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ABSTRACT: Microemulsions are nanoheterogeneous, thermodynamically stable, sponta-
neously forming mixtures of oil and water by means of surfactants, with or without cosurfactants.
The pledge to use small volumes of amphiphile molecules compared to large amounts of bulk
phase modifiers in a variety of chemical and industrial processes, from enhanced oil recovery to
biotechnology, fosters continuous investigation and an improved understanding of these systems.
In this work, we develop a molecular thermodynamic theory for droplet-type microemulsions,
both water-in-oil and oil-in-water, and provide the theoretical formulation for three-component
microemulsions. Our thermodynamic model, which is based on a direct minimization of the Gibbs
free energy of the total system, predicts the structural and compositional features of microemulsions. The predictions are compared with
experimental data for droplet size in water−alkane−didodecyl dimethylammonium bromide systems.

■ INTRODUCTION
In the last few decades, there has been increasing interest in
microemulsions primarily because of their scientific importance
and technological potential.1 Microemulsions are thermody-
namically stable dispersions of oil and water stabilized by a
surfactant and, in many cases, also a cosurfactant.2 The addition
of amphiphilic surfactant to oil and water causes the separation
of the oil-rich domain from the water-rich domain by the spon-
taneous assembly of the surfactants at the interface of the immiscible
water and oil phases. Droplet-type and bicontinuous micro-
emulsions are typical examples among the structured liquid
phases. The droplet-type microemulsions can be spherical oil
droplets dispersed in a continuous medium of water (oil-in-water
microemulsions, O/W) or spherical water droplets dispersed in a
continuous medium of oil (water-in-oil microemulsions, W/O).
The O/W and W/O can be either a single-phase system or part
of a two-phase system wherein the microemulsion phase coexists
with an excess phase (an upper phase of excess oil in the case of
O/W and a lower phase of excess water in the case of W/O).
There are also nondroplet-type microemulsions, referred to as
bicontinuous or middle-phase microemulsions. In this case, the
microemulsion phase may be part of a three-phase system with the
microemulsion phase in the middle coexisting with an upper phase
of excess oil and a lower phase of excess water.3

One of the main goals of this work is to provide a general
framework that allows the prediction of the phase behavior of
different microemulsion types based on a global minimization of
the total Gibbs free energy. The equality of the chemical potentials
often used in the literature may not provide correct results, espe-
cially for such a complex system. Toward this purpose, we first
write the expression for the total Gibbs free energy and then
minimize the total Gibbs free energy for a system with a given
overall composition, temperature, and pressure with respect to the
geometrically and compositionally independent variables.
Different approaches have been used to describe the thermo-

dynamics of microemulsions. The first efforts in the thermodynamic

modeling of microemulsions relied on conventional liquid−liquid
equilibrium by using a simple expression of the excess Gibbs energy
derived from the Flory theory.4−6 The main limitation of this type
of modeling is the requirement of adjustable parameters from
experimental data regression.
Another line of research allocates efforts to developing a

thermodynamic understanding of microemulsions following the
phenomenological theories of globular microemulsions.7−12

In this work, the microemulsion systems are examined under a
macroscopic thermodynamics point of view. The free energy of
the droplet microemulsions is formulated from the known or
estimated interfacial tension and bending free energy of the
monolayer. One limitation of this type of model is that it
cannot provide detailed properties of the phases and global
phase behavior.13

A molecular theory of microemulsions has been proposed by
Nagarajan and Ruckenstein.3 This approach differs from the
phenomenological thermodynamics formulation by looking at
the molecular level for the surfactant self-assembly. This is the
main molecular thermodynamic model in the literature. To the
best of our knowledge, Nagarajan and Ruckenstein’s formula-
tion has not been compared against experimental data.
In this work, we present a predictive molecular thermody-

namic model to droplet-type microemulsions. First, we derive
the expression for the total Gibbs free energy for W/O and
O/W droplet-type microemulsions. We include the excess
phase in our derivations for the Gibbs free energy of droplet-
type microemulsions, so the formulations account for both
single-phase and two-phase systems. The Gibbs free energy
minimization defines the existence of the excess phase and its
size and composition as well as the size and composition of the
continuous phase and droplets.
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The expression for the total Gibbs free energy is used togeth-
er with the free energy of aggregation in order to calculate the
Gibbs free energy of the microemulsion. In the free energy
of aggregation, we account for various contributions related to
the headgroups and the interfacial layer. For a given overall
composition, temperature, and pressure, we minimize the total
Gibbs free energy in order to predict the compositional and
geometrical features of the microemulsion. We believe that
using the overall composition as a control variable is convenient
because it allows for a direct comparison with the experimental
data. The minimization is performed with respect to eight inde-
pendent variables. We verify the model by comparing the
predictions with experimental data for a three-component ionic
microemulsion: didodecyl dimethylammonium bromide/
water/alkanes.14

In this work, our derivations are limited to three-component
microemulsions. Three-component ionic microemulsions
have considerable advantages over conventional four- or five-
component microemulsions in the field of elucidation of the
microstructure. Surfactants such as didodecyl dimethylammo-
nium bromide (DDABr) and dioctyl sodium sulfosuccinate
(AOT) are known to form three-component ionic microemul-
sions and have been extensively investigated in studies on
microemulsions characterization.14−23 In the future, we will
extend our formulations to include cosurfactants and electro-
lytes in the model. We will also expand our work to include
bicontinuous microemulsions.

