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a b s t r a c t

Numerical simulation of multiphase compositional flow in fractured porous media, when
all the species can transfer between the phases, is a real challenge. Despite the broad appli-
cations in hydrocarbon reservoir engineering and hydrology, a compositional numerical
simulator for three-phase flow in fractured media has not appeared in the literature, to
the best of our knowledge. In this work, we present a three-phase fully compositional sim-
ulator for fractured media, based on higher-order finite element methods. To achieve com-
putational efficiency, we invoke the cross-flow equilibrium (CFE) concept between discrete
fractures and a small neighborhood in the matrix blocks. We adopt the mixed hybrid finite
element (MHFE) method to approximate convective Darcy fluxes and the pressure equa-
tion. This approach is the most natural choice for flow in fractured media. The mass balance
equations are discretized by the discontinuous Galerkin (DG) method, which is perhaps the
most efficient approach to capture physical discontinuities in phase properties at the
matrix-fracture interfaces and at phase boundaries. In this work, we account for gravity
and Fickian diffusion. The modeling of capillary effects is discussed in a separate paper.
We present the mathematical framework, using the implicit-pressure-explicit-composition
(IMPEC) scheme, which facilitates rigorous thermodynamic stability analyses and the com-
putation of phase behavior effects to account for transfer of species between the phases. A
deceptively simple CFL condition is implemented to improve numerical stability and accu-
racy. We provide six numerical examples at both small and larger scales and in two and
three dimensions, to demonstrate powerful features of the formulation.

� 2013 Published by Elsevier Inc.
1. Introduction

Many problems in hydrocarbon reservoir engineering, as well as hydrology, involve the flow of multiple distinct phases in
fractured porous media. One important example is gas injection in oil reservoirs that have previously been water flooded.
Another example is when gas is injected in an oil reservoir and a third hydrocarbon phase develops with intermediate
properties to the gas and oil phases. When there is significant species exchange between different phases, there is a need
for multi-phase compositional simulators. A reliable determination of the number of phases, phase amounts and phase
compositions requires an equation of state (EOS) based phase stability analysis and three-phase-split computations. Ther-
modynamic stability analysis is essential to guarantee that a phase-split solution corresponds to the lowest Gibbs free en-
ergy. For the three-phase-split, in particular, there are generally multiple solutions corresponding to local minima. Fully
compositional EOS-based commercial simulators for three hydrocarbon phases are currently not available.
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Compositional simulators commonly use Henry’s law or similar correlations to predict the CO2 solubility in water (e.g.,
[1]). This is a poor approximation in three-phase flow, where it cannot satisfy thermodynamic equilibrium. The CO2 compo-
sition in the aqueous phase has to satisfy equality of fugacities of CO2 in all three phases, which cannot be guaranteed by
Henry’s law. In the presence of CO2-rich gas and oil phases, water is not necessarily saturated with CO2. In our work, we have
developed a rigorous EOS-based three-phase thermodynamics algorithm. The aqueous phase is modeled by the cubic-plus-
association (CPA) EOS, including cross-association between CO2 and water molecules and self-association between water
molecules [2]. At low temperatures (T < 350 K), evaporation of water and the mutual solubility between water and hydro-
carbon phases can be neglected. To speed up the phase-split computation for water–gas-oil mixtures, we only consider CO2

solubility in water. The CPA-EOS reduces to the Peng–Robinson (PR) EOS [3] for the hydrocarbon phases, when they do not
contain water. The three-phase compositional model and details of the phase-split computations were presented in [4] for
unfractured domains. Another compositional model for three hydrocarbon phases in unfractured media was considered in
[5]. In this paper, we extend the modeling of both water-oil–gas systems and the flow of three hydrocarbon phases to the
considerably more complicated fractured porous media.

Fractured porous media are challenging because of the large range in spatial scales, permeabilities, fluxes and phase prop-
erties. Currently, the most efficient compositional simulators are based on implicit-pressure-explicit-composition (IMPEC)
schemes. The explicit mass transport update is constrained by the Courant–Friedrichs–Lewy (CFL) condition on the maxi-
mum time-step, which is proportional to the size of grid elements, and inversely proportional to the flux [6]. Fractures gen-
erally have small apertures, but may allow large fluxes due to the high fracture permeability. When fractures are discretized
the same way as matrix elements, i.e., single-porosity simulations, the resulting CFL condition is exceedingly small and most
problems are numerically intractable. The most commonly used alternatives are dual-porosity or dual-porosity-dual-perme-
ability models, which use two overlapping domains [7]. All the flow is through a sugar-cube configuration of fractures, while
the matrix only serves as a storage medium. The flux between fractures and matrix blocks is computed by so-called transfer
functions. The dual-porosity and dual-permeability models are adopted in most fractured media studies (for various imple-
mentations of varying complexity, see for instance [8–15]). The approach is highly efficient, particularly for immiscible and
single-phase flow, but suffers from severe limitations for multi-phase compositional flow, when there is significant species
exchange by Fickian diffusion between the fractures and the neighboring region in the matrix, gravitational reinfiltration of
oil from fractures to matrix blocks, or gravitational and viscous instabilities that may cross fractures. Such complex physical
processes may not rigorously be incorporated in transfer functions.

We adopt an alternative approach in which fractures are combined with a small fraction of the matrix blocks on either
side in larger computational elements. The assumption is that a large permeability, but small pressure gradient across the
fracture-matrix interface results in a transverse flux that instantaneously equilibrates the fracture fluid with the fluid imme-
diately next to it in the matrix. We call this the cross-flow equilibrium approximation, and denote the combined fracture-
matrix elements as CF elements. The fluxes across the edges of the CF elements are worked out by integrating the appropri-
ate Darcy fluxes for the matrix and fracture contributions. Variations of the discrete fracture approach were studied analyt-
ically in [16,17], applied to immiscible water injection in fractured media in [18], to three-phase black-oil in [19,20] and to
single- and two-phase compositional flow in [21,22]. In those papers, and the examples presented in this paper for three-
phase flow, it is demonstrated that the CF approach provides nearly indistinguishable results from fine mesh simulations,
but at orders of magnitude lower CPU cost. The CF treatment of fractures allows coarser grids, which translates into large
CFL time-steps. The efficiency of the pressure update is also improved, because of the lower contrast in (CF) fracture and
matrix permeabilities. In [23], the MHFE + DG and CF approach was applied to immiscible two-phase flow in fractured media
with capillary pressures. In this work, we neglect capillarity for simplicity. The additional complications posed by capillarity
in heterogeneous and fractured domains are presented in a separate paper [24].

The paper is organized as follows. In Section 2 the mathematical model is described, followed in Section 3 by the numer-
ical implementation. We discuss the mixed-hybrid-finite-element (MHFE) approximation to fluxes and a pressure equation,
and construct CF fracture elements by appropriately integrating over fracture and matrix fluxes. The discontinuous Galerkin
(DG) mass transport update, and thermodynamic equilibrium computations are briefly discussed. The numerical implemen-
tation includes several improvements over earlier work. We extend the CF equilibrium discrete fracture model to fully com-
positional three-phase flow and adopt a more stable CFL condition. In Section 4 we provide six numerical examples. Two
examples compare the CF model to single-porosity simulations, and the other four examples illustrate features of the model
for both the flow of three hydrocarbon phases, and gas-oil–water systems in fractured two- (2D) and three-dimensional (3D)
domains.

