both RR and RR have different signs at the three vertices although it does not contain the solution using the 2D bisection method by
H  {ni}, {
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three-phase split calculation, {K2P
i,y

} and {K2P
i,t

} are the best initial

guess of {Ki,y} and {Ki,z} [1,2]. ˇ2P
y and zero (the trial phase has
y z

augen et al. [4]. The sub-triangle is defined by (0,0.5), (0,0.375) and (0.125,0.375).

.2. Minimization method by Okuno et al. [10]

This method is presented in Ref. [10]. We  briefly review
t for three phases. The convex function to be minimized
s F(ˇ) =

∑C
i=1{−ni ln[1 + ˇy(Ki,y − 1) + ˇz(Ki,z − 1)]} with

 = {ˇy,ˇz}. Because {xi}, {yi} and {zi} are within [0,1], the
easible region is defined as S =

{
ˇ
∣∣ aT

i
 ̌ ≤ bi, i = 1, . . . , C

}
where

i = {1 − Ki,y, 1 − Ki,z} and bi = min{1 − ni, 1 − Ki,yni, 1 − Ki,zni}.
The Newton method with line search is adopted to per-

orm the minimization. At step k,  ̌ is updated by ˇ(k+1) =
(k) + s(k)�(k)

maxd(k). d(k) = −(∇2F (k))
−1∇F (k) is the Newton direc-

ion with ∇F = {−RRy, −RRz}. �(k)
max = min{1, {(bi − aT

i
ˇ(k))/aT

i
d(k) :

T
i
d(k) > 0, i = 1, . . . , C}} is the maximum step length which

ssures that ˇ(k+1) does not move out of the feasible region. 0 ≤
(k) ≤ 1 is determined through minimizing F within [ˇ(k), ˇ(k) +
(k)
maxd(k)] using the Newton method.

Ref. [10] proposed that a starting guess of ˇy and ˇz can be
btained by the equally weighted mean of the vertices of the
ommon area of S and P = { ˇ

∣∣ˇy ≥ 0, ˇz ≥ 0, ˇy + ˇz ≤ 1}. Firstly
e solve for all the intersections of any two lines among those
efined by aT

i
 ̌ = bi (i = 1, . . . , C), ˇy + ˇz = 1, ˇy = 0, and ˇz = 0.

he required vertices are the intersections within both S and P.

ore effort may  be needed close to the bicritical point since all the

ines aT
i

 ̌ = bi(i = 1, . . . , C) are nearly parallel.
Ki,y} and {Ki,z} are provided in Table 2.

2.3. Direct Newton method

We  suggest the conventional Newton method to solve Eq. (2)
directly. The successful implementation critically depends on the
starting guess of ˇy and ˇz. We have tried many arbitrary start-
ing guesses of ˇy and ˇz, and find that there is often failure. That is
perhaps the main reason that many authors have suggested compli-
cated and expensive alternatives. A starting guess of ˇy and ˇz from
two-phase split calculation and two-phase stability testing can pro-
vide the success to solving Eq. (2) without additional computational
cost.

We start from two-phase split calculation, and select phases
x2P (higher MW) and y2P (lower MW). MW is the molar weight.
For phase y2P, the equilibrium ratios are {K2P

i,y
} with respect to

phase x2P and phase fraction is ˇ2P
y . In the next step where we

perform two-phase stability testing, we use phase x2P as the test
phase. If the two-phase state x2P + y2P is unstable, the equilibrium
ratios for the trial phase with the lowest value of Gibbs tangent
plane distance (TPD) function are {K2P

i,t
} with respect to phase

x2P. This trial phase is selected to represent the third phase. In
infinitesimal amount) are an excellent starting guess of ˇy and
ˇz.



Z. Li, A. Firoozabadi / Fluid Phase Equilibria 332 (2012) 21–27 25

Fig. 4. A sub-triangle is discarded because RRy has the same signs at the three vertices although it contains the solution using the 2D bisection method by Haugen et al. [4].
The  right-angle side in ˇy direction is only shown within [0.375,0.376] in the upper panel. The sub-triangle is defined by (0.375,0.125), (0.375,0) and (0.5,0). {ni}, {Ki,y} and
{Ki,z} are provided in Table 3.

Fig. 5. Type I (left panel) and Type II (right panel) configurations of sub-triangles at each dividing step in the 2D bisection method.
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Table 1
{ni}, {Ki,y} and {Ki,z} used in preparing Fig. 2.

ni Ki,y Ki,z

0.47 0.886975564280731 1.85133355509695
0.126754033873246 183.729456216368 0.567851997436811
0.123759275876241 28.8439229979536 0.291644844783998

0.182989507250403
8.745408265736165e−2
0.623957189693138
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Table 2
{ni}, {Ki,y} and {Ki,z} used in preparing Fig. 3.

ni Ki,y Ki,z

0.66731 1.40089114681102 1.42336619958799
0.09575 2.41359153035331 1.56360101270076
0.03540 0.684675481993755 0.805778846552492
0.04452 0.192706323169157 0.437918929556065
0.08589 1.344316808771735e−2 0.136423337258229
0.04470 2.913379631601974e−4 2.241151325196582e−2
0.02643 9.614643893437818e−8 3.114699395928320e−4

Table 3
{ni}, {Ki,y} and {Ki,z} used in preparing Fig. 4.

ni Ki,y Ki,z

0.466 0.367489928755904 1.45983188593810
0.127710667872289 91.9551101941298 0.627700554178016
0.124693307875307 17.6437660816506 0.405472131110146

T
C

0.190491864809508 0.762796901964099 

5.352678894647322e−2  6.805250689498878e−2 

3.546803696453197e−2  0.345376016039736 

Our proposal for the starting guess of ˇy and ˇz is mathemat-
cally analogous to that by Nelson [5] and Bunz et al. [6].  But our
tarting guess has a solid foundation, i.e., it is also from two-phase
plit calculation and two-phase stability testing. The direct Newton
ethod is based on a reliable two-phase stability testing that has

een proposed in our recent work [2].

