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ABSTRACT: Fickian diffusion can be an important oil recovery mechanism from fractured reservoirs by gas injection, especially
when gravitational drainage is inefficient. Without diffusion, injected gas will flow predominantly through the fractures, resulting
in early breakthrough and low oil recovery, but compositional gradients between the fractures and the matrix can drive
considerable cross-flow. Additionally, this species exchange can lead to favorable phase behavior, such as swelling and viscosity
reduction of oil in the matrix. The modeling of Fickian diffusion in fractured reservoirs has been hampered by two deficiencies in
existing simulators. The first is the use of the generalized classical Fick’s law for multicomponent mixtures, which violates molar
balance. The second is the computation of diffusive fluxes across grid edges aligned with phase boundaries. Traditionally, diffusive
fluxes are derived from gradients in compositions, computed by finite differencing of compositions in neighboring grid cells. This
approach fails when one grid cell contains only gas and the neighboring cell only oil, because the compositional gradients are only
defined within a single phase. This problem often occurs in fractured domains when the fractures fill with injected gas while the
matrix blocks remain in single-phase oil. We implement an alternative approach, in which gradients in chemical potential are the
driving force for Fickian diffusion. Unlike phase compositions, chemical potentials do not require phase identification and the
gradient can be computed self-consistently across phase boundaries. Away from phase boundaries the two approaches are
equivalent. We demonstrate the strengths of our implementation by simulating experiments in which CO2 is injected in a tall
vertical core surrounded by fractures. After injecting CO2 for 22 days, 65% of the oil in place is recovered. However, modeling
with a commercial simulator results in only 12% recovery, despite adjusting parameters. We present additional examples at larger
scales that further confirm the promising prospects of CO2 injection for enhanced oil recovery in fractured reservoirs and show
the equivalence of the composition- and chemical-potential-based formulations in the absence of sharp phase boundaries.

■ INTRODUCTION

The growing awareness and concern regarding the ecological
and economic threats posed by global warming have triggered a
high interest in the sequestration of CO2, produced by burning
of fossil fuels, in either saline aquifers or oil reservoirs. The
financial burden of such plans may be greatly alleviated by the
growing proof that CO2 injection may significantly improve oil
recovery as a secondary or tertiary recovery mechanism in
fractured reservoirs. Irrespective of the global warming aspects,
recovery in many of the world’s largest oil reservoirs is
declining, following primary and secondary recovery. CO2
injection is attracting the most new market interest as an
enhanced oil recovery (EOR) mechanism and is, for instance,
being piloted by the Department of Energy in a number of
reservoirs, using geological as well as industrial sources of CO2.
In light of this, a proper understanding of CO2 injection in oil
reservoirs and saline aquifers is essential to both government
and the industry. For the industry, reliable estimates of the
incremental oil recovery have to justify the cost of the CO2
supply (capture and/or transport).
Due to the exceedingly large scale of field problems, most

commercial simulators employ highly simplified models that
may or may not capture the essential physics. In particular,
there are concerns regarding the accuracy and flexibility of finite
difference methods and of dual-porosity models in modeling
fracture−matrix interactions. Fickian diffusion poses further

challenges that have not been resolved in dual-porosity
models.1 Even in unfractured domains, there are fundamental
weaknesses in the way Fickian diffusion has been modeled in
the past. The classical Fick’s law has been generalized to
multicomponent mixtures by considering a diagonal matrix of
diffusion coefficients. However, one can easily demonstrate that
a diagonal matrix of diffusion coefficients can only satisfy mass
balance when all the diagonal components are identical,2 that is
when a scalar diffusion coefficient is used. By using different
diagonal diffusion coefficients, diffusion will cause an unphysical
molar imbalance which in turn results in pressure oscillations.
Such pressure oscillations are not necessarily observed because
they drive convective fluxes that will quickly equilibrate the
system but, nevertheless, reduce the overall reliability of
simulations using this approach. As a first step to improve
the modeling of Fickian diffusion, we have implemented a
model for the full matrix of composition dependent diffusion
coefficients, based on irreversible thermodynamics.3,4 By
incorporating the off-diagonal diffusion coefficients, we not
only satisfy molar balance but can also model various diffusion
phenomena that cannot be described by classical Fick’s law.2

Dragging or coupling effects from other components can cause

Received: June 18, 2013
Revised: August 30, 2013
Published: September 4, 2013

Article

pubs.acs.org/EF

© 2013 American Chemical Society 5793 dx.doi.org/10.1021/ef401141q | Energy Fuels 2013, 27, 5793−5805



diffusion of a species even without a gradient in its own
composition (osmotic diffusion), components may not diffuse
even when there is a gradient in its composition (diffusion
barrier), or components can diffuse from low to high
concentrations (reverse diffusion). All these effects have been
demonstrated experimentally.5

In this work, we address another fundamental complication
in modeling diffusion in multiphase flow, particularly in
fractured media. Both Fick’s law and our earlier improved
diffusion model in terms of a full matrix of diffusion coefficients
assume that the driving forces for diffusion in multiphase flow
are gradients in phase compositions (which we refer to as the
conventional approach). This poses a numerical problem in
multiphase flow exhibiting sharp phase boundaries. This
frequently occurs in heterogeneous and fractured domains.
Consider gas injection into a fractured domain saturated with
oil. When the fractures fill with (single-phase) gas, while the
neighboring matrix blocks are saturated with (single-phase) oil,
the conventional model cannot self-consistently compute the
diffusive flux between the fractures and the matrix, because
gradients in phase compositions cannot be defined between
two different phases. In this work, we adopt an alternative
formulation in which gradients in chemical potentials provide the
driving force. This formulation in terms of chemical potential
gradients and a full matrix of phenomenological coefficients has
been derived in a number of earlier papers2,6,7 but, to the best
of our knowledge, has not been implemented and tested for
multiphase flow in fractured porous media. The governing
equations for both formulations are mathematically equivalent,
but the aforementioned numerical issues at phase boundaries
are resolved because chemical potentials are defined
irrespective of the (number of) phases. In other words, the
model predicts nearly identical results away from sharp phase
boundaries but can also self-consistently describe the diffusive
flux across the phase boundaries that often occur at the
interfaces between fractures and matrix blocks and at
discontinuities in rock permeability (e.g., layered domains).
This paper is organized as follows: first, we present our