2. Mathematical model

2.1. Mass transport

We adopt a fractional flow formulation and write the mass- (or species-) transport equation for the total molar density of
each species i in the three-phase mixture as
/
@czi

@t
þr � Ui ¼ Fi; i ¼ 1; . . . ;nc; ð1Þ
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with / the porosity and c the overall molar density. For each of nc components i; zi is the overall molar composition, Fi are
sink/source terms representing injection and production wells, and Ui is the total molar flux, which consists of convective
phase fluxes #a and diffusive phase fluxes Ji;a:
Ui ¼
X

a
caxi;a#a þ /SaJi;a
� �

; i ¼ 1; . . . ;nc: ð2Þ
The three phases are labeled by a, and for each phase, #a is the Darcy flux, ca the molar density, and xi;a the mole fraction of
component i. The phases a can either be oil, gas and water, or three hydrocarbon phases. The reduction of the diffusive flux
by the porosity is a minor improvement over the expression in [25] to account for the reduced surface available for diffusion
in porous media. The phase diffusive fluxes are weighed by the saturations for similar reasons. An additional reduction may
be included to account for tortuosity.

2.2. Diffusive fluxes

The diffusive fluxes Ji;a are given by
Ji;a ¼ �ca

Xnc�1

j¼1

Dij;arxj;a; i ¼ 1; . . . ;nc � 1; ð3aÞ

Jnc ;a ¼ �
Xnc�1

i¼1

Ji;a: ð3bÞ
Multi-component Fickian diffusion is modeled by ðnc � 1Þ � ðnc � 1Þ matrices of temperature, pressure and composition
dependent phase diffusion coefficients, Dij;a, and takes into account non-ideality of the fluids. One can easily demonstrate
[26], that mass balance is violated when only a single diffusion coefficient, or a diagonal matrix of diffusion coefficient is
used, as is generally done in commercial simulators. The off-diagonal components represent dragging effects and can cause
a particular species, in a multi-component mixture, to diffuse from a region of low concentration to higher concentration.
These effects have been demonstrated experimentally for a three-component system [27]. We calculate the diffusion coef-
ficients from a unified model for open space diffusion [28]. Dispersive contributions to Dij;a are neglected because they are
higher-order in terms of the convective fluxes, which are small in the matrix, and lower-dimensional in the fractures.

2.3. Convective fluxes

Each of the volumetric convective phase fluxes is given by the corresponding Darcy relation:
#a ¼ �kaKðrp� qagÞ; ð4Þ
in terms of gravitational acceleration g, permeability tensor K , mobility kaðSaÞ, saturation Sa, and mass density qa. A compli-
cation of working with individual Darcy phase-fluxes is that (4) cannot be inverted in favor of the pressure when a phase
may be absent or immobile. To circumvent this issue, and to reduce the system of equations that has to be solved directly,
we adopt the fractional flow formalism and write a Darcy relation for the total flux #t . To simplify the notation, we adopt the
following definitions for phase mobilities ka ¼ kra=la, in terms of relative permeabilities kra and viscosities la, effective
phase mobilities ka ¼ kaK , total (effective) mobilities kt ¼

P
aka and kt ¼

P
aka, and fractional flow functions fa ¼ ka=kt ,

and write:
#t ¼
X

a
#a ¼ �kt rp�

X
a

faqag

 !
; ð5Þ
The total (effective) mobility is positive definite, so Eq. (5) can be solved for the pressure. As we discuss in detail below, we
simultaneously solve for the pressure and for #t . After finding the total flux #t , we can reconstruct the phase fluxes, inde-
pendent of the pressure, from:
#a ¼ fa #t þ Gað Þ; ð6aÞ
Ga ¼

X
a0

ka0 ðqa � qa0 Þg: ð6bÞ
2.4. Pressure equation

We use Acs’s method [29,30] to compute the pressure field from:
/Ct
@p
@t
þ
Xnc

i¼1

�v iðr � Ui � FiÞ ¼ 0; ð7Þ
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where Ct and �v i are, respectively, the total compressibility and total partial molar volumes of the three-phase mixture.
Expressions for both variables are derived in Appendix C in [4]. Rock compressibility may also be included in Ct .

2.5. Phase compositions and molar fractions

Phase compositions xi;a and phase molar fractions -a are derived from the non-linear set of equations that guarantee
equality of fugacities of each component i in all three phases (a ¼ a1;a2;a3), as required by local thermodynamic equilib-
rium. Computationally, the natural logarithm of the equilibrium ratios Ki;a is more robust [31]. Selecting one reference phase,
say a3, we have two sets of equilibrium ratios Ki;a1 ¼ xi;a1=xi;a3 and Ki;a2 ¼ xi;a2=xi;a2 satisfying the equilibrium criteria:
ln Ki;a1 ¼ ln ui;a3
� ln ui;a1

; and ð8aÞ
ln Ki;a2 ¼ ln ui;a3

� ln ui;a2
; ð8bÞ
in terms of the fugacity coefficients ui;a. (8) is supplemented by the constraint relations:
zi ¼
X

a
-axi;a; i ¼ 1; . . . ;nc � 1; ð9aÞX

i

zi ¼
X

i

xi;a1 ¼
X

i

xi;a2 ¼
X

i

xi;a3 ¼ 1: ð9bÞ
An equation of state has to be specified to describe the three phases and derived quantities, such as saturations, molar and
mass densities, compressibilities and partial molar volumes. We model the aqueous phase with a cubic-plus-association EOS
that takes into account cross-association between water and CO2 molecules, and self-association of water. In the absence of
water, the CPA-EOS reduces to the Peng–Robinson EOS, which we use for pure hydrocarbon phases. We refer the reader to
[2,4] for details.

2.6. Boundary and initial conditions

To complete the description of the physical model, we prescribe initial and boundary conditions. The initial condition
consists of the overall composition and pressure field throughout the domain. The boundaries are described by non-overlap-
ping Dirichlet and Neumann conditions: we consider impermeable boundaries, except in production wells where we have
either a constant pressure or production rate. Injection wells are placed inside the domain as source terms. Production wells
can also be described as sink terms, with impermeable boundaries everywhere.
3. Numerical model

3.1. Mixed hybrid finite element method

3.1.1. Expansion of convective Darcy flux
In the MHFE method, the convective and gravitational fluxes are decomposed into their normal components across the

edges E of each computational matrix element K as:
#ðt;xÞ ¼
X
E2@K

qK;EðtÞwK;EðxÞ; and gðxÞ ¼
X
E2@K

qKg
K;EwK;EðxÞ; ð10Þ
where x ¼ ðx; yÞ; @K is the boundary of element K, and wK;E are the lowest-order Raviart–Thomas basis vector fields [32].
These vector functions satisfy the properties
wK;E � nK;E0 ¼
1
AE
; and r �wK;E ¼

1
VK

; ð11Þ
where AE is the length/area of edge/face E, VK is the area/volume of element K. The MHFE weak form of Eq. (5) is obtained by
multiplying by wK;E and integrating over each element K. The pressure gradient term is partially integrated and Gauss’ the-
orem is used, such that we have one volume integral over the pressure, and one surface integral. We define pK ¼

R
K p andR

@K p ¼
P

E

R
E p ¼

P
EtpK;E, which are the averaged pressure in a matrix element, and the averaged pressures along the ele-

ment edges/faces. We refer to the latter as pressure traces. The MHFE approximation to Darcy’s law can then be written as:
qK;E ¼ hK;EpK �
X

E02@K

bK;E;E0 tpK;E0 � cK;E; E 2 @K: ð12Þ
The coefficients hK;E, bK;E;E0 and cK;E are defined in Appendix A.
In two dimensions, fracture elements are initially treated as 1D computational elements, such that volume integrals re-

duce to line integrals over fracture elements f, multiplied by the fracture aperture �. In three dimensions, the fractures are 2D
planes with an � width in the third dimension. Similar to the definitions above, we denote the average pressure in a fracture
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element by pf , the pressures at the end-points or end-edges e of @f by tpf , and the size of fracture element f by jf j. The MHFE
expression for fracture convective fluxes is:
qf ;e ¼ hf ;epf �
X
e02@f

bf ;e;e0 tpf ;e0 � cf ;e; e 2 @f : ð13Þ
However, as discussed in the next section, there is no need to evaluate Eq. (13) explicitly.