. Results and discussions

We have performed 1395 three-phase equilibrium computa-
ions for CO2 mixing with the acid gas, oil B, Maljamar reservoir oil
nd Maljamar separator oil [2,4,11,12],  and for a gas mixture con-
aining 95 mol% CO2 and 5 mol% CH4 mixing with the Bob Slaughter
lock oil and North Ward Estes oil [2,13–15]. Some of the points
re very close to the phase boundaries and the bicriticals. The
eng–Robinson equation of state (PR-EOS) [16,17] is applied to
erform both stability testing and phase-split calculation. The EOS
arameters are provided in Ref. [2].

Let � represent the absolute value of difference for ˇy (ˇz)
etween two consecutive iterations. In the improved 2D bisection
ethod, to locate the intersections with sides (if both RRy and RRz

ave different signs at the three vertices of a sub-triangle) and
xtrema (if RRy and/or RRz have the same signs at the three ver-
ices of a sub-triangle), we adopt the 1D bisection method until the
ength of the line is less than 10−5 and then the Newton method
ntil �ˇy (�ˇz ) < 10−10. Similarly, to locate the solution, we  also
erform the improved 2D bisection method until the length of the
ight-angle sides of a sub-triangle is less than 10−5 and then the
ewton method until max(�ˇy , �ˇz ) < 10−10. That means the 1D
r 2D bisection is applied to provide a better estimate for the New-
on method. A good estimate is the mean of the two endpoints of the
ine in the 1D bisection or of the three vertices of the sub-triangle
n the 2D bisection before switching to the Newton method. This
ombination improves the efficiency. The same convergence cri-
erion, max(�ˇy , �ˇz ) < 10−10, is used for both minimization and
irect Newton methods.

In the improved 2D bisection method, for the acid gas sometimes
wo sub-triangles are kept but for the other five fluids only the
ub-triangle containing the solution is kept after discarding other

ub-triangles. For the Maljamar separator oil, we note three points
here the ‘positive flash’ condition is not satisfied because two-
hase split calculation converges to a local minimum of Gibbs free
nergy. In that case, two-phase split calculation is automatically

able 4
PU time of three-phase equilibrium computation for all the points of each fluid using di

Mixture Number of
three-phase points

C

2

Acid gas 886 3
Oil  B 80 3
Maljamar reservoir oil 116 7
Maljamar separator oil 68 0
Bob  Slaughter Block oil 113 0
North Ward Estes oil 132 1
0.191929538808070 0.523968443113866 0.291902855037650
5.393076494606923e−2 5.444380423358842e−2 0.172272959622522
3.573572096426427e−2 0.192716832533260 0.704057279260822

repeated by using another initial guess of {Ki,y} and {Ki,z} to detect
the global minimum of Gibbs free energy. The minimization and
direct Newton methods do not have such a requirement.

All the three methods work robustly, particularly the direct
Newton method becomes very reliable with a cost-free starting
guess of ˇy and ˇz. We  compare the efficiency of these methods
in our three-phase flash code. All the runs are executed on a Dell
Inspiron E1505 laptop with Intel® CoreTM Duo Processor T2300
(1.66 GHz) and 1GB RAM, a five-year old machine. In Table 4, we
present the CPU time of three-phase equilibrium computations for
each fluid. To avoid the error from the timer, we add a loop to con-
tinuously run all the points of each fluid for 100 times. The CPU
time shown in Table 4 is obtained from the total CPU time divided
by 100. All the three methods work efficiently. As expected, the
direct Newton method is the most efficient, followed by the min-
imization method by Okuno et al. [10], and then the improved 2D
bisection method. For the Maljamar reservoir oil where one point
is extremely close to the bicritical point, generation of the starting
guess of ˇy and ˇz requires a higher effort so that the minimiza-

tion method has similar CPU time as the improved 2D bisection
method. For the other five fluids, the minimization method is only
slightly more expensive than the direct Newton method. If the cost-
free starting guess of ˇy and ˇz in the direct Newton method is

fferent methods.

PU time (s)

D bisection Minimization Direct Newton

.62 3.03 2.97

.26 3.14 3.06

.55 7.53 7.34

.44 0.35 0.34

.38 0.27 0.27

.37 1.21 1.19
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[
[
[
[
[14] R. Okuno, R.T. Johns, K. Sepehrnoori, SPE 129846 (2010).
ig. 6. Possibilities where a sub-triangle contains the solution if both RRy and RRz

mproved 2D bisection method.

sed in the minimization method, the efficiency of the minimiza-
ion method can be further improved especially for the Maljamar
eservoir oil.

. Conclusions

One challenge in three-phase split calculation is the ini-
ialization of phase fractions through solving the deceptively
imple-looking material balance, i.e., the Rachford–Rice equations.

 number of authors have proposed various techniques for the
olution of these two non-linear equations. In this work we  com-
are the performance of the improved two-dimensional bisection
ethod, the minimization method by Okuno et al. [10], and the

irect Newton method. After systematic examination by using a
arge number of three-phase examples of different complexity, all
he three methods demonstrate robustness and efficiency. Among
hem, the direct Newton method is the simplest and most efficient.
t is based on a reliable two-phase stability testing that has been
roposed in our recent work [2].
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