formulation for Fickian diffusion in which gradients in chemical
potentials are the driving force, and clearly highlight the
equivalence and the differences with respect to the conven-
tional formulation in terms of gradients in compositions. We
briefly recapitulate our discrete fracture model, summarize the
main governing equations and boundary conditions, and
outline our numerical implementation using higher-order finite
element methods. In the second part, we present three
numerical examples to illustrate powerful features of our
implementation. In the first two examples, we show the
equivalence of either compositional or chemical potential
gradients as a driving force for Fickian diffusion in the absence
of sharp phase boundaries. The first illustrates the stabilizing
effect of Fickian diffusion on gravitational (and viscous)
fingering instabilities, and the second considers a larger-scale
extensively fractured heavy oil reservoir and demonstrates how
Fickian diffusion significantly improves the oil recovery from
CO2 injection. In the third example, we verify the model by
considering a rich data set provided by experiments, in which
CO2 is injected from the top of a tall cylindrical chalk core
saturated with live oil and surrounded by fractures.8−10 We
construct an equation of state (EOS) model based on the
Peng−Robinson EOS11 (PR-EOS), and we compare our EOS
predictions to the pVT experiments and the phase behavior of
mixtures of CO2 and reservoir oil. In particular, we study the

aspects that affect CO2 as an EOR candidate: the change in
liquid density, viscosity, and volume as a function of the
amount of CO2 dissolved in the oil. Next, we describe the core
flooding experiment and present our numerical modeling. We
analyze the agreements and differences between the exper-
imental and numerical outcomes, compare our numerical
results to those obtained by a commercial simulator, and
discuss some of the limitations of the latter. We end with a
summary of our main conclusions.

■ MATHEMATICAL FORMULATION
For the sake of completeness, we recapitulate the expressions
for the Fickian diffusive fluxes in terms of chemical potential
gradients, and we compare to the conventional formulation in
terms of gradients in (phase) compositions. Furthermore, we
emphasize specific complications in implementing this model
for Fickian diffusion in multiphase compositional flow in
fractured porous media in the context of reservoir simulations.

Chemical Potential Gradients as Driving Force for
Fickian Diffusion. On the basis of the thermodynamics of
irreversible processes, the entropy strength σ of a system at
constant temperature increases due to diffusive fluxes J as7
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in terms of the chemical potential μi of each species i, with nc
the total number of components. In this section, we will use
bold notations for vectors J = [Ji], with vector components Ji
indicated in italic. Similarly, matrices L = [Lij] are in roman,
with matrix components Lij in italic. Equation 1 guarantees that
there is no entropy production at thermodynamic equilibrium,
where all chemical potential gradients vanish.
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The chemical potentials are also not independent and satisfy
the Gibbs−Duhem equation at (locally) constant temperature
and pressure:
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where xi is the mole fraction of species i. Using eqs 2 and 3, we
rewrite eq 1 as follows:
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For notational convenience, we define the transformation
matrix
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and the vector of independent driving forces:
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The simplest constitutive relation between the independent
fluxes Ji (i = 1, ..., nc − 1) and driving forces Yi (i = 1, ..., nc−1) is

Energy & Fuels Article

dx.doi.org/10.1021/ef401141q | Energy Fuels 2013, 27, 5793−58055794



=J YL (7)

where the matrix L contains the transport coefficients Lij (i, j =
1, ..., nc−1), called the phenomenological or Onsager
coefficients.
We want to relate the Onsager to the Fickan diffusion

coefficients Dik
Fick, which appear in the relation for diffusion in

which compositional gradients are the driving force (and c is
the molar density):
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The composition dependence of the chemical potentials relates
to the nonideality of the fluid and can be captured in a matrix
with elements Γik:
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We define the (nc − 1) × (nc − 1) diagonal matrix X with Xii =
xi and write eq 9 in matrix form as

μ∇ = Γ∇−RTX x1 (11)

Combining eqs 5, 6, 7, and 11, we write the diffusion flux in
terms of the Onsager coefficients and compositional gradients
as

= − Γ∇−RJ xLA X 1
(12)

The relation between the Fickian diffusion coefficients and the
Onsager coefficients is therefore given by

= Γ−cD R LA XFick 1 (13)

The Fickian diffusion coefficients can also be derived from
the Stefan−Maxwell diffusion coefficients ij� for each pair of
components i and j.3 For notational convenience, we define a
square matrix BM as
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and its inverse as M
� = (BM)−1. In terms of M

� , the Fickian
coefficients are given by

= ΓDFick M
� (16)

such that
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Note that while the matrices M
� , A−1, and DFick are not

symmetric, XA−1, and, more importantly, L are symmetric, with

positive diagonal coefficients. The symmetry of L is referred to
as the Onsager reciprocal relation and is a powerful feature of
this formulation.
A more convenient expression for the diffusive fluxes results

from noticing that the matrices A in eq 6 and A−1 in eq 17
cancel, such that
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The above relations were derived for a single phase in open
space. For multiphase flow in porous media, the diffusive fluxes
in each phase α are given in the two formulations by
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where, for each phase α, Sα is the saturation, cα the molar
density, xα,i the molar composition, Dα

Fick the Fickian diffusion
coefficients, and ϕ the porosity (the expressions may also be
divided by the tortuosity).
Both expressions in eq 19 are mathematically equivalent, but

the latter is a considerable improvement in terms of numerical
implementation for multiphase problems. When one grid cell is
single-phase gas with composition xg,i, and the neighboring cell
is single-phase oil with composition xo,i, for instance, the
gradients ▽xg,i and ▽xo,i cannot be computed from
differencing the compositions. The chemical potentials,
however, are the same for each phase in a multiphase mixture
(i.e., μg,i = μo,i = μi) and can be readily evaluated as the driving
force for Fickian diffusion, whether grid cells are in single-phase
or in multiphase.
We note that the numerically computed fluxes from the two

expressions above will be somewhat different, because the
nonideality of the fluids is represented differently in the two
approaches. In the conventional method, the nonideality is
incorporated in the diffusion coefficients DFick, through Γ from
eq 10, which are averaged between two neighboring grid cells,
while in our new approach the nonideality is included in the
chemical potentials themselves, that is inside the gradient
operator. In terms of implementation, the chemical potentials
are evaluated in both methods as part of the phase-split
computations and are used either explicitly as the driving force
▽μi or in describing the nonideality in Γ, so no additional
computations are required in this formulation. Finally, we
repeat that it is critical to consider the full matrix of
compositional dependent diffusion coefficients to guarantee
molar balance in either formulation.2

Further details of the discretized computation of the diffusive
flux across edges (Figure 1) between neighboring grid cells are
provided in the Appendix.