3.1.2. Cross-flow equilibrium approximation
An explicit treatment of fractures, referred to as single-porosity models, is not computationally feasible. The CFL con-

straint on the time-step scales with Dt /minðVK=qK ;Vf =qf Þ. For fracture elements, the fracture flux qf may be high, while
the volume Vf of a fracture element is generally exceedingly small, particularly for fracture intersections. To overcome this
limitation, we note that the pressure field is continuous, so the pressure in a fracture element is close to the pressure a small
distance away in the matrix. We now represent a fracture element, together with two small matrix elements on both sides,
as one computational element. This is illustrated in Fig. 1 for a rectangular 2D mesh. For this larger, combined element, we
assign one averaged pressure pK and 4 (in 2D) or 6 (in 3D) pressure traces tpK;E.

Fluxes through edges that are intersected by a fracture (top and bottom edges in Fig. 1) are computed by properly inte-
grating over both the matrix and fracture fluxes inside the combined element. We now use K for an element that may contain
a fracture, k for the matrix portion of element K and E for an edge that may be intersected by a fracture and write for the total
fracture plus matrix flux ~qK;E ¼ qk;E þ qf ;e, with
~qK;E ¼ ðhk;E þ hf ;eÞpK �
X

E02@K

bk;E;E0 þ bf ;e;e0de;Ede0 ;E0
� �

tpk;E0 � ck;E � cf ;ede;E; ð14Þ
where de;E is 1 when an edge E is intersected by a fracture element end e and zero otherwise. Eq. (14) is similar to the two-
phase expressions in [22]. However, in Appendix A, we demonstrate that Eq. (14) can be more elegantly reduced to Eq. (12),
with the coefficients hK;E, bK;E;E0 and cK;E evaluated in terms of a weighted total effective mobility keff

t across edge E:
keff
t ¼ kt;f e=AE þ kt;mð1� e=AEÞ; ð15Þ
where e is the area of the fracture intersection with E, and the subscripts m and f denote matrix and fracture properties,
respectively (i.e., kt;m is the total effective mobility in the matrix, as defined above Eq. (5)). We emphasize that we allow dif-
ferent relative permeabilities in the fracture and matrix portions of CF elements.

Fluxes in the transverse direction (left and right edges in the figure) are matrix fluxes, computed from Eq. (12). The frac-
ture-matrix flux inside the element is accounted for by the assumption that at the fracture-matrix interface there is a large
permeability, but a small pressure gradient, which results in a Darcy fracture-matrix flux. The assumption is that this flux
instantaneously equilibrates, or mixes, the fluid in the fracture with the fluid in the small neighboring matrix elements
(small with respect to the full matrix block). When the MHFE method is combined with a FD mass transport update, this
means that the average czi for the combined element is updated. For the combination of MHFE with a higher-order DG meth-
od, czi at the nodes or edges is updated. The mass transport update, Eq. (1), is unaltered from its implementation for homo-
geneous media. We provide the phase compositions for the combined fracture-matrix element and the summed fluxes, and
update the overall molar species densities czi. We refer to this approach as the cross-flow (CF) equilibrium model and will
refer to the combined fracture-matrix elements as CF elements.

In a single-porosity simulation, the CFL condition could be determined by fracture-intersection elements with an area of,
say 1 mm2, and fracture fluxes that scale with the high fracture permeability. In the CF approach, when we have,
10 m� 10 m matrix blocks, we can use CF elements with a width of several cm or more. This results in a CFL constraint
on the time-step that is several orders of magnitude larger than for a single-porosity model. A second reason that single-
porosity models are computationally expensive, is that the system of equations in the pressure update is ill-conditioned
due to the high permeability contrast between the fracture and matrix elements. When we use the averaged CF elements,
the pressure update (discussed below) is considerably more efficient.

We emphasize, that the matrix blocks may be discretized by any number of grid-cells, such that we can resolve potential
gravitational or viscous fingers in the matrix. The discretization of the matrix blocks is particularly important to model dif-
fusion. The diffusive fluxes are weighed by the phase saturations (Eq. (2)), and diffusion only occurs within a given phase.
When gas is injected in fractured porous media, all the hydrocarbons in the fractures may evaporate into the gas phase,
before a gas phase has developed in the neighboring matrix blocks. Because Fickian diffusion only occurs within a phase,
Fig. 1. Illustration of cross-flow equilibrium approximation.
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one cannot self-consistently compute a diffusive flux from the fractures to the matrix blocks. In reality, the gas and oil at the
fracture-matrix interface are in local thermodynamic equilibrium, and dissolution of gas and evaporation of oil occur
through Fickian diffusion at the interface. This numerical issue is particularly problematic in single- and dual-porosity mod-
els. In the CF approach the problem is alleviated, because the gas in the fractures is mixed with matrix oil and the CF ele-
ments may remain in two-phase, particularly in large-scale simulations where breakthrough is avoided. When a sufficient
amount of light species has accumulated in the neighboring matrix elements, a gas phase may form and diffusion can occur
from fracture to matrix in both phases at a high rate. In this fashion, the light species may diffuse element by element into
the matrix blocks, while heavier species diffuse towards the fractures.

Gravitational effects, such as fingering and re-infiltration, where oil drains from a matrix block into a fracture, and then
drains from the fracture into another neighboring matrix block, are modeled without special treatment. The CF model is not
restricted to sugar-cube fracture configurations, but can be applied to any configuration of discrete fractures in structured or
unstructured grids. These features are difficult to incorporate in the dual-porosity model.

3.1.3. Pressure equation
The discretization of the pressure equation, Eq. (7), is also greatly simplified by the definition of the weighted effective

mobility in CF elements. For the convective Darcy flux through a fracture-intersected edge/face E, one can easily see that
the total phase flux through the matrix and the fracture portions of the CF element reduces to
~qa;K;E ¼ �keff
a ðrp� qaqg

K;EÞ: ð16Þ
Similarly, we can use Eq. (6) with ka replaced with keff
a and fa with f eff

a .
We expand the diffusive fluxes, similar to the convective fluxes in Eq. (10) as:
/SaJi;aðt;xÞ ¼
X
E2@K

qdiff
i;a;K;EðtÞwK;EðxÞ: ð17Þ
The diffusion term in Eq. (7) (with Eq. (2)) then reduces to
P

i

P
E �v iqdiff

i;a;K;E and can be combined with the source/sink term in Fi.
For brevity, we move these terms to the right-hand-side of the equations, denoted as r:h:s: and define f ¼ Ct /f Vf þ /mVk

� �
.

The integral form of Eq. (7) is:
f
@pK

@t
þ
Xnc

i¼1

�v i

Z
@K
ðmi;K#t;K � si;KÞ � nK ¼ r:h:s:; ð18Þ
where in CF elements #t;K is the total flux integrated over both fracture and matrix portions of element K, and mi;K and si;K are
defined in Appendix B. In other words, the discretized pressure equation has the same form for fracture-containing CF ele-
ments as for matrix elements, i.e., is the same for fractured and unfractured domains, when written in terms of the weighted
effective mobilities and f. This formulations is more straightforward than the earlier implementation for two-phase flow in
[22].

Expanding the fluxes as in Eq. (10) and carrying out the integrations using Eq. (11), we find
f
@pK

@t
þ
Xnc

i¼1

�v i

X
E2@K

ðmi;K;E~qK;E � ~si;K;EÞ ¼ r:h:s: ð19Þ
We eliminate the fluxes by Eq. (12) to obtain the spatial discretization of the pressures:
f
@pK

@t
þ ~aK pK �

X
E2K

~bK;EtpK;E � ~cK ¼ r:h:s: ð20Þ
For the temporal discretization we use the backward (implicit) Euler method. The fully discretized pressure equation, with
the r:h:s: re-instated, becomes:
pnþ1
K ¼ Dt

~aKDt þ f
f
Dt

pn
K þ

X
E2K

~bK;Etpnþ1
K;E þ ~cK þ

X
i

�v i Fi �
X

E

X
a

qdiff
i;a;K;E

 !( )
; ð21Þ
with all the coefficients evaluated at the previous time-step.