■ MOLECULAR THERMODYNAMIC MODEL

Our goal is to predict the phase behavior of microemulsions by
minimizing the total Gibbs free energy. Toward this objective,
we investigate the droplet-type microemulsions. In our formula-
tion, we include the excess phase so that the Gibbs free energy
minimization determines if the system is single-phase or two-
phase. In the following section, we derive the expression for
the total Gibbs free energy for W/O and O/W droplet-type
microemulsions, which can be minimized with respect to
geometrically and compositionally independent variables for a
given overall composition, temperature, and pressure. We
provide a brief description and the expressions for major con-
tributions to the free energy of aggregation. We present the
models used to describe the nonidealities of the solution related
to the hard-sphere interactions due to the presence of droplets
and to the mutual solubilities of the ternary system. We discuss
the geometrical and compositional aspects and constrains for
the minimization of the total Gibbs free energy.
Water-in-Oil Droplet Microemulsions. Consider a

microemulsion system is composed of NO oil molecules, NS
surfactant molecules, and NW water molecules at temperature
T and pressure p. The water-in-oil microemulsion has a con-
tinuous oil phase and a lower phase of excess water as sche-
matically represented in Figure 1.
The continuous oil phase is composed of NO

O oil molecules,
NS

O surfactant molecules, NW
O water molecules, and Ng droplets.

The subscript refers to the type of species, and the superscript
refers to the phase. Each droplet is composed of gO oil molec-
ules, gS surfactant molecules, and gW water molecules. g for a
droplet denotes the total number of molecules of different kinds
present in it (i.e., g = gO + gS + gW). We assume that the average
properties of the continuous phase that contains the droplets are
strongly influenced by the species present in the largest number
and use the maximum term approximation.3

The interfacial layer of the droplet is composed of gO
I oil

molecules and gS
I surfactant molecules, which gives a total of

NO
I oil molecules and NS

I surfactant molecules forming the
interfacial droplet layer:

=N g NO
I

O
I

g (1a)

=N g NS
I

S
I

g (1b)

The interfacial layer is a hydrophobic region that excludes the
headgroups of the surfactant molecules and is assumed to be
free of water molecules (gW

I = 0 and NW
I = 0). The aqueous

core of the disperse droplets is composed of gO
core oil molecules,

gS
core surfactant molecules, and gW

core water molecules. The excess
water phase is composed of NO

ex oil molecules, NS
ex surfactant

molecules, and NW
ex water molecules summing to a total of NO

W,
NS

W, and NW
W oil, surfactant, and water molecules, respectively,

in the water phases.
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The species balance equations result from the summation
of all molecules in the continuous and dispersed phases, and
under the maximum term approximation, they can be written as
follows:
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= + + +

N N N N

N g N g N N
O O

O
O
I

O
W

O
O

O
I

g O
core

g O
ex

(3a)

= + +

= + + +

N N N N

N g N g N N
S S

O
S
I

S
W

S
O

S
I

g S
core

g S
ex

(3b)

= + = + +N N N N g N NW W
O

W
W

W
O

W
core

g W
ex

(3c)

The total Gibbs free energy of the solution, G, is the sum of
the Gibbs free energy of the continuous phase containing drop-
lets and the excess phase

= μ + μ + μ + μ

+ μ + μ + μ

G N N N N

N N N
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W
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(4)

Figure 1. Schematic representation of a two-phase water-in-oil droplet
microemulsion.
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where μi
j is the chemical potential of component i in phase j.

The expression for the chemical potential of the droplet in the
continuous phase containing droplets, μg, is given by

μ = μ* + γ* +kT X U[ln( ) ]g g g g g
hs

(5)

where μg* is the standard chemical potential for a droplet that
is infinitely dilute in the continuous phase, γg* is the activity
coefficient of the droplet in the continuous phase in the infinite
dilution reference frame, Xg is the mole fraction of a droplet in
the continuous phase, and k is the Boltzmann constant. Ug

hs is
the nonideality from the hard-sphere droplets.
The standard chemical potential μg* of the aggregate in the

continuous phase can be split into a part due to the inter-
facial layer (denoted by superscript I) and another part due to
the disperse water domain of the droplet (denoted by the
superscript core) and is given by3

μ* = μ + μ + μ + μ* g g gg g
I

O
core

O
core

W
core

W
core

S
core

S
core

(6)

After substituting eqs 5 and 6 into eq 4, we have

= μ + μ + μ

+ μ + μ + μ

+ μ + γ* +

+ μ + μ + μ

*

G N N N

N g g

g kT X U

N N N

{
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Using NO
core = NggO

core, NW
core = NggW

core, and NS
core = NggS

core and
rewriting eq 7, we have

= μ + μ + μ + μ *
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+ μ

+ μ + μ + μ + μ
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Using eq 3b to substitute NS
core into eq 8, we have