Convective Fluxes and Discrete Fracture Model. The
convective fluxes for each phase α are given by Darcy’s law as

λ ρ= ∇ −α α α αp gu K( ) (20)

in terms of phase pressure pα, mass density ρα, gravity g, and
mobility λα = kr,α/να, with relative permeability kr,α and viscosity
να (note that we use να, rather than μα for the viscosity, to avoid
confusion with the chemical potentials μi). K is the absolute
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permeability. Note that, from here on, vector notation refers to
spatial components uα = (uα,x,uα,y,uα,z), and similarly for Ji,α.
In earlier work,12 we have presented a discrete fracture model

that allows for any configuration of fractures and overcomes the
limitations of single- and dual-porosity fracture models.13,14

Without repeating the details of the formulations, we outline
here the key elements of our model. The basic assumption is
that fractures have a high transverse permeability that
instantaneously equilibrates the fluid in the fracture with that
in the immediate neighborhood in the matrix. With this
assumption, the explicit computation of the fracture−matrix
flux is avoided. We combine a fracture grid cell with two small
slices of the matrix blocks on either side into a large
computation element. We refer to this as the cross-flow
equilibrium approach and to these fracture-containing
computational elements as cross-flow (CF) elements. The CF
elements have one average pressure and a composition and
density that are a mixture of the fracture and matrix fluids.15 In
the direction perpendicular to the fracture, the flux across the
edge of a CF element is computed the same way as between
two matrix grid cells. In the direction parallel to the fracture,
the flux across a CF element edge is the properly integrated
sum of the fracture and matrix contributions.
The cross-flow equilibrium approach combines the benefits

of the single- and dual-porosity models, while avoiding their
deficiencies. Similar to a single-porosity simulation, we can have
any configuration of discrete fractures and treat physical
interactions between the fracture and matrix explicitly. In the
dual-porosity approach, fractures are assumed to have a sugar-
cube configuration and interactions between fractures and the
matrix have to be described by semiempirical transfer-functions.
Single-porosity models are generally computationally ineffi-
cient, because the small fracture grid cells require exceedingly
small time-steps, and the high contrast in fracture and matrix
properties (particularly the permeability) makes the system of
equations ill-conditioned. These efficiency issues are alleviated
in our approach by using large computational elements with
appropriately averaged properties. While fractures may have an
aperture of the order of millimeters or less, the CF elements
can have a width of 10−20 cm and reproduce identical
results.12,15 This approximation is valid for conventional
reservoirs with matrix permeabilities ≳1 md, but it breaks
down for very tight formations, such as shale. We note that
although we consider a single composition for the CF elements,
we still allow for different relative permeabilities and capillary
pressures for the fracture and matrix contributions.
Mass Transport and Pressure Equation. With the

diffusive and convective fluxes defined in the previous sections,
we can write the continuity equation in terms of the total molar
density c and overall molar composition of the multiphase
mixture, zi, as

ϕ ∂
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where Fi is a sink/source term that may represent injection or
production wells.
We adopt an explicit evolution equation for the pressure:16,17
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where κT and νi̅ are the total compressibility and total partial
molar volumes of the multiphase mixture, respectively. When
formation compressibility is significant, κT and ϕ depend
weakly on pressure (neglected in this work). The oil phase
pressure is chosen as a reference when capillarity is considered.
The system of equations is supplemented by thermodynamic

equilibrium relations that guarantee the equality of chemical
potentials of each component i in all phases α. As boundary
conditions, we assume impermeable walls except in production
wells, where we can have either a constant pressure or constant
production rate. Injection wells are treated as source terms Fi.

■ NUMERICAL IMPLEMENTATION
We solve the multiphase flow equations with a choice of higher-
order finite element methods that are particularly well suited for
fractured reservoirs. Specifically, we employ the mixed hybrid
finite element (MHFE) method to simultaneously and to the
same order of accuracy solve for globally continuous pressure
and flux fields, and a higher-order discontinuous Galerkin (DG)
discretization of the continuity equation. In the DG method,
any order of approximation can be used in each grid cell and
the variables (compositions) can be discontinuous across edges,
which is advantageous in fractured and heterogeneous domains,
as well as across phase boundaries. By using a higher-order
(bilinear) discretization for the mass transport update, we
achieve a higher order convergence, which translates into low
numerical dispersion or, equivalently, accurate solutions on
coarse grids and at large time-steps.18 The two methods are
coupled in an implicit pressure explicit composition (IMPEC)
scheme, which takes advantage of the weak coupling between
the pressure equation and mass transport and allows larger
time-steps for the global pressure solution than for the more
rapidly varying compositions.
Our full algorithm for compositional multiphase flow

simulations is constructed as follows:
1. From a user-provided overall composition throughout the

reservoir, temperature, and initial pressure at the bottom of the
domain, hydrostatic equilibrium is established.
2. On the basis of the overall composition, temperature, and

pressure, a thermodynamic phase stability analysis is carried
out.
3. When the phase is unstable, EOS-based phase-split

computations are performed to determine the phase amounts,
phase compositions xα,i, and chemical potentials μi. These
phase-split computations use the PR-EOS with volume
translation11 for pure hydrocarbon phases, or our cubic-plus-
association EOS when polar molecules such as water or
asphaltenes are present.18,19

4. From the phase compositions, the mobilities (relative
permeability and viscosity), densities, saturations, capillary
pressures, and phenomelogical coefficients are derived.