3.1.4. Assembly of global matrix for the pressure update
Eqs. (12) and (21) are for individual elements and edges. To construct the global system of equations to solve, we assume

flux continuity across element edges:
~qK;E þ ~qK 0 ;E ¼ 0; for E ¼ K \ K 0; ð22Þ
(note that fluxes are defined with respect to the normal to edge E in element K). Collecting the terms for each edge in the
domain, we obtain the matrix system
RT P�MTP ¼ I: ð23Þ
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For NK grid elements and NE edges, P is the NK -size vector of element averaged pressures, TP is a NE-size vector of the pres-
sure traces at all the edges. The matrices R and M, and vector I are defined in Appendix C.

Similarly, we assume pressure continuity, such that at each edge E
tpK;E ¼ tpK 0 ;E; for E ¼ K \ K 0; ð24Þ
and construct the matrix system (with matrix definitions given in Appendix C):
DP� ~RTP ¼ G: ð25Þ
Eqs. (23) and (25) can be combined in one large system that solves simultaneously for the pressures and pressure traces. A
more efficient approach presents itself by the fact that D is diagonal. By multiplying Eq. (25) by D�1, we can eliminate P from
Eq. (23) and obtain a system for TP alone:
ðM� RT D�1 ~RÞTP ¼ RT D�1G� I: ð26Þ
Eq. (26) is the system that is solved in the pressure update. The matrix that needs to be inverted has dimensions NE � NE,
but is sparse. On a structured 2D (3D) grid, each (non-boundary) row/edge has 7 (11) non-zero elements, because tpK;E de-
pends on edge E and the other 3 (5) edges in each of the two neighboring elements. After updating Tp, P is found through
inexpensive back-substitution in Eq. (25). The total flux is found by substituting the updated pK and tpK in Eq. (14).

The system (26) is larger than for a FD method, but the considerable advantage is that we simultaneously solve for the
element pressures (as in FD), the pressures on the edges (which is advantageous for heterogeneous and fractured domains),
and for a continuous velocity field throughout the domain; all with the same order of convergence.
3.2. Discontinuous Galerkin mass transport update

All higher-order methods approximate the mass transport update, Eq. (1), by multiple degrees of freedom for the overall
and phase compositions and molar densities. The DG method has the additional advantage that the variables can be discon-
tinuous across edges. One of the benefits is that different orders of approximation can be used in different elements. In our
work, we use a bilinear (trilinear) approximation on all 2D (3D) structured elements and a linear approximation on unstruc-
tured triangular grids [33]. Away from strong compositional gradients, we can use a lower-order approximation. Our main
interest in the DG method is the simulation of heterogeneous and fractured porous media. At the boundaries between re-
gions of different permeabilities (such as fractures and layers), the phase properties may exhibit strong discontinuities. Con-
tinuous higher-order methods, such as FD and finite volume, may be used in homogeneous domains, but are a less natural
choice to approximate the inherently discontinuous phase properties in fractured reservoirs.

The higher-order mass transport update reduces numerical dispersion and converges to the exact solution at a higher
rate. Alternatively, this means that a given FD result can be reproduced on a significantly coarser grid, and at a correspond-
ingly higher CPU efficiency. Combined with the accurate velocity field from the MHFE method, this approach has been shown
to result in orders of magnitude improvement in CPU times [21,34,35,33,4]. A convergence analysis in [36] demonstrates
twice the convergence rate for the DG mass transport update as compared to a FD approach.

As was mentioned above, the implementation of the DG method is identical to that in homogeneous domains, which was
presented for three-phase flow in [35] and will not be repeated here. Phase properties are updated at either the edge-centers
or the nodes from the total (fracture plus matrix) fluxes through each of the edges. The accuracy is further improved, because
we have the pressures at the edges from the MHFE update. To avoid spurious oscillations that may occur in higher-order
methods, we use the same slope limiter as in the papers cited above.
3.3. Phase behavior

We have developed a phase splitting package that can model both three hydrocarbon phases, with transfer of all species
between the three phases, and systems in which one of the phases is water. In the latter case, we neglect the mutual solu-
bility between water and hydrocarbons and water evaporation, and only allow CO2 solubility in water. These are reasonable
assumptions for problems where the temperature is below 350 K, and result in considerable computational advantage. In the
update of phase compositions, first a stability analysis is performed, corresponding to the minimum Gibbs free energy. Then,
two- or three-phase-split computations are carried out. When initial guesses are not available, the phase-split routine first
performs a number of successive-substitution-iterations (SSI) to obtain a good enough initial guess to switch to the fast-con-
verging Newton method. Generally, the Newton method, based on the natural logarithm of the equilibrium ratios (Eq. (8))
only needs one or two iterations to converge. When initial guesses are available from the previous time-step, Newton’s
method is attempted first, without a stability analysis. Various optimizations have resulted in a highly efficient algorithm.
The details are provided in an earlier paper on three-phase flow in homogeneous media [4].
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3.4. Relative permeability and viscosity

We adopt Stone I relative permeabilities [37,38]. In the numerical examples, we will denote the residual saturations for
water-oil–gas mixtures by S0

rw for water, S0
row for oil-to-water, S0

rog for oil-to-gas, and S0
rg for gas. Similarly, the end-point rel-

ative permeabilities are k0
rw; k

0
row; k

0
rog, and k0

rg, and the powers are nw, now, nog, and ng. For mixtures of three hydrocarbon
phases, we will use the same notation for simplicity, where the w subscript refers to the third hydrocarbon phase.

We use either the LBC [39] or PC [40] viscosity correlations. Near the critical point, the LBC correlation may perform
poorly and the PC correlation, which does not require phase identification, is an improvement.

3.5. CFL condition

Earlier work on higher-order IMPEC modeling of two-phase compositional flow in fractured media [21,22,41] used the
CFL condition for the convective fluxes
ðDtÞconv 6 min
K

/jKjP
E2@K

P
aj~qa;K;Ej

� �
: ð27Þ
However, this condition only applies to immiscible flow and does not guarantee that the total number of moles of any spe-
cies cannot flow out of any grid element in one time-step. Moreover, the summation over the absolute values of the fluxes
may result in an overly restrictive time-step when some of the fluxes flow into an element.

We have implemented a different CFL condition for the compositional fractional flow formulation, equivalent to the sug-
gestion in [42], in terms of the convective fluxes:
ðDtÞconv 6 min
i;K

/jKjcK zi;KP
E2@K

P
aca;K;Exi;a;K;E~qa;K;E

� �
; 8~qa;K;E > 0; ð28Þ
where ca;K;E and xi;a;K;E are, respectively, the phase molar density and composition, evaluated on edge E in the higher-order DG
mass transport update. cK and zi;K are the element averaged molar density of the mixture and overall composition in element
K. By using condition from Eq. 28, the stability of the algorithm is improved considerably, in particular for fractured media.

When Fickian diffusion is included, we add the outgoing diffusive fluxes to the denominator in (28) and check an addi-
tional criteria in terms of the maximum eigenvalue of the matrix of diffusion coefficients. Denoting the maximum eigenvalue
of each of the matrices of phase diffusion coefficients by Kdiff;a;K , and Kdiff;K ¼maxaðKdiff;a;KÞ, we define
ðDtÞdiff 6 min
K

/jKj
Kdiff;K

� �
; and ð29Þ

Dt 6 minððDtÞconv; ðDtÞdiffÞ ð30Þ
However, most problems of interest are convection dominated. In homogeneous media, the convective fluxes are generally
larger than the diffusive fluxes, even at low injection rates. Fickian diffusion is most pronounced in fractured media, where
steep compositional gradients may exist between fractures and matrix blocks. However, the CFL condition is usually deter-
mined by the largest convective flux inside small fracture elements. Compared to FD models, the CFL constraint is alleviated,
because the higher-order DG method allows the use of coarser grids elements.