= μ + μ + μ + μ *

+ γ* + + μ

+ − − − μ

+ μ + μ + μ + μ
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For the chemical potentials in the equation above, we use
the reference state of the pure species except for the chemical
potential of the surfactant in the interfacial layer, which has the
reference state in the infinite dilution limit. The expression for
the chemical potential with the reference state of the pure
species is given by

μ = μ + γ +kT X U[ln( ) ]i
j

i i
j

i
j

i
o hs

(10)

where μi
o is the standard chemical potential of pure species i, γi

j

is the activity coefficient of species i in phase j in the pure-state
reference frame, and Ui

hs is the nonideality from the hard-
sphere droplets. Ui

hs is different from zero when j represents the
dominant component of the continuous phase (i.e., j = O for
W/O and j = W for O/W).

The expression for the chemical potential with the infinite
dilution reference frame is given by

μ = μ * + γ * +kT X U[ln( ) ]i
j

i
j

i
j

j
i

i
hs

(11)

where μi
j* is the standard chemical potential for species i that is

infinitely dilute in phase j, γi
j* is the activity coefficient of

species i in phase j in the infinite dilution reference frame, and
Xi
j is the mole fraction of species i in phase j. Substituting eqs

10 and 11 into eq 9 yields

= μ + γ +

+ μ + γ +
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Reorganizing eq 12 using the mass balance equations
(eqs 3a−3c) yields

= μ + μ + μ − μ
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We use the relation provided by Prausnitz et al.24 for the
infinite dilution activity coefficient of a surfactant

γ * =
γ

γ * γ = γ∞
→

where limS
core S

core

S
core S

core

X 0 S
core

S
core

and then we move to the left side of eq 13 the terms that
depend only on fixed variables T, p, NO, NS, and NW. G′ is
defined as
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′ = − μ − μ − μ

= − μ − μ * + μ * +
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Reorganizing the total Gibbs free energy equation once more
and dividing it by kT, we obtain the working equations for
water-in-oil microemulsions
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and

Δμ = μ − μ − μ* * *
g

g

g
1

g
I

S
I g

I
S
core O

I

S
I O

o

(16)

where ΔμgI* is the standard free energy due to the transfer of one
surfactant molecule at infinite dilution from the aqueous core
and gO

I /gS
I oil molecules from pure oil to the interfacial layer of

the droplet. In eq 6, the droplet is also at infinite dilution.
Oil-in-Water Droplet Microemulsions. Consider the

microemulsion system is composed of NO oil molecules, NS

surfactant molecules, and NW water molecules at temperature T and
pressure p. The oil-in-water microemulsion has a continuous water
phase and an upper phase of excess oil. The continuous water phase
is composed of NO

W oil molecules, NS
W surfactant molecules, NW

W

water molecules, and Ng droplets. The schematic representation of
an oil-in-water microemulsions is given in Figure 2.
The interfacial layer is composed of gO

I oil molecules and gS
I

surfactant molecules, which adds to a total of NO
I oil molecules

and NS
I surfactant molecules forming the interfacial layer as

given in eqs 1a and 1b. We assume that the interfacial layer is
free of water molecules (gW

I = 0 and NW
I = 0).

The oil domain within the disperse droplets is composed of
gO
core oil molecules, gS

core surfactant molecules, and gW
core water

molecules. The excess oil phase is composed of NO
ex oil

molecules, NS
ex surfactant molecules, and NW

ex water molecules,
summing to a total of NO

O, NS
O, and NW

O oil, surfactant, and

water molecules, respectively, in the oil phases.
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The species balance equations result from the summation of
all molecules in the continuous and dispersed phases, and under
the maximum term approximation, they can be written as follows:
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The total Gibbs free energy of the solution,G, is the sum of the Gibbs
free energy of the continuous water phase and the excess oil phase:
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Substituting the chemical potential of the droplet in the
continuous phase in eqs 6 and 11 into eq 19 yields
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Figure 2. Schematic representation of a two-phase oil-in-water droplet
microemulsion.
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Using eq 18b to substitute NS
W into eq 21, we have
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For the chemical potentials in the equation above, we use
the reference state of the pure species (eq 10) except for the
chemical potential of the surfactant in the interfacial layer,
which has the reference state in the infinite dilution as expressed
by eq 11.
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Reorganizing eq 23 using the mass balance equations
(eqs 18a−18c) yields
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We use the relation provided by Prausnitz et al.24 for the infinite
dilution activity coefficient of the surfactant
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and move to the left side of eq 24 the terms that depend only
on fixed variables T, p, NO, NS, and NW. G′ is defined as follows:
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By reorganizing the total Gibbs free energy equation once
more and dividing it by kT, we obtain the working equations
for water-in-oil microemulsions:
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and