Figure 1. Illustration for the computation of the chemical potential
gradient across edge E between grid cells K1 and K2.
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5. The capillary pressure gradients are updated and the
diffusive fluxes are computed from eq 19 by differencing the
chemical potentials between neighboring elements and
projecting the coefficients onto the element edges (eq 30).
6. A linear system of equations is constructed for the

backward-Euler time update of the pressures and fluxes using
the MHFE method, and solved by an off-the-shelf direct linear
solver. We have developed a fractional flow formulation in
terms of the total flux.20 After solving for the total flux, the
phase convective fluxes are constructed as a postprocess, using
the upwind effective mobilities with respect to the phase fluxes.
7. With the new convective and diffusive fluxes, the explicit

DG mass transport update (forward-Euler) is performed to find
the new overall compositions.
8. A slope limiter is used to avoid the spurious oscillations

that may occur in higher-order methods.
9. An adaptive time-stepping routine determines the CFL

condition for the next iteration.
10. The loop returns to step 2.

■ NUMERICAL EXAMPLES

We present three numerical examples to verify our new
implemention for Fickian diffusion. The first two examples
demonstrate that when single-phase regions are separated by a
two-phase transition zone, the formulation in terms of chemical
potential gradients is equivalent to the conventional approach
in terms of compositional gradients. The last example considers
a problem where the conventional modeling of diffusion breaks
down in computing the diffusion flux across a sharp
discontinuity between two single-phase regions. Specifically,
we model an experiment in which CO2 is injected in a fractured
core, such that the fractures quickly fill with single-phase gas,
while the (matrix) core is still in single-phase oil. This type of
problem cannot be simulated reliably by diffusion models based
on compositional gradients. All three examples are at (high)
reservoir pressure and for CO2 injection, where the surface
tension is low and CO2 has a high solubility in the oil. At these
conditions, we can safely neglect the effect of capillary pressure.
Example 1. In this example, we verify the equivalence of the

formulations for Fickian diffusion on the basis of either
gradients in compositions or gradients in chemical potentials

for a problem that does not involve sharp phase boundaries. We
simulate injection of supercritical CO2 in a 2D diametrical cross
section of an oil-saturated core with 1.9 cm radius and 27 cm
length. In an earlier work we modeled this problem in more
detail.21 The oil composition and other relevant parameters are
given in that paper, but in this example we do not consider
connate water and use larger diffusion coefficients (they are not
reduced by tortuosity or to account for near-critical
conditions).
This problem is interesting because at the temperature of 332

K and pressure of 441 bar the CO2 density (0.92 g/cm3) is
higher than the oil density (0.74 g/cm3), so injection from the
top could be unstable to gravitational fingering. Fickian
diffusion provides a restoring force for such instabilities:
when a finger starts to develop, compositional gradients
develop between the finger and the surrounding oil. Diffusion
of components from high to low concentrations has the
potential to smoothen such compositional gradients and the
associated fingering instabilities (for viscous fingering as well).
This process may be the most important feature of Fickian
diffusion in homogeneous domains. Whether or not diffusion can
stabilize the instability depends on the relative importance of
the density difference driving the instability, the magnitude of
the diffusion coefficients, and the injection rate. Another
important parameter is the rock permeability, which determines
the propagation speed of fingers and the associated time-scale
for diffusion to stabilize the flow. In this example the
permeability is relatively high at 221 md. The porosity is
13%, and we inject one pore volume from the top at 68% PV/
day. To obtain converged results and clearly distinguish
physical from numerical dispersion, we perform the simulations
on a very fine 38 × 271 element grid. Injection is uniformly
from the top, and production is from the bottom-center at a
constant pressure.
Figure 2 shows the overall CO2 composition at 20% and 60%

PVI for three simulations: in the first, Fickian diffusion is
neglected, and the second and third are based on the
conventional diffusion formulation in terms of compositional
gradients, and our implementation with chemical potential
gradients as the driving force, respectively. From panels a and c
of Figure 2, we find that, without a restoring force, pronounced

Figure 2. Example 1: Overall CO2 composition (molar fraction) at 20% (a−c) and 60% (d−e) PVI. Simulations without diffusion (a, d), with
Fickian diffusion based on compositional gradients (b, e), and with Fickian diffusion based on chemical potential gradients (c, f).
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gravitational fingers will develop due to the high density
contrast between the injected supercritical CO2 and the oil. For
the magnitude of the diffusion coefficients considered here,
Fickian diffusion effectively stabilizes the instability and
facilitates piston-like displacement throughout the core.
Because both the convective and diffusive fluxes are strongly
composition dependent, the Pećlet number varies significantly
throughout the domain from ∼10−1 far from the front to ∼10−3
at the front, indicating that the flow is diffusion dominated.
Diffusion prevents the early breakthrough of gravitational
fingers, which results in an increase in oil recovery of 25%, as
shown in Figure 3. By comparing the other panels in Figure 2

and the oil recoveries, we also find that, in the absence of sharp
phase discontinuities, both formulations for Fickian diffusion
yield identical results.
Example 2. Next, we consider the importance of Fickian

diffusion in a larger-scale extensively fractured heavy oil
reservoir. Specifically, the domain size is 10 m × 10 m with
40 cm × 40 cm matrix blocks, surrounded by 1 mm fractures.
The matrix blocks have a porosity of 8% and a permeability of 1
md, while the fracture permeability is 400 d, such that the
effective permeability of the entire domain is ∼1 d. In both this
and the next example, the effective permeability is dominated
by the fractures, while most of the porosity is in the matrix,
which is equivalent to a Nelson II classification of naturally
fractured reservoirs.
The domain is initially saturated with a heavy viscous oil with

composition and other parameters given in Table 1. The
nonzero binary interaction coefficients (BIC’s) are 0.1 for CO2,
N2, and H2S with respect to all other components, while the
BIC’s for methane with respect to component j are computed