The steps in the full simulator algorithm are similar to other IMPEC codes, and are outlined in more detail in [33].
4. Numerical examples

We present six numerical examples to illustrate the strengths of our discrete fracture three-phase flow model. In Exam-
ples 1 and 5, we compare cross-flow equilibrium results to single-porosity simulations. In these example, we neglect Fickian
diffusion, because single-porosity simulations have a numerical issue in computing diffusion in fractured media, as discussed
in Section 3.1.2.

In Examples 2 and 3, we consider a typical oil recovery scenario for fractured porous media and account for diffusion. The
domain is depleted, followed by water flooding and then enhanced oil recovery by CO2 injection. Example 3 considers a high
matrix permeability, such that gravitational fingers may develop throughout the domain. The flow of three hydrocarbon
phases in a larger fractured domain is illustrated in Example 4. Examples 1–5 are for 2D domains. In the last example, we
consider CO2 injection into a complex 3D domain with a number of discrete horizontal and vertical fractures.

4.1. Example 1: comparison of discrete CF model to single porosity simulation

We test the CF model by comparing to a single-porosity simulation for water flooding, followed by CO2 injection in a
2 m� 10 m column with four matrix blocks. Convergence of the CF results is verified by performing simulations on a coarse
11� 57 element Grid 1, and a finer 21� 105 Grid 2. The domain, grids and locations of fractures and wells are indicated in
Fig. 2. To make the single-porosity simulation computationally feasible, we assume relatively wide fractures of 5 mm. For the
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cross-flow simulation we use a 10 times larger width of 5 cm. The fracture permeability is 4 d, the matrix permeability is
4 md and matrix porosity is 15%.

The column is initially saturated with a light oil, with composition and EOS-parameters given in Table 1. The density and
viscosity of the oil, water and CO2 at the initial condition of T ¼ 350 K, p0 ¼ 300 bar are given in Table 2. Both water and CO2

densities are higher than the oil density, and both are injected from the bottom fracture. Production is at constant pressure
from the top fracture. The relative permeability parameters for all the examples are listed in Table 3.

In the simulations, we first inject one pore volume (PV) of water and then 2.5 PV of CO2 at 2% PV/day. The purpose is to
verify that we can obtain the same results with our CF model as with a single-porosity simulation, but at high CPU efficiency.
Fig. 3 shows the oil saturation at the end of water flooding for a single-porosity simulation, and for CF simulations on Grids 1
and 2. The oil saturations at the end of the simulations are given in Fig. 4. We find excellent agreement between the single-
porosity and CF results, and observe that the CF results have mostly converged on the coarser Grid 1. The CF simulation is 26
times faster than the single-porosity simulation (1:23 h versus 32 h on Grid 1). The CFL condition is determined by the grid
elements containing fracture intersections, which are about 24 times larger for the CF discretization (CFL � 1 h) than for the
single-porosity elements (CFL � 2:5 min). The lower contrast in permeability between CF and matrix elements also results in
a more efficient pressure update. Note that for a smaller fracture aperture the difference in CPU time would be orders of mag-
nitude, and the single-porosity simulation would not be feasible, even for this small problem.

Fig. 5 shows the oil recovery for both simulations. The results are close, but the recovery from the CF simulation is about
2.2% higher. The reason is that when the gas in the fractures is mixed with a small amount of matrix fluid, the light oil evap-
orates and is quickly recovered in this small-scale example, where breakthrough occurs early. When we subtract the small
pore volume of oil included in the CF elements, the recoveries from CF and single-porosity simulations are in perfect agree-
ment. Also shown is that the CF results on Grids 1 and 2 have converged in terms of oil recovery predictions (the CPU time for
the CF simulation on Grid 2 is 3 h).

Further verification of the CF model for single- and two-phase flow was made in [21,22]. Now that we have confidence in
the CF model, we proceed to a similar problem, but on a large scale that is computationally too expensive for a single-poros-
ity simulation.
4.2. Example 2: depletion, water flooding and CO2 injection in fracture porous media

We consider a 50 m� 50 m domain with 5 m� 5 m matrix blocks. Again, we verify convergence on three different mesh
refinements. The grids, fractures and wells are shown in Fig. 6, and results will be illustrated on Grid 3, unless stated other-
wise. The matrix-blocks have a porosity of 20% and permeability of 10 md. The fractures have an aperture of 1 mm and per-
meability of 25 d, and the width of the CF fracture elements is 20 cm. The domain is initially saturated with oil, with
composition and EOS parameters given in Table 4. The temperature is 350 K and at this temperature, the fluid has a bubble
point pressure of 338 bar.

The simulation is started at an initial pressure of 350 bar at the bottom of the domain. At this pressure, the entire domain
is in single-phase. In the first recovery phase, we deplete the domain at a constant rate of 5% PV/yr (computed at the initial
pressure) for one year, until the pressure has dropped to 300 bar. Below the bubble point, a gas cap develops in the top of the
domain. Table 5 provides the densities and viscosities for water, oil, CO2, and liberated gas at T ¼ 350 K and p ¼ 300 and
350 bar. The water and CO2 densities are higher than the oil density, so both are injected from the bottom.

Fig. 7 shows the gas and oil saturations at the end of the depletion stage. The gas, liberated at the reduced pressure, has
segregated to the top through the high-permeability fractures. During secondary recovery, 50% PV of water is injected at a
constant rate of 5% PV/yr from the bottom well and production is at a constant pressure from the top. Fig. 8 shows the water
saturation at 5% and 50% PVI. Because of the residual oil saturation to water, breakthrough has occurred and further water
Fig. 2. Example 1: computational mesh: 2 m� 10 m domain, 5 cm wide CF fracture elements. Grid 1 has 11� 57 elements, and grid 2 is 21� 105. Injection
and production wells are indicated by ellipses near the bottom and top, respectively.



Table 1
Initial composition (mole fraction) z0

i , acentric factor x, critical temperature Tc , critical pressure pc , molar weight Mw , critical volume Vc and volume translation
s for the fluid characterization in Example 1.

Species z0
i

x Tc (K) pc (bar) Mw (g/mole) Vc (cm3/g) s

H2O 0.00 0.344 647 221 18 2.14 0.000
CO2 0.00 0.239 304 74 44 2.14 0.020
C1—N1 0.45 0.011 190 46 16 6.14 �0.154
C2—C3 0.12 0.118 328 47 35 4.73 �0.095
C4—C6 0.07 0.234 458 34 70 4.32 �0.047
C6—C9 0.08 0.370 566 26 108 4.24 0.038
C10—C15 0.12 0.595 651 19 166 4.31 0.115
CO16þ 0.16 1.427 824 10 386 3.75 0.277

Table 2
Density and viscosity for water, oil and CO2 at p ¼ 300 bar and T ¼ 350 K in Example 1.

H2O Oil CO2

Density (g/cm3) 0.985 0.713 0.754
Viscosity (cp) 0.36 0.53 0.03

Table 3
Relative permeability parameters for all numerical examples.

S0
rw S0

row S0
rog S0

rg k0
rw k0

row k0
rog k0

rg
nw now nog ng

Ex. 1 0.0 0.5 0.1 0.0 0.3 1.0 0.6 1.0 3.0 3.0 3.5 2.4
Exs. 2–3 0.3 0.5 0.1 0.0 0.3 1.0 0.4 0.6 3.0 2.0 2.0 2.0
Exs. 4–5 0.05 0.2 0.2 0.05 0.65 0.5 0.5 0.65 3.0 3.0 3.0 3.0
Ex. 6 0 0 0 0 1 1 1 1 1 1 1 1

Fig. 3. Example 1: oil saturation at 100% PV water injection for single-porosity simulation on Grid 1, and CF simulations on Grids 1 and 2.
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injection is inefficient. To recover the residual oil, we consider tertiary recovery by CO2 injection for 20 years at 5% PV/yr. The
overall and three phase compositions of CO2 at one PV of CO2-injection are shown in Fig. 9. In particular, we note the CO2

dissolution in the aqueous phase in the large three-phase region. CO2 has a solubility of 2.5 mol%, or about 6 wt.% at the given
pressure and temperature. The CO2 that dissolves in water is lost to the oil sweep, but results in swelling of the aqueous
phase by �5%. At the same time, CO2 has a high solubility in oil which leads to swelling of the oil phase as well.