Δμ = μ − μ − μ* * *
g

g

g
1
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I

S
I g

I
S
W O

I

S
I O

o

(27)

Δμg
I* represents the standard free energy due to the

transfer of one surfactant molecule at infinite dilution from
water and gO

I /gS
I oil molecules from pure oil to the interfacial

layer of the droplet. Equation 27 differs from eq 16 in
relation to the phase from which the surfactant molecule is
moved to the interfacial layer. For W/O, the surfactant
molecule is transferred from the disperse water core, and for
O/W, the surfactant molecule is transferred from the
continuous water phase. The difference in pressure in the
continuous phase and inside the droplets is neglected in
this work; we will examine the effect of pressure in future
investigations.
To minimize the total Gibbs free energy, we first define the

control variables. The independent variables are assigned values
in a manner that is controlled by the optimization scheme
used and discussed in the Results and Discussion section.
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With specified independent variables, one can readily calculate
the geometrical- and compositional-dependent variables. Then,
molar fractions, activity coefficients, and free energies of aggre-
gation are computed and used in the working equation to
compute the total Gibbs free energy.
Free Energy of Aggregation. In the molecular

thermodynamic modeling approach, the free-energy change
associated with the formation of the surfactant aggregate at
infinite dilution is expressed as the sum of several free-energy
contributions, all of which can be computed given the chem-
ical structure of the various components and the solution
conditions:25
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=
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+
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+
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Explicit expressions are presented here for each of the free-
energy contributions in terms of the molecular characteristics of
the surfactant and the counterion. Detailed discussions of the
origin of the following expressions are found in refs 25 and 26.
Transfer of the Surfactant Tail. The transfer free energy

relates to the transfer of a surfactant tail in water to the
aggregate interfacial layer. The contribution to the free energy
of this transfer is estimated by considering the interfacial
layer to be like a liquid hydrocarbon. The fact that the inter-
facial layer differs from a liquid hydrocarbon gives rise to an
additional free-energy contribution that is evaluated immedi-
ately below.
The transfer free energy of the surfactant tail from water

to a liquid hydrocarbon state in the interfacial layer can be
estimated from the experimental data of the solubility of
hydrocarbons in water. The expressions for the methylene
and methyl group contribution to the free energy of transfer
of an aliphatic tail from pure water as a function of tem-
perature (in Kelvin) have been estimated by Nagarajan and
Ruckenstein:25
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For surfactant tails made up of two hydrocarbon chains,
the contribution to the transfer free energy would be smaller
than that calculated on the basis of two independent single
chains because of intramolecular interactions. Tanford27 sug-
gested that the second chain of a dialkyl molecule would con-
tribute about 60% of an equivalent single-chain molecule to the
transfer free energy.
Packing and Deformation of the Surfactant Tail. The

surfactant tails in the aggregate interfacial layer are not in a state
identical to that in liquid hydrocarbons. This is because one
end of the surfactant tail in the aggregate is constrained to
the interface whereas the entire tail has to assume a conforma-
tion consistent with the maintenance of a uniform density equal

to that of liquid hydrocarbons in the interfacial layer. Con-
sequently, the formation of aggregates is associated with a
positive free-energy contribution stemming from the conforma-
tional constraints on the surfactant tail.25 The packing and
deformation free-energy expression for spherical aggregates is
given by25
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(31)

where L is the characteristic segment length for the tail
(L = 0.46 nm), NS is the number of segments in the tail of a
surfactant (NS = lS/L, where lS is the extended length of the
tail), and P is the packing factor defined as

=
| − |

P
V

a R R
I

W O (32)

where a is the surface area of the droplet in contact with water
per surfactant molecule, VI is the volume of the interfacial layer
per surfactant molecule, and RW and RO are the radii of water
and oil interfaces for the droplet, respectively, as defined in
Figure 3.

For surfactant tails with two chains, the tail deformation free
energy is the sum of the tail deformation free energy calculated
for each chain.

Headgroup Steric Interactions. The steric free-energy con-
tribution accounts for steric interactions between surfactant
headgroups and adsorbed counterions at the aggregate interface.
The surfactant headgroups and counterions at the interface are
treated as components of an ideal localized monolayer26

∑
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(33)

where βj is the degree of binding of counterion j and ap and ah,j
are the effective cross-sectional areas of the hydrated headgroup
and hydrated counterion j, respectively. The degree of coun-
terion binding corresponds to the number of counterions of
species j adsorbed to the surfactant headgroup per surfactant
molecule in the droplet.26,28

Besides the well-known dependence of the effective cross-
sectional area of the headgroup on the molecular structures of
the surfactant headgroup, we account for the effect of the type
of counterion on the cross-sectional area of the headgroup at
the interfacial layer. The distance between the counterion and
the surfactant headgroup depends on the strength of the
headgroup−counterion interaction as discussed in our previous
work.28 As an example, the effective cross-sectional area of the
hydrated headgroup for surfactant didodecyl dimethylammo-
nium bromide ((C12)2DABr) is ap = πrp

2, where rp = 0.28 nm.