from Kj = 0.0289 + 0.0001633 × MWj, and tuned to 0.145 for
the residue. The viscosities are computed from the LBC
correlation.22 The temperature is 381 K, and the pressure at the
bottom of the domain is 376 bar, which is well over the
saturation pressure of the oil (51 bar). At this condition, CO2
has a high solubility in the oil (75 mol %). Fickian diffusion is
important in exchanging CO2 and oil-components between
fracture and matrix, and the dissolution of CO2 leads to
favorable phase behavior. The initial oil has a viscosity of 122
cP, but mixing with CO2 reduces the viscosity to as little as 4.5
cP at maximum dissolution (Figure 4a). At the same time,
dissolution of CO2 swells the oil volume by up to 50% (Figure
4b), which expels oil from the matrix and into the fractures. We
also note that potential reinfiltration of oil from the fractures
back into the matrix blocks is accounted for automatically in
our discrete fracture model.
The oil has a density of 0.976 g/cm3, and the CO2 density

and viscosity are 0.653 g/cm3 and 0.035 cP, respectively (at T =
381 K and p = 376 bar). We assume quadratic relative
permeabilities with equal end-points of 0.4 and a residual oil
saturation of 50%. Because CO2 has a high solubility in the oil
and the oil does not readily evaporate, the fractures remain in
two-phase and diffusion can be modeled with a conventional
method based on phase compositions, as well as with the
formulation in terms of gradients in chemical potential.
We carry out simulations on a 99 × 99 grid, such that each

matrix block is discretized by 9 elements. The cross-flow
elements that contain the fractures have a width of 2 cm, and
we inject 50% PV of CO2 at a rate of 25% PV/yr from the top-
right fracture and produce from the bottom-left fracture, as
indicated by circles in the figures. Figure 5 shows the overall
CO2 composition at 15% PVI for a simulation without Fickian
diffusion, a simulation with diffusion based on the conventional
approach, and a simulation with diffusion from our new
implementation. Figure 6 shows the corresponding oil viscosity.
The first general observation is that both approaches to model
Fickian diffusion produce comparable results because there are
no sharp phase boundaries. More importantly, we find that
Fickian diffusion significantly improves the sweep of the
fractured domain. The main purpose of diffusion is to drive the
injected gas from the fractures into the matrix. Once CO2
dissolves in the matrix oil, it can reduce the oil viscosity (Figure
6), which increases the convective flow of oil, and swell the oil
volume, expelling it from the matrix. In other words, the
diffusive fluxes do not need to traverse the full matrix block to
have a beneficial impact. When diffusion is neglected in
numerical simulations, there is no efficient transfer of CO2 into
the matrix blocks and oil recovery is only from slow
gravitational drainage, hindered by the high oil viscosity. The

Figure 3. Example 1: Oil recovery (illustrating that the diffusive flux
from compositional gradients and chemical potential gradients gives
nearly identical results in this example).

Table 1. Example 2: Fluid Characterizationa

species zi
0 ω Tc (K) pc (bar) Mw (g/mol) s

CO2 5.96 0.239 304 74 44 −0.177
N2 1.81 0.039 126 34 28 −0.289
H2S 8.09 0.081 373 89 34 −0.239
C1 7.13 0.011 191 46 16 −0.154
C2−C3 7.91 0.136 349 44 40 −0.090
iC4,nC4,iC5,nC5,C6 11.12 0.245 466 34 72 −0.041
C7−C11 11.46 0.460 596 23 128 0.065
C12+ 46.52 1.111 1006 6 711 0.374

aInitial composition (mole %), zi
0; acentric factor, ω; critical temperature, Tc; critical pressure, pc; molar weight, Mw; volume translation, s.
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13% oil recovery without diffusion in Figure 7 is mainly from
the fractures. When Fickian diffusion is accounted for, the oil
recovery is increased to 36% because of the viscosity reduction
and swelling. This example demonstrates the potential
importance of Fickian diffusion in fractured heavy oil reservoirs,
and the corresponding need for rigorous modeling capabilities.
Example 3. To verify the new formulation for Fickian

diffusion, we model the experimental data from a Ph.D. theses
by Darvish.10 In the experimental setup, a chalk core with
diameter of 46 mm and length of 600 mm is placed in the
center of an empty cylinder with inside diameter of 50 mm
(illustrated in Figure 8a). The core is a sample from the Faxe
outcrop in Denmark and representative of the North Sea
fractured chalk reservoirs. It has a permeability of 4 md and
porosity of 44%. The empty annulus around the core represents
a 2 mm wide fracture surrounding a matrix block.

Initially, the core and the cylinder are saturated with live
reservoir oil. Our PR-EOS characterization of the oil is

Figure 4. Example 2: Swelling (a) and viscosity reduction (b) upon mixing of initial oil with increasing fractions of CO2.

Figure 5. Example 2: Overall molar fraction of CO2 at 15% PVI without Fickian diffusion (a), with a conventional diffusion model (b), and with a
chemical potential diffusion model (c).

Figure 6. Example 2: Oil-phase viscosity (cp) at 15% PVI without Fickian diffusion (a), with a conventional diffusion model (b), and with a chemical
potential diffusion model (c).

Figure 7. Example 2: Oil recovery.
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provided in Table 2 and is tuned to match the experimental
data.10 The nonzero BIC’s are 0.15 for CO2 with respect to all

other components. For methane, the BIC’s are given by the
relation in Example 2, with the residue tuned to 0.03. The latter
adjustment, together with the values of the acentric factor and
critical pressure of the residue, are used to match the bubble-
point pressure of 242 bar. The volume shift of the residue is
tuned to match the density of the original oil, and the volume

shift of CO2 to match the density of the oil mixed with CO2.
Because the initial oil has a low CO2 concentration, the
adjustment of the CO2 volume shift does not affect the density
of the pure oil. The critical volume of the residue can be tuned
to match the viscosity from the LBC22 correlation, or
alternatively the corresponding states viscosity model23 can
be tuned with one adjustable parameter. Both viscosity models
provide comparable results for this example. These are the only
adjustable parameters in our EOS phase behavior modeling.
Figure 9 shows that our EOS characterization accurately