Fig. 10 shows the oil recovery from depletion, water flooding and CO2 injection. Oil recovery from depletion is 5%. Water
flooding produces another 30% recovery and the enhanced oil recovery by CO2 injection achieves a final recovery to 60%.
Fig. 10 also shows that the DG results have converged even on the coarsest mesh, in which the matrix blocks are discretized
by only three elements in each direction. The CPU times for this simulation are 10;19 and 34 h for Grid 1, 2 and 3, respec-
tively. Because the domain is fractured, phase states and compositions vary wildly throughout the domain and 95% of the
CPU time is consumed by the phase split computations. As an illustration of the efficiency of the CF model itself: without
the phase-split calculations, the CPU time on the finest mesh is only 2.5 h. The computational cost of three-phase split com-
putations in fractured media motivates continued efforts in improving the efficiency of these algorithms.



Fig. 4. Example 1: oil saturation at 100% PV water injection and 250% PV CO2 injection for single-porosity simulation on Grid 1, and CF simulations on Grids
1 and 2.

0.0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0 1 2 3 

O
il 

re
co

ve
ry

 (v
ol

um
e 

fr
ac

tio
n)

 

PVI (fraction) 

 CF - Grid 1 

 CF - Grid 1 - 2.2% 

 CF - Grid 2 

 Single-porosity - Grid 1 

Fig. 5. Example 1: oil recovery.

(a) Grid 1 – 39 × 39 (b) Grid 2 – 49 × 49 (c) Grid 3 – 79 × 79

Fig. 6. Example 2: computational grids for 50 m� 50 m domain, 5 m� 5 m matrix blocks, 20 cm wide CF fracture elements. Injection and production
wells are indicated by circles.

Table 4
Initial composition (mole fraction) z0

i , acentric factor x, critical temperature Tc , critical pressure pc , molar weight Mw , critical volume Vc and volume translation
s for fluid characterization in Example 2.

Species z0
i

x Tc (K) pc (bar) Mw (g/mole) Vc (cm3/g) s

H2O 0.00 0.344 647 221 18 2.14 0.000
CO2 0.00 0.239 304 74 44 2.14 0.100
C1—N1 0.57 0.012 189 46 16 6.09 �0.157
C2—C3 0.16 0.120 330 46 35 4.73 �0.094
C4—C6 0.08 0.233 455 35 69 4.32 �0.048
C6—C10 0.09 0.428 584 24 120 4.25 0.055
CO11þ 0.11 1.062 751 13 293 4.10 0.130
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Table 5
Density and viscosity for water, oil and CO2 at p ¼ 300 and 350 bar and T ¼ 350 K in Example 2 and at p ¼ 350 bar and T ¼ 400 K in Example 3.

H2O Oil CO2 Gas

Density (g=cm3), p ¼ 350 bar; T ¼ 350 K 0.987 0.586 0.841 –
Viscosity (cp), p ¼ 350 bar; T ¼ 350 K 0.37 0.20 0.04 –

Density (g=cm3), p ¼ 300 bar; T ¼ 350 K 0.985 0.602 0.782 0.260
Viscosity (cp), p ¼ 300 bar; T ¼ 350 K 0.37 0.23 0.03 0.03

Density (g=cm3), p ¼ 300 bar; T ¼ 400 K 0.953 0.567 0.560 0.237
Viscosity (cp), p ¼ 300 bar; T ¼ 400 K 0.22 0.16 0.03 0.03

Fig. 7. Example 2: gas (left) and oil (right) saturation after depleting 5% PV in one year on Grid 3.

Fig. 8. Example 2: water saturation at 5% (left) and 50% (right) PV of water-flooding on Grid 3.
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4.3. Example 3: gravitational fingering in high-permeability porous media

We repeat the example above but increase the matrix permeability by a factor 10, and consider a temperature of 400 K,
such that the CO2 is lighter than the oil (Table 5). After depletion and water flooding, CO2 is injected from the top well, and
production is at constant pressure from the bottom. The simulations are carried out on Grid 2 in Fig. 6, and account for Fic-
kian diffusion.

When CO2 dissolves in water, it increases the density of the aqueous phase by about 1%. Because CO2 is injected on top of
the previously injected water, the density increase first occurs in the top. Even a density change this small may be gravita-
tionally unstable and trigger a fingering instability. The dissolution of CO2 in oil results in a similar density increase in single-
phase, and a higher density increase when light components evaporate from the oil into the CO2-rich gas phase. When the
matrix permeability is low, the gravitational fingers do not develop and may be stabilized by Fickian diffusion. At higher per-
meability, the fingering speed scales linearly with permeability.

Fig. 11 shows the CO2 composition in the aqueous phase and resulting density increase after depletion, water flooding and
injection of 30% PVI CO2. Pronounced gravitational fingers have developed that span multiple matrix blocks and fractures.
Complicated flow patterns like this may not be studied with dual-porosity models. In FD simulations, gravitational and vis-
cous instabilities are often suppressed by numerical dispersion, unless unreasonably fine meshes are used. This example illus-
trates many of the powerful features or our model: the density increase of water, predicted by the CPA-EOS in three-phase



(a) CO2 (b) CO2,g

(c) CO2,o (d) CO2,w

Fig. 9. Example 2: overall, gas, oil and water molar composition of CO2 at 100% PVI of CO2 on Grid 3.
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Fig. 10. Example 2: oil recovery.
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flow, the high accuracy and low numerical dispersion of our higher-order finite element methods, and the efficient modeling
of fractures (CPU time of 5.3 h).

4.4. Example 4: flow of three hydrocarbon phases in fractured porous media

We consider the flow of three hydrocarbon phases in a fractured domain, with transfer of all species between the three
phases, but neglecting diffusion. The domain, fracture network and aperture, and porosity are the same as Grid 2 in the pre-
vious two examples. The matrix and fracture permeabilities are 4 md and 40 d, respectively. The domain is initially saturated
with the North Ward Estes oil, and the fluid composition and EOS-parameters can be found in [4,43,5]. The temperature is
301 K, the initial pressure at the bottom is 75 bar, and the relative permeability data are provided in Table 3.

We inject a mixture of 95 mol% CO2 and 5 mol% methane from the top at 10% PV/yr for 10 years, and produce at a constant
pressure from the bottom. Fig. 12 shows the overall and three phase molar compositions of CO2 at 100% PVI. In the region
between the lightest CO2-rich gas phase in the top and densest oil phase in the bottom, a large intermediate CO2-rich phase
has developed (denoted by CO2;i). This third phase has a low residual saturation (5%) and is readily recovered, while the oil
phase is stripped from some of its lighter components and remains as a denser more viscous residual oil. Such flow



Fig. 11. Example 3: CO2 molar composition in aqueous phase (left) and aqueous phase density in kg/m3 (right) at 30% PV of CO2 injection, with
Km ¼ 100 md on Grid 2.

(a) CO2 (b) CO2,g

(c) CO2,o (d) CO2,i

Fig. 12. Example 4: overall, gas, oil and intermediate-phase molar composition of CO2 at 100% PVI on Grid 2.
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properties can not be captured by a two-phase compositional simulator. Moreover, we find, in line with remarks in [5], that
modeling an intrinsically three-phase problem with a two-phase simulator may result in erratic behavior and crashes. In
three-phase regions, the phase compositions obtained from a two-phase-split computation do not correspond to the lowest
Gibbs free energy (which is the three-phase result). The derived phase properties may be unstable to small perturbations.