Figure 3. Schematic representation of the radii characterizing the size
of W/O and O/W droplets in microemusions.
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We use this surfactant later in the article. The cross-sectional
area of the counterion is obtained from the hydrated ionic
radius and the assumption that it is spherical. The radius of the
Br− counterion is estimated to be 0.118 nm.29

Formation of the Aggregate Core−Solvent Interface. The
free energy associated with the formation of the interface
between the hydrophobic interfacial layer and the aqueous
phase is given by25

Δμ *
=

σ
−

kT kT
a a

( )
( )

g
I

int agg
o (34)

where αagg is the macroscopic interfacial tension between the
bulk hydrocarbon and the aqueous solution and ao is the sur-
face area per surfactant molecule shielded from contact with
water by the polar headgroup of the surfactant. We assume that
the area per surfactant molecule of the core surface shielded from
contact with water by the polar headgroup of the surfactant is
equal to the effective cross-sectional area of the headgroup (ao =
ap), and ao can be obtained from the molecular structure of the
surfactant headgroup and counterion as discussed above.
The interfacial tension σagg is calculated in terms of the sur-

face tension σS of the aliphatic surfactant tail and the surface
tension σW of pure water via the relationship interpolated from
the experimental data of the water−hydrocarbon interfacial
tension:30,31
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The surface tension of pure water is given by32
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where σW is expressed in mN/m and the temperature is ex-
pressed in Kelvin. The surface tension of normal alkanes is
fitted from the experimental data33

σ = − −

− −

n

T

29.7003[1 exp( 0.1532 )]

0.0896( 298.15)
S c

(37)

where nc corresponds to the number of carbon atoms in the
normal alkane tail.
For double-tailed surfactants, we assume that the surface ten-

sion is the average of the surface tension corresponding to each
tail (σS = (σSnc1 + σSnc2)/2), where σSnc1 and σSnc2 are the surface
tensions of the normal alkanes corresponding to the two surfac-
tant tails.
Headgroup-Counterion Mixing Entropy. This contribution

accounts for the entropic gain associated with mixing of the
surfactant heads and the bound counterions at the interface.
The surfactant ionic heads and bound counterions are con-
sidered to be arranged randomly on the aggregate surface.26
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Headgroup Ionic Interactions. The free energy of the
double layer is equal to the amount of work performed in
building up the double layer around the colloidal particle by a
reversible isothermal process. The ionic free-energy contribu-

tion is accounted for by the double-layer free energy of an
isolated charged particle34,35

∫
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where σ is the surface charge density (charge/area) at the
charge surface, ϕo is the electrical potential at the aggregate
charge surface, and ach is the surface area per surfactant molec-
ule at the charge surface:

=
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ch
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2

S
I

(40)

The radius of the charge surface, Rch, is calculated using the
radius, RW, and the distance between the aqueous phase inter-
face and the center of charge of the ionic surfactant head, dch, as
follows (Figure 3):

= +R R d for O/W microemulsionsch W ch (41a)

= −R R d for W/O microemulsionsch W ch (41b)

The distance between the aqueous-phase interface and the
center of charge of the ionic surfactant head, dch, is estimated
from the molecular structure of the surfactant. For surfactant
(C12)2DABr, dch is taken to be 0.1 nm, as for the dch of alkyl
trimethylammoniums.28

The integral in eq 39 is the free energy per unit area of
the particle surface. The trapezoidal rule may be used for the
numerical integration. In this work, we discretize the domain in
20 equally distributed nodes. The charge density is given by

σ =
+ ∑ βe z z

a

( )k k kA

ch (42)

where e is the elementary charge, zA is the valence of the
surfactant headgroup, and zk is the valence of counterion k,
where k is the number of counterions present in solution. The
electrical potential at the surface of charge ϕo is determined by
solving the Poisson−Boltzmann equation, which in spherical
coordinates is given by
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In the above equation, ϕ is the self-consistent electrical
potential. The electrical potential depends on the spatial
distance from the droplet aqueous interface, x. nj

∞ is the ion
concentration infinitely far from the charged interface, and εo
and εsol are vacuum permittivity and dielectric constant of the
solvent, respectively. The total ionic concentration nj

∞ is related
to the molar concentration cj

∞ by the relation nj
∞ = 103Navcj

∞,
where Nav is Avogadro's number. Uj is the hard-sphere repul-
sion that is infinite when the ion is located closer to the surface
of charge than the thickness of the Stern layer, dst,j

=
∞ < +

≥ +⎪
⎪⎧⎨
⎩

U x
x R d
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,

0,j
j

j

ch st,
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We assume that the charged headgroup and the counterions
at the Stern layer form solvent-shared ion pairs with different
degrees of overlap.28 The thickness of the Stern layer is esti-
mated from the molecular structure of the hydrated surfactant
heads and hydrated counterions and from a knowledge of the
qualitative strength of the headgroup−counterion interaction
based on the concept of matching water affinities. For head-
group (C12)2DA