reproduces the pressure dependence of the single-phase and
two-phase densities and the oil volume. The measured oil
density and viscosity upon mixing with CO2 (Figure 10) do not
agree as well with the EOS predictions, particularly near the
saturation pressure. We suspect that this may be partly due to
experimental error, because similar North Sea oils show a slight
increase in single-phase oil density from CO2 dissolution, rather
than the large density decrease measured here. EOS predictions
for the oil volume change due to CO2 dissolution, shown in
Figure 10c, suggest up to 15% swelling in the single-phase
region, with volume shrinkage at high CO2-to-oil ratios, due to
evaporation of light components into a CO2-rich gas phase. To
speed up the simulations, we lump some of the components
together and use the tuned 9 (pseudo)component character-
ization in Table 3. The BIC’s are as for the full characterization
except for the BIC of methane with respect to the residue,
which is tuned to 0.08.
The experiment was carried out at reservoir pressure (300

bar) and temperature (130 °C), and CO2 was injected into the
cylinder from the top with oil produced from the bottom at a
constant pressure. For the first 30 min the injection rate was
kept at a high rate of 5.6 cm3/min to produce the oil in the
fracture, and then it was reduced to 0.1 cm3/min for the next 22
days to recover the matrix oil (at which time the experiment
was terminated for practical reasons, but the recovery was still
increasing).
For our simulations, we consider a 3D 50 mm × 50 mm ×

600 mm domain with 2 mm fractures on all the boundaries
with a permeability of Kf = 25,000 md. We verified that the
results do not change for Kf ≳ 10 d. However, at much higher
Kf, the matrix system of equations becomes ill-conditioned due
to the large fracture aperture with respect to the core size,
which does not allow very wide CF elements. We use a fine 13
× 13 × 61 element grid (Figure 8b), such that the grid cells in
the matrix have roughly the same size as the 4 mm wide CF
elements that contain the fractures, and the simulation results
are fully converged.
The simulations are initialized by saturating the cross-flow

elements with CO2 and 0.5 mol % oil, such that all components
are present to compute the initial diffusion rate. This initial
state represents the experiment after the high-rate flushing out
of the fractures. Next, we inject 8 PV of CO2 uniformly from
the top fracture in 22 days (i.e., 0.36 PV/day). Production is at
a constant pressure of 300 bar from 21 evenly distributed grid
cells in the bottom fracture. Because of the strong phase
behavior, we consider linear relative permeabilities in both
fracture and matrix with unit end-point for oil. We consider a
0.4 end-point relative permeability for the CO2-rich gas phase
to represent the wettability alteration by CO2.

24,21 However, we
carried out additional simulations, varying the end-points from
0.2 to 1, and we find that the results are not sensitive to the
relative permeability, because the main driving force is diffusion
rather than convection (as discussed below). Because the oil is

Figure 8. Example 3: Experimental setup: a cylindrical chalk core
surrounded by 2 mm empty annulus representing a fracture (a).
Computational grid projected on the x, y, and z planes (b), with
uniform injection from the top fracture, and production from 21
evenly distributed elements in the bottom fracture.

Table 2. Example 3: Fluid Characterizationa

species zi
0 ω Tc (K) pc (bar) Mw(g/mol) s

CO2 0.83 0.240 304 74 44 0.100
C1−N2 44.27 0.011 190 46 16 −0.154
C2 7.56 0.100 305 49 30 −0.100
C3 4.21 0.150 370 42 44 −0.085
C4 3.15 0.190 420 38 58 −0.072
C5 2.19 0.240 466 34 72 −0.043
C6 2.07 0.300 507 30 86 −0.015
C7−C9 8.21 0.510 546 28 108 0.038
C10−C15 11.58 0.670 631 20 166 0.115
C16−C22 5.51 0.870 717 16 247 0.169
C23−C34 4.65 1.060 797 14 336 0.223
C35−C41 3.34 1.280 907 13 484 0.268
C42+ 2.43 1.000 1029 7 659 −0.250

aInitial composition (mole %), zi
0; acentric factor, ω; critical

temperature, Tc; critical pressure, pc; molar weight, Mw; volume
translation, s. Note that generally the volume shift of the heavy
components increases, but we have chosen here (and in the lumped
characterization in Table 3) to tune the oil density with a single
parameter. An alternative approach would be to slightly reduce the
volume shifts of several of the heavier components, such that the
residue still has the highest volume shift. The impact of such different
characterizations on the main simulation results is minimal.
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light and will be completely evaporated when multiple (local)
PV of CO2 are passed through a grid cell, we assume zero
residual oil saturation (and verified that the results do not
change for residual oil saturations of up to 25%).
Figure 11 shows results for the gas saturation throughout the

core after injecting one and eight pore volumes of CO2, for
simulations with and without Fickian diffusion. The overall
CO2 composition throughout the domain at the same times is
shown in Figure 12. Without diffusion, there is only slow
gravitational drainage from the top, while diffusion drives
considerable species exchange, particularly from the vertical
fractures on the sides. In Figure 12, we see that CO2 has already
reached all parts of the core by 1 PVI.
Fickian diffusion can significantly increase the oil recovery

from fractured domains, because of the cross-flow between
fractures and the matrix. Figure 13 shows our computed oil
recoveries, as well as the measured data. The experimental
results show a steep initial oil recovery, which slowly flattens off
after about 2 PVI. We see the same trend in our simulations
with Fickian diffusion, and we interpret the initial steep
recovery as the fast production of the light oil components
through diffusion. Figure 14 shows the compositions of C1−N2,

C2−C3, and C4−C6 in the produced gas phase after flashing to
surface conditions and subtracting the high CO2 fraction, as
well as the CO2 mole fraction in the gas phase itself (note that
this means that the vertical scale for C1−N2, C2−C3, and C4−
C6 is different for the figures with and without diffusion). The
early production of light components in Figure 14a was also
measured in the experiments10 and strongly supports Fickian
diffusion as the dominant driving force in this experiment. The
fact that our simulated oil recovery with Fickian diffusion is
somewhat lower than the experimental data could be due to the
uncertainty in the oil density and viscosity upon mixing with
CO2. The purpose of this example is not necessarily to perfectly
reproduce these experimental data, but rather to demonstrate
(1) the potential importance of diffusion in fractured media and
(2) that we can model the diffusive flux across the phase
boundary at the fracture−matrix interface with our formulation
in terms of chemical potential gradients. Our simulations
reproduce the measured early production of light components
and show the same trend in the oil recovery, particularly as
compared to simulations without Fickian diffusion.
When diffusion is neglected, a gravitational drainage front

slowly moves through the core (Figures 11 and 12), and the
composition of the produced gas is more or less constant
(Figure 14b). The final oil recovery is only around 14%. We
can compare the oil recovery without diffusion to the analytical
prediction of the maximum drainage rate of an oil-saturated
matrix block, surrounded by gas, from only gravity:25

ν
ρ= Δq

k
g

K
o

m r o

o
,drainage

,
0

(24)

which for Km = 4 md, kr,o
0 = 1, νo = 0.34 cP, and Δρ = 0.14 g/

cm3 gives a rate of only 0.13 cm/day, or about 5% oil recovery
in 22 days. The simulated oil recovery without diffusion is
somewhat higher due to phase behavior, such as volume
swelling and an increase in oil density in the top of the core, but
clearly the oil recovery from only viscous and gravitational
forces would be low.