The oil recovery for this example is provided in Fig. 13. The recovery is not intended to be representative for a field scale
project, in which CO2 injection should only be considered for a shorter duration, and certainly not long beyond breakthrough.

The total CPU time for this example is 6 h, the average CFL time-step is 5 h, the CPU time per time-step is one second,
with 97% of the computation time spent on the phase-split computations. As was mentioned above, the cost of phase-split
computations in fractured media is considerably higher than for homogeneous domains, because phase boundaries occur
throughout the domain. Away from phase boundaries, most phase-split computations can be avoided by criteria to deter-
mine whether an element was and remains in single-phase. Stability analyses can be skipped in two- and three-phase
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Fig. 13. Example 4: oil recovery.
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regions when initial guesses are available from the previous time-step. In fractured media, compositions vary significantly
throughout the domain, and full stability and phase-split computations have to be carried out in most elements. For this
example, 14% of three-phase split computations were carried out with initial guesses from the previous time-step, avoiding
the stability analysis and two-phase split, and only using a couple of Newton iterations. Another 15% of phase-split calcu-
lations were avoided by determining which elements were and remained in single-phase. As an indication of the efficiency
of the MHFE + DG and CFE fracture model, the CPU time for this example, with the phase-split computations subtracted, is
only 8 min. The large fraction of CPU time spent on the phase-split computations is of course partly due to the small mesh
size of only 2401 elements, for which the pressure and mass transport updates are extremely fast. We also note that we com-
pute phase compositions to an accuracy of 10�10, and the final mass balance error for each of the components is of the order
of 10�15.
4.5. Example 5: comparison of CF and fine mesh simulations for three hydrocarbon phases

We compare briefly the CF model to a single-porosity simulation for a three hydrocarbon phase fully compositional prob-
lem. The parameters are the same as in the previous example. To compare to a single-porosity simulation, we consider a
smaller 5 m� 5 m domain with three discrete fractures, as indicated in Fig. 14 for CF elements with a large width of
10 cm. The fracture aperture is 4 mm. Gas, with the same composition as in the previous example, is injected from the bot-
tom at 10% PV/yr and production is at constant pressure from the top.

Fig. 15 shows the three phase compositions of CO2 at 30% PVI. There are small differences, but the main flow pattern is
captured well by the CF simulation, considering that the CF simulation required about 2 min, while the single-porosity sim-
ulation took 74 h, a factor of over 2100. The average CFL time-step for the CF simulation is about 1:3 day, while the time-
steps for the single-porosity simulation are about 7� 10�4 day, which accounts for most of the difference in total CPU time.
The remaining improvement in CPU time is achieved by the more efficient pressure update, due to the reduced contrast in
permeability between the CF and matrix elements.
4.6. Example 6: large 3D domain with ten discrete fractures

In this last example, we consider a large 600 m� 100 m� 50 m three-dimensional domain containing ten discrete planar
2D fractures. Each fracture plane is characterized by two diagonally opposite corners with coordinates ðx1; y1; z1Þ and
ðx2; y2; z2Þ, respectively, as provided in Table 6. We consider 4 fractures in the y-z direction, and 3 fractures in both the x-
y and x-z orientations. The domain is discretized by 48� 29� 14 elements with 1 m width of the CF elements. The mesh
and locations of the fractures, injection and production wells are illustrated in Fig. 16. We consider about six orders of
Fig. 14. Example 5: computational mesh: 5 m� 5 m domain, 10 cm wide CF fracture elements, 24� 24 grid elements. Injection and production wells are
indicated by circles in the bottom-left and top-right corners, respectively.



(a) Fine mesh – CO2,g (b) CF – CO2,g

(c) Fine mesh – CO2,o (d) CF – CO2,o

(e) Fine mesh – CO2,i (f) CF – CO2,i

Fig. 15. Example 5: gas, oil and intermediate-phase molar composition of CO2 at 30% PVI.
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magnitude range in spatial scales, and four orders of magnitude in permeability: the fractures have an aperture of 1 mm and
permeability of 100 d, while the matrix blocks have a permeability of 4 md and porosity of 44%.

The domain is initially saturated with the fluid characterized in Table 7 at a temperature of 400 K and a pressure of
300 bar at the bottom. In the simulation, one pore volume of CO2 is injected at a rate of 10% PV/yr from the corner at
0 m� 0 m� 0 m and production is from the opposite corner at 600 m� 100 m� 50 m at constant pressure. Fig. 17 shows
the overall CO2 composition throughout the domain at 1%, 8%, 25% and 100% PVI. Not surprisingly, we find that once the CO2

front reaches the first fracture, CO2 quickly flows through the connected fractures, resulting in early breakthrough. In this
example, we neglected Fickian diffusion, so there is no efficient mechanism for cross-flow between the fractures and the
neighboring matrix blocks. This example demonstrates that we can apply our discrete fracture model to model composi-
tional multiphase flow in complex three-dimensional discretely fractured domains.

5. Summary and conclusions

First, we briefly reiterate the advantages of our higher-order finite element modeling of three-phase flow, and the discrete
fracture model. The main motivation for the use of the combined MHFE and DG methods is flow in heterogeneous and



Table 6
Fracture characterization in Example 6.

Index x1 (m) y1 (m) z1 (m) x2 (m) y2 (m) z2 (m)

1 100 5 5 100 80 45
2 240 25 25 240 75 40
3 410 0 10 410 80 50
4 560 10 5 560 90 45
5 300 25 5 500 25 35
6 100 50 25 250 50 45
7 10 75 25 150 75 45
8 450 0 10 600 50 10
9 10 10 20 300 30 20
10 250 30 40 500 80 40

Fig. 16. Example 6: computational mesh: 600 m� 100 m� 50 m domain, 1 m wide CF fracture elements, 48� 29� 14 grid elements. An iso-surface plot
of the 50 d permeability level gives an indication of the locations of the 10 discrete fractures.

Table 7
Initial composition (mole fraction) z0

i , acentric factor x, critical temperature Tc , critical pressure pc , molar weight Mw , and volume translation s for fluid
characterization in Example 6 (we note that the volume shift for C35þ may be lower than for a real reservoir oil).

Species z0
i

x Tc (K) pc (bar) Mw (g/mole) s

CO2 0.0083 0.239 304 74 44 0.020
C1—N2 0.4427 0.011 190 46 16 �0.154
C2—C3 0.1177 0.118 328 47 35 �0.095
C4—C6 0.0741 0.234 458 34 70 �0.047
C7—C9 0.0821 0.370 566 26 108 0.038
C10—C15 0.1158 0.595 651 19 166 0.115
C16—C22 0.0551 0.870 717 16 247 0.169
C23—C34 0.0465 1.060 797 14 336 0.223
C35þ 0.0577 1.100 958 10 558 0.010
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fractured porous media. From MHFE, we obtain an accurate pressure field across interfaces of difference permeabilities (frac-
tures), because the pressures are continuous across element edges as well as inside the elements through the use of the Rav-
iart–Thomas basis vector fields. At the same time, a continuous velocity field is provided at every point, and to the same
order of convergence. This is a marked improvement over lowest-order FD models that only update average pressures in
each element, and compute velocities as a post-process. Phase properties, on the other hand, are intrinsically discontinuous
across permeability jumps. The DG method is therefore particularly suitable for the mass transport update, rather than
approximating discontinuous properties with continuous methods, even at higher order. Specifically, at edges between a
fracture and a matrix block, we have a single continuous pressure and corresponding flux, but a different composition in
the fracture from the matrix. Within each element, we use a higher-order approximation to the mass-transport update,
which reduces the numerical dispersion as compared to lower-order methods. The higher-order convergence means that
accurate results can be obtained on coarser grids and at lower CPU cost.