+ and for counterion Br− in surfactant (C12)2DABr,
dst is estimated to be 0.3 nm, as for the dst of alkyl
trimethylammonium and bromide.28

For pure water at temperatures ranging from 273.15 to
373.15 K,36

ε = − + − × − T1.0677 306.4670 exp( 4.52 10 )W
3

(45)

The Poisson−Boltzmann equation is a second-order differ-
ential equation with two boundary conditions. One boundary
condition is based on the fact that the potential vanishes at
infinity (i.e., far away from the charged interface):

ϕ =
→∞
lim 0

x (46)

At infinity, the derivative of the potential also vanishes:

∇ϕ =
→∞
lim 0

x (47)

The other boundary condition is based on the surface charge.
The electrical field or the electrical potential at the charged
interface can be fixed. Here, by knowing the surface charge
density, we calculate the electrical field at the interface:

∇ϕ| = − σ
ε ε=x R

o W
ch (48)

The Poisson−Boltzmann equation can be solved by finite
differences. Spherical discretization is carried out according to
Strikwerda.37 Details of the finite difference method are given
in ref 28. The domain is discretized in 100 equally distributed
nodes. The domain starts at the distance from the charge
surface and increases to up 4 times the Debye length. For an
electrolyte solution,

κ =
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ε ε

∞n ez

kT

( )j j j2
2

o sol (49)

1/κ is the Debye length that is the characteristic length of
the electrical double layer. The characteristic length of the solu-
tion is about 0.36 nm, which makes the W/O microemulsion
droplets with Rch > 4 nm large enough for the boundaries
described above to be applied.
In previous work,28 we looked into the counterion effect on

the self-assembly of ionic surfactants closely. In that paper, we
showed that this description of the ionic electrostatic repulsion
properly predicts the critical micelle concentration of both
anionic and cationic surfactants of various counterions and the
effect of different inorganic salts on the micellization of ionic
surfactants.
Mixing Inside the Interfacial Layer. The free-energy

contribution of the mixing of surfactant tails and oil molecules
in the interfacial layer is estimated using the Flory−Huggins
expression, as follows3
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(50)

where ηS and ηO are the volume fractions of the surfactant
tail and oil in the interfacial layer, respectively; vST and vO are
the volumes of the surfactant tail and oil molecule, respectively;
δS
H and δO

H are the Hildebrand solubility parameters of the
surfactant tail and the oil, respectively; and δmix

H is the volume-
fraction-averaged solubility parameters of the components in
the interfacial layer, δmix

H = ηSδS
H + ηOδO

H. The solubility param-
eters are estimated to be 16.78 MPa1/2 for the surfactant tail,
14.93 MPa1/2 for n-hexane, and 15.34 MPa1/2 for n-octane.38,39

The volume fractions of the surfactant tail and oil are readily
given by
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Geometrical and Compositional Variables. For given
control variables NO, NS, NW, T, and p, the global minimum of
the total Gibbs free energy, G′, defines equilibrium with respect
to eight geometrically and compositionally independent variables:
gO
I /gS

I , a, β, gO
core, gW

core, NO
O, NS

O, and NW
O for water-in-oil

microemulsions and gO
I /gS

I , a, β, gO
core, gW

core, NO
W, NS

W, and NW
W

for oil-in-water microemulsions.
Geometrical Characterization.3 Both W/O and O/W

droplet microemulsions have a core surrounded by an
interfacial layer. The interfacial layer excludes the headgroups
of the surfactant molecules. Radii RO and RW provide the
boundaries of the interfacial layer, as represented in Figure 3.
The volume of the aggregate can be related to radii RO and RW
via
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where vSH is the volume of the polar headgroup of the surfac-
tant.
The volume of the interfacial layer per surfactant molecule VI

is given by
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The surface area of the droplet in contact with water, per
surfactant molecule, is given by
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Combining eq 54 and eq 55 yields
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(56)
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The thickness of the interfacial layer is taken to be the surfac-
tant tail length, lS:

| − | =R R lO W S (57)

An O/W or a W/O droplet can be characterized by two
geometrical variables: (i) the surface area of the droplet in
contact with water per surfactant molecule, a, and (ii) the ratio
of oil-to-surfactant molecules in the interfacial layer, gO

I /gS
I .3

Compositional Characterization. In the core, independent
variables gO

core and gW
core are used to calculate gS

core using the
volume of the core, Vcore, according to the following relations:
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In the continuous phase, independent variables NO
O, NS

O, and
NW

O or NO
W, NS

W, and NW
W are used to calculate Ng and the

composition of the excess phase, NO
ex, NS

ex, and NW
ex, by solving a

linear system of equations consisting of the mass balance
equations and the total volume, Vtotal:
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The volumes of water and normal alkanes are computed
from their liquid densities.40 The volume of the components at
25 °C are given in Table 1.

Constraints. From eq 56 we have the geometrical constraint
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that gives the first geometrical constraint
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There is also a geometrical constraint on the maximum pack-
ing density of the droplets. Computer simulations by
Finney41 have confirmed that the maximum packing density
(volume fraction of spheres) is approximately 0.64 in the
random close-packed limit. Therefore, we assume that

+ + +

≤

N V

N V N v N v N v

0.64 for W/O droplets

g g
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0.64 for O/W droplets
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W

S W
W

W

(65)

We also have the compositional constraints on Ng, NW
ex, NS

ex,
NO

ex, and gS
core that they cannot be negative:

≥N 0g (66)

≥N 0W
ex

(67)

≥N 0S
ex

(68)

≥N 0O
ex

(69)

≥g 0S
core

(70)

Hard-Sphere Droplet Interactions. The droplets in the
continuous phase give rise to osmotic pressure in the
microemulsion. The chemical potential of the species in the
continuous phase, other than the droplets, can be calculated in
terms of the osmotic pressure Π of a hard-sphere suspension3

μ ϕ = μ ϕ = − Πv( ) ( 0)i i ig g (71)

where ϕg is the volume fraction of droplets in solution and vi is
the volume of component i.
Carnahan and Starling42 proposed a semiempirical expres-

sion for hard-sphere solutions. The Carnahan−Starling approx-
imation for hard spheres has been used with success in the
light-scattering experiments of oil-in-water microemulsions.43

The Carnahan−Starling equation of state provides the osmotic
pressure expression:

Π =
ϕ + ϕ + ϕ − ϕ

− ϕ
kT

V

1

(1 )
g

g

g g
2

g
3

g
3

(72)

Using the Carnahan−Starling approximation for osmotic
pressure in eq 71, one can write the expression for nonideality
from the hard-sphere droplets, Ui

hs:3

=
ϕ + ϕ + ϕ − ϕ

− ϕ
=U v

V
i

(1 )

(1 )
for O, W, Si i

hs g

g

g g
2

g
3

g
3

(73)

The nonideality from the hard-sphere droplets for the
droplet, Ug

hs, can be derived by using the Gibbs−Duhem
relation:3,44

=
ϕ

∑ ϕ
+

ϕ − ϕ − ϕ

− ϕ≠
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⎝
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⎞
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/

(7 3 )
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hs g g

g

g g g
2

g
2

(74)

Table 1. Volume of the Components at 25 °C

component v (nm3)

n-hexane vO = 0.2181
n-octane vO= 0.2713
water vW= 0.0301
surfactant vS = 0.7126
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The mole fraction and volume fraction of species i are related
via the expressions

=
ϕ

∑ ϕ
ϕ =

∑
X

v

v
X v

X v

/

/
andi

i i

j j
i

i i

j j (75)

Activity Coefficient Model. The activity coefficients in our
model describe the water and surfactant solubility in oil and the
oil and surfactant solubility in water. The mutual solubility of a
ternary system is not readily available for most of the systems
in which we are interested. Because of the lack of data, we use
the binary mutual solubility in our calculations. We assume that
the third-component effect on the mutual binary solubility can
be neglected. For water and oil mutual solubility, we use the
UNIQUAC model, and for surfactants in oil and in water, we
use the two-suffix Margules model. For the droplets in the con-
tinuous phase, we assume that γ*g is equal to 1. In this work, the
prediction from our model centers on the ternary system of
water, a normal alkane, and a surfactant. The activity coeffi-
cients for these systems are given next.
Water and Normal Alkane. For water and normal alkane

mutual solubility, we use the UNIQUAC model for the activity
coefficient. The expressions can be found in ref 45. The
UNIQUAC parameters for (1) water and (2) two normal
alkanes are given in Table 2.46

Surfactant. For the activity coefficient of surfactant in oil
and surfactant in water, we use the two-suffix Margules model,
assuming a pseudobinary system of water and surfactant for the
aqueous phase and oil and surfactant for the oil phase. For a
binary system, we can write

γ = A
RT

xln 1 2
2

(76)

γ = A
RT

xln 2 1
2

(77)

At infinite dilution,

γ ≡ γ =∞
→

⎜ ⎟
⎛
⎝

⎞
⎠

A
RT

lim exp
x1 0 1

1 (78)

γ ≡ γ =∞
→

⎜ ⎟
⎛
⎝

⎞
⎠

A
RT

lim exp
x2 0 2

2 (79)

In the above expressions, A is the parameter of the activity
coefficient model and R is the gas constant. For the surfactant
infinitely diluted in water and in oil, we estimate the infinite
dilution activity coefficient via the relation47

γ =∞ −cmcS
W

W
1

(80)

γ =∞ −cmcS
O

O
1

(81)

where cmcW and cmcO are the critical micelle concentrations
(cmc's) of the surfactant in water and in oil, respectively.

The cmc of DDABr in water is cmcW = 0.37 mM, and that for
DDABr in n-heptane is cmcO = 0.28 mM.48

The activity coefficient expressions used for surfactant, oil,
water, and droplets satisfy the Gibbs−Duhem equation. The
nonideality term from the hard-sphere droplets is based on
the Gibbs−Duhem equation. For water and oil mutual solu-
bility, we assume that the surfactant concentration in water and
oil phases is negligible, and we use the UNIQUAC model for
the activity coefficient. The UNIQUAC parameters for water
and normal alkanes used satisfy the Gibbs−Duhem relation.
The only terms left are the ones for the surfactant in oil and
surfactant in water. Because of a small amount of surfactant in
water and in oil, these terms are numerically zero.

■ RESULTS AND DISCUSSIONS
In this section, we will first present the results of our micelliza-
tion model described in ref 28 for an ionic double-tailed sur-
factant in water. In ref 28, we considered only single-tailed
surfactants. Complexities in minimizations of the Gibbs free
energy of microemulsion systems are addressed next. The suc-
cessful use of the particle swarm optimization in the minimiza-
tion of the Gibbs free energy function that has an unusual
number of minima is then presented for the ternary mixture of
surfactant, water, and normal alkanes. The composition of the
phases and the number of droplets in the water-in-oil micro-
emulsion from the global minimum of the Gibbs free energy are
discussed. We also present the polydispersity of microemul-
sions and explain how to assess the polydispersity by taking
advantage of the stochasticity of the optimization method. The
computed droplet size of two different normal alkanes is com-
pared with the measured data. All of the computations are
made at 25 °C.

cmc for DDABr in Water. In this work, we investigate the
droplet-type microemulsion formed by the DDABr surfactant.
As a first step, we verify the aggregation of DDABr molecules in
water and the cmc on the basis of the headgroup molecular
parameters presented for this double-tailed surfactant. We use
the micellization model discussed in ref 28.
In Figures 4 and 5, we compare the calculated C12CNDABr

and C14CNDABr cmc values in water with the experimental

data49−53 at 25 °C. We use the free energy of the micellization
model and molecular parameters provided in the Free Energy

Table 2. UNIQUAC Parameters for (1) Water and (2)
n-Hexane and n-Octane46,a

n-alkane r2 q2 a12 a21

n-hexane 4.4998 3.856 572.51 1297.1
n-octane 5.8486 4.936 567.29 1271.4

aFor water, r1 = 0.92 and q1 = 1.4.

Figure 4. cmc of C12CNDABr in water at 25 °C.

Figure 5. cmc of C14CNDABr in water at 25 °C.
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of Aggregation section. The results in Figures 4 and 5 show that
for carbon tails with less than four carbons the single-tailed
model works well. When the carbon tail number exceeds four,
the single-tailed model becomes inaccurate and the algorithm
runs into convergence problems. In these plots, we find that the
double-tailed model is a powerful algorithm when the second
tail has at least four carbons.
The surfactant we use in the following subsections has two

tails with 12 carbons each. Therefore, the double-tailed model
adequately describes the aggregation of this surfactant.
Energy-Minimization Strategy. Now that we have ex-

amined the free energy of aggregation to the surfactant of
interest and confirmed that the double-tailed model adequately
describes the aggregation of DDABr, we perform the total
Gibbs free energy minimization for the microemulsion expres-
sion derived in this work.
To minimize the total Gibbs free energy, we use the particle

swarm optimization (PSO) method. The PSO is a heuristic
optimization method proposed by Kennedy and Eberhart.54

Random values are used as initial estimates for each of the inde-
pendent variables, satisfying the restrictions described above.
We have implemented the PSO algorithm as proposed by
Schwaab et al.55 One of the main advantages of using the PSO
method is the large phase space of the independent variables
searched without encountering numerical difficulties. One of
the main disadvantages of the heuristic optimization methods is
that, in general, they are slower than the deterministic ones.
Initially, we used the direct optimization FFSQP method56 to

minimize the total Gibbs free energy; the FFSQP method failed
with prohibitive numerical problems. We have found that the
objective function is not a smooth function of the independent
variables; therefore, the FFSQP cannot find the direction of
search via its derivative methods. We also used the FFSQP at
the end of the PSO optimization, and the FFSQP failed to
improve the minimum found by the PSO.
For completeness, we used the stochastic PSO and deter-

ministic FFSQP methods to minimize the Gibbs free energy for
the micelle model. And for this simpler system, both stochastic
and deterministic approaches converge to the same result.
In Figure 6, we present the Gibbs free energy function from

eq 15 versus two independent variables (a and gO
I /gS

I ) while
holding the other independent variables constant. The values of
independent variables β, gO

core, gW
core, NO

O, NS
O, and NW

O are given.
The areas in white in Tables 3 and 4 correspond to the region
for which the Gibbs free energy is not defined for the inde-
pendent variables because of the constrains. Figure 6a clearly
reveals that the direct methods that require smooth functions
cannot be used to minimize this objective function. Figure 6b
shows an unusual number of local minima and high ruggedness
in the Gibbs free energy function.
Because of the fact that the optimization method used is

heuristic, for each composition we repeat the Gibbs free energy
minimization a large number of times. For this work, we set
the number of searching points to 20. For each given overall
composition, we perform at least 1000 runs. As an example, in
Figure 7 we provide the results for 100 runs for the overall
composition of a 66/20/14 weight ratio