Figure 9. Example 3: Measurements and EOS computations for the total density (a) and oil volume (b) versus pressure.

Figure 10. Example 3: Measurements and EOS computations for the oil density (a) and viscosity (b), and EOS predictions for the oil volume upon
mixing with CO2 (c).

Table 3. Example 3: Lumped Fluid Characterizationa

species zi
0 ω Tc (K) pc (bar) Mw(g/mol) s

CO2 0.83 0.239 304 74 44 0.020
C1−N2 44.27 0.011 190 46 16 −0.154
C2−C3 11.77 0.118 328 47 35 −0.095
C4−C6 7.41 0.234 458 34 70 −0.047
C7−C9 8.21 0.370 566 26 108 0.038
C10−C15 11.58 0.595 651 19 166 0.115
C16−C22 5.51 0.870 717 16 247 0.169
C23−C34 4.65 1.060 797 14 336 0.223
C35+ 5.77 1.100 958 10 558 0.010

aInitial composition (mole %), zi
0; acentric factor, ω; critical

temperature, Tc; critical pressure, pc; molar weight, Mw; volume
translation, s.
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Comparison to Other Simulators. This experiment is a
prime example of the motivation for the work presented in this
paper: when gas is injected in a fractured domain and the
fractures quickly fill with gas while the matrix blocks are still in
single-phase oil, one cannot rigorously define compositional
gradients between the fracture and the matrix. As a result, the
diffusive cross-flow between fracture and matrix is severely
underestimated by simulators that compute the diffusive flux
from compositional gradients. This was investigated in detail
using the Eclipse simulator,10 where agreement between the
experimental data and Eclipse simulations could only be

achieved by introducing an artificial two-phase grid cell between
the fracture and the matrix, with an “inert” component to keep
this element in two-phase. Alavian and Whitson26 also
attempted to model this experiment with the Eclipse 300
simulator but chose to increase the surface (separator)
temperature from 15 to 30 °C and decrease the fracture
permeability to a low 80 md, which increases the simulated oil
recovery through viscous forces to compensate for the
limitations in the diffusion modeling. Alavian and Whitson27

also simulated a similar experiment28 and again found that the
results with and without Fickian diffusion are similar using both

Figure 11. Example 3: Gas saturation at 1 PVI (a, b) and 8 PVI (c, d). Simulations without diffusion (a, c), and with Fickian diffusion (b, d).

Figure 12. Example 3: Overall CO2 composition at 1 PVI (a, b) and 8 PVI (c, d). Simulations without diffusion (a, c), and with Fickian diffusion (b,
d).
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the SENSOR and Eclipse 300 simulators and that the measured
recovery could only be reproduced through viscous forces by
lowering the fracture permeability to 26 md. Recent versions of
the Eclipse simulator do have an option to compute diffusion
from chemical potential gradients, but they still suffer from the
limitations of the dual-porosity fracture model and the mass
balance violations caused by allowing only matrix-diagonal
diffusion coefficients, as discussed above.

■ CONCLUSIONS
The main conclusions from this work are as follows:
Fickian diffusion can be important in homogeneous domains

as a restoring force for gravitational and viscous flow
instabilities. But more importantly, when gas is injected in
fractured reservoirs, diffusion can be the main driver of cross-
flow between the fractures and the matrix blocks when the
fracture intensity is high. Diffusion is often thought to be
negligible, because the diffusion coefficients are small and the
diffusive fluxes are generally slow compared to the convective
flow. However, the main importance of diffusion is to drive
species exchange across phase boundaries, that is, over a small
length-scale. For example, once CO2 enters a matrix block, it
may reduce the oil viscosity, which increases the convective flow
of oil in the matrix blocks. At the same time, local dissolution of
CO2 can swell the oil volume, which expels oil from the entire
matrix block, that is, beyond the CO2 invaded region. Through
these combined effects, the oil recovery by gas injection with
pronounced phase behavior in fractured reservoirs may be
considerably higher than what a simulator without a self-
consistent model for Fickian diffusion would predict.
The first step in modeling Fickian diffusion rigorously is to

take into account the full matrix of composition dependent
diffusion coefficients. This is the only approach that does not
violate molar balance, and that can describe the nonideality of

petroleum fluids in which the diffusive flux of one component is
coupled to the flux of all other components.
The main purpose of this work is to resolve a major

deficiency of conventional models in which gradients in
composition are the driving force for Fickian diffusion. This
approach suffers from a numerical issue in multiphase flow
when sharp phase boundaries occur at element edges. This
often occurs in fractured domains, when the fractures fill with
injected gas while the matrix blocks are still in single-phase oil.
The compositional gradients are generally computed by
differencing the compositions in neighboring grid cells, but
this procedure is ill-defined in multiphase flow when a phase is
absent in one of the two grid cells. As a result, the effect of
diffusion is severely underestimated in simulators relying on
this approach. We implement an alternative formulation in
which gradients in chemical potentials are the driving force.
This formulation is mathematically equivalent to the conven-
tional approach but overcomes this numerical issue, because the
chemical potentials are the same in all phases, and gradients in
chemical potential can always be defined between two
neighboring grid cells.