We adopt the CFE approximation to model fractures, which has considerable advantages over commonly used single- and
dual-porosity models. Compared to single-porosity models, the CPU cost is reduced by orders of magnitude by combining



(a) 1% PVI (b) 8% PVI

(c) 25% PVI (d) 100% PVI

Fig. 17. Example 6: iso-surface plots of the 25 mol% level for the overall CO2 concentration at 1%, 8% and 25% PVI, and contour plot for the overall CO2

concentration at 100% PVI.
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fractures with a small amount of matrix fluid into larger computational elements, which relaxes the CFL condition. The CPU
time is further improved because the CF elements have a lower contrast in (effective) permeability with the matrix blocks,
which speeds up the matrix inversion in the pressure update. As long as the pore volume of the matrix-slice included in the
CF elements is small compared to the total pore volume of matrix blocks, results from the CF approximation are indistin-
guishable from fine mesh simulations. Compared to dual-porosity models, the CF approach has the advantage that there
is no need for transfer functions, which may not have a solid physical footing. Interactions between fracture and matrix ele-
ments are computed as in single-porosity simulations. Challenging examples that benefit from this approach, and often re-
quire discretized matrix blocks, include gravitational and viscous fingering in matrix blocks, gravitational re-infiltration of oil
from fractures to neighboring matrix blocks, and Fickian diffusion. The sugar-cube configuration, required by dual-porosity
models, may also be overly restrictive, for example in modeling discrete fractures.

In this work, we have advanced these methods in a number of areas:

� We have presented the first discrete fracture simulator for fully compositional EOS-based three-phase flow, including
both three hydrocarbon phases with transfer of all species between the three phase, and two hydrocarbon phases and
an aqueous phase with CO2 solubility in water.
� We have adopted a CFL condition for compositional multi-phase flow in a fractional flow formulation. The corresponding

time-step selection greatly improves the numerical stability of the method compared to earlier work, and in some cases
increases the CPU efficiency.
� Fickian diffusion is modeled with a self-consistent model based on a full matrix of composition dependent diffusion coef-

ficients, derived from irreversible thermodynamics. The open-space diffusion coefficients are reduced by the formation
porosity (and tortuosity) to account for the reduced area available for diffusion. Diffusion from fracture to matrix ele-
ments is improved, with respect to single-porosity models, by mixing the fracture fluid with a small amount of matrix
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fluid, which allows fracture-matrix diffusion within the oil and gas phases. Further improvements can be made by enforc-
ing thermodynamic equilibrium across the fracture-matrix interface, which we consider in a future work. The generaliza-
tion of this work to account for capillarity is presented in [24].
� The detailed description of the MHFE implementation of the CF discrete fracture model includes terms omitted in earlier

work, in particular related to the gravitational flux in the fractures. This improves the results when gravity is an important
driving force, such as during depletion. The formulation is also significantly simplified by introducing a weighted effective
mobility for the CF elements that takes into account both the fracture and the matrix contributions to the flux. In terms of
this mobility, the implementation on both unfractured and fractured domains is nearly identical. Our main challenge in
modeling fractured domains, particularly in 3D, has been to develop an appropriate mesh generator that also initializes
the simulations by working out all the fracture orientations and the intersection areas of fractures with the faces of CF
elements. Once these geometric factors are initialized, the modeling of fractured reservoirs is surprisingly straightforward
with our proposed model.

Acknowledgements

We thank the member companies of the Reservoir Engineering Research Institute (RERI) for their support of the work
presented in this paper.

Appendix A. Coefficients in MHFE expansion of convective fluxes

The bK;E;E0 coefficients in Eq. (12) for matrix elements are given (as in [33]) by:
bK;E;E0 ¼ kt;K

Z
K

wK;EK�1
m;K wK;E0

� ��1

: ð31Þ
Eq. (31) expresses that for each edge/face E, bK;E;E is the effective mobility times the length/surface (2D/3D) of edge/face E
divided by the distance from the mid-point of E to the center of K (denoted by LE?). As an example: on a 2D rectangular mesh,
with scalar absolute permeability Km, and after performing mass-lumping onto the diagonal, Eq. (31) reduces to:
bK;E;E0 ¼ 2kt;m;K
ly

lx
Ih þ

lx

ly
Iv

� �
; ð32Þ
where we have defined the diagonal matrixes Ih ¼ diag½1;1;0;0�, Iv ¼ diag½0;0;1;1� and lx and ly are the lengths of a rectan-
gular element in the x and y directions, respectively (with edges numbered right ¼ 1, left ¼ 2, top ¼ 3, bottom ¼ 4).

Similarly, for horizontal and vertical fractures (with e the area of the fracture intersection with E), we have in 2D:
bf ;e;e0 ðhorÞ ¼ 2ekf ;K Ih=lx; bf ;e;e0 ðvertÞ ¼ 2ekf ;K Iv=ly: ð33Þ
For a cross-flow element we sum the contributions from the matrix (bk;E;E0 ) and fracture (bf ;e;e0 ) portions. For example, a 2D
element K containing a horizontal fracture has
bK;1;1 ¼ bk;1;1 þ bf ;1;1 ¼ kt;m
ly � e
lx=2

Ih þ
e

lx=2
kt;f Ih; and bK;2;2 ¼ bK;1;1: ð34Þ
In terms of the total weighted effective mobility across edge E, as defined in Eq. (15), we can succinctly write for the mass-
lumped bK;E;E0
bK;E;E0 ¼ bK;E;E0dE;E0 ¼ bk;E;E0 þ bf ;e;e0 ¼ keff
t

AE

LE?
ð35Þ
in both 2D and 3D, and for both matrix elements and fracture-containing CF elements. In terms of keff , the remaining coef-
ficients in Eq. (13) reduce to the same form as in Eq. (12):
hK;E ¼ hk;E þ hf ;e ¼
X

E0
bK;E;E0 ; ð36aÞ

cK;E ¼ ck;E þ cf ;e ¼ �
X

a
qa;K keff

a;Kðg � nEÞAE: ð36bÞ
Appendix B. Coefficients in MHFE expansion of the pressure equation

The coefficients in Eq. (18) are defined in terms of the weighted effective fractional flow functions f eff
a;K as:
mi;K ¼
X

a
ca;K xia;K f eff

a;K ; and si;K ¼
X

a
ca;K xia;K f eff

a;K Ga;K : ð37Þ
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and in Eq. (19), we have
~si;K;E ¼
Z

E
si;K � nK;E: ð38Þ
mi;K;E is as in Eq. (37), but may be evaluated at the edges from the DG results. We define
~vK;E ¼
Xnc

i¼1

�v i;K mi;K;E; ð39Þ
and write the coefficients in Eq. (20) as:
~aK ¼
X
E2K

~vK;EhK;E; ð40aÞ

~bK;E ¼
X

E02@K

~vK;EbK;E;E0 ; ð40bÞ

~cK ¼
X
E2@K

~vK;EcK;E þ
Xnc

i¼1

�v i;K~si;K;E

 !
: ð40cÞ
Appendix C. Matrices in global MHFE velocity and pressure systems

The matrices R and M, and vector I in Eq. (23) collect the coefficients defined in Appendix A for each element and edge:
R 2 RNK ;NE ; RK;E ¼ hK;E; ð41aÞ
M 2 RNE ;NE ; ME;E0 ¼

X
K:E;E02@K

bK;E;E0 ; ð41bÞ

I 2 RNE ; IE ¼
X

K:E2@K

cK;E: ð41cÞ
The matrices in the global system for the pressures, Eq. (25), are defined similarly from the coefficients in Appendix B:
D 2 RNK ;NK ; DKK ¼
f
Dt
þ ~aK ; ð42aÞ

~R 2 RNK ;NE ; eRK;E ¼ ~bK;E; ð42bÞ

G 2 RNK ; GK ¼
fpKðtoldÞ

Dt
þ ~cK þ

X
i

�v i Fi �
X

E

X
a

qdiff
i;a;K;E

 !
: ð42cÞ
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