■ APPENDIX

Discretization of Diffusive Flux Across Grid Edges
To compute the diffusive flux across an edge E between two
grid elements K1 and K2 (Figure 1), we first discretize the
chemical potential gradient in each element as

μ μ μ μ μ μ∇ = −
Δ

∇ = −
Δx x/2

and
/2

E E
1

1

1
2

2

2 (25)

where μ1 and μ2 are the chemical potentials computed from the
phases-split computations in elements K1 and K2, respectively,
and Δx1/2 and Δx2/2 are the distances from E to the element
centers. μE is the unknown chemical potential at the edge E. An
important advantage of working with chemical potentials rather
than compositions is that, because of local thermodynamic
equilibrium at the interface (edge) E, μE = μ1,E = μ2,E, even
when K1 is a gas-filled fracture element and K2 an under-
saturated matrix element. Because of this local thermodynamic
equilibrium and the continuity of the diffusive flux, the
computation of μE can be avoided, as we discuss next.
To simplify the notation, we define the matrices:

∑ϕ̃ = −
Δ

̃ = ̃α
α α

α α
α

αL
S c

RT x
x L L

2
andij ij j ij ij, ,

M
, ,�

(26)

Figure 13. Example 3: Oil recovery.

Figure 14. Example 3: Composition (molar fraction) in the produced gas phase at surface conditions for CO2 and for C1−N2, C2−C3 and C4−C6
after subtracting CO2. Simulations with diffusion (a) and without Fickian diffusion (b).
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Continuity of the total diffusive flux for each component i
across the edge E between the two grid elements K1 and K2

implies

∑ ∑=
α

α
α

αJ J ori i,
1

,
2

(27)

μ μ μ μ̃ − = ̃ −L ( ) L ( )E E1 1 2 2
(28)

where the superscripts denote the elements K1 and K2, and we
have used the fact that μα = μ in the second (matrix) equation.
From eq 28 we can ready eliminate μE by

μ μ μ= ̃ + ̃ ̃ + ̃−(L L ) (L L )E 1 2 1 1 1 2 2
(29)

such that

∑ ∑ μ μ= = ̃ ̃ + ̃ ̃ −
α

α
α

α
−J J L (L L ) L ( )1 2 2 2 1 1 1 2 1

(30)

Note that eq 30 is simply the finite difference in chemical
potentials between neighboring elements, multiplied by the
(matrix) harmonic average of the coefficients. While this is the
most self-consistent approach to obtain the coefficients at grid
edges, it involves a computationally expensive matrix inversion
(L̃2 + L̃1)−1. In all applications we have simulated thus far, we
find that an arithmetic average (L̃1 + L̃2)/2 yields nearly
indistinguishable results. We also emphasize that the constraint
eq 27 is more general than requiring jg,i

1 = jg,i
2 and jo,i

1 = jo,i
2 , which

is usually done in the conventional approach. If, for example, K1

is in two-phase and K2 is single-phase gas, we only assume local
thermodynamic equilibrium at E with (unknown) chemical
potentials μi

E and find jg,i
1 + jo,i

1 = jg,i
2 from eq 30. In the

pathological case where K1 is single-phase gas and K2 is single-
phase oil, we simply have jg,i

1 = jo,i
2 .

What remains is the computation of the difference in
chemical potentials (μi

2 − μi
1) for each species i. As part of the

phase-split computations, we compute the fugacities f i(T,p,xi)
at constant temperature, pressure, and overall composition. For
each element we can write

μ μ= ̃ +

− ̃
T p x T p RT f T p x

RT f T p

( , , ) ( , ) ln ( , , )

ln ( , )

i i i i i

i

1 1 1 1 1 1 1 1

1 1
(31)

and

μ μ= ̃ +

− ̃
T p x T p RT f T p x

RT f T p

( , , ) ( , ) ln ( , , )

ln ( , )

i i i i i

i

2 2 2 2 2 2 2 2

2 2
(32)

The tilde denotes the chemical potential and fugacity of a
reference state. If we choose a reference state that is the same in
elements K1 and K2 (for instance for the pure component i at
surface temperature and pressure), these terms drop out when
we evaluate the gradient in chemical potential between
neighboring elements. We therefore implement

μ μ
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where the last expression is in terms of the fugacity coefficients:
φi = f i/(xip). A subtlety here is that Fickian diffusion is driven
by variations in compositions at constant temperature and
pressure, while variations in temperature and pressure may
cause thermal and pressure diffusion, respectively. In numerical
implementations, however, the gradients in chemical potentials
are computed by differencing chemical potentials in grid cells
which may have different pressures. A similar issue occurs in the
conventional approach, where the diffusion coefficients (in
particular, the non-ideality factor Γ) are computed at different
pressures. To reduce this pressure dependence, we have
assumed in the last expression in eq 33 that the chemical
potential gradient is evaluated at the pressure on edge E, such
that the pressures p1 = p2 = pE cancel in the fugacity ratio. The
fugacity coefficients φi still have some pressure dependence, but
this is negligible to the composition dependence over the short
distance between two neighboring grid cells.
Just as is customary for the Fickian diffusion coefficients, we

project the Onsager coefficients L1 and L2, computed from the
compositions in the neighboring elements onto their shared
edge E, as in eq 30. The phenomenological coefficients are
smoother functions of compositions than the Fickian diffusion
coefficients (which include the highly nonlinear Γ coefficients),
which makes the use of average coefficients at the interface a
better approximation. We acknowledge that this is an
approximation, and a more rigorous approach would be to
simultaneously solve for the fugacities and Fickian diffusive and
convective fluxes across a phase boundary.29 However, the
latter formulation involves additional phase-split computations,
which is computationally inefficient in the context of large-scale
reservoir simulations. Another alternative is to choose the
coefficients from the upwind direction with respect to the
diffusive flux, as is done in some commercial simulators.
However, this is only possible when only the matrix-diagonal
self-diffusion coefficients are considered. When the full matrix
of diffusion coefficients is used (to avoid mass balance
violations), using upwind directions is unfeasible because the
diffusive flux of species i depends on the gradients in
compositions of all components (and all diffusion coefficients).
As outline above, the directions of the diffusive fluxes cannot be
determined a priori from the gradients in chemical potential of
each species i alone due to dragging effects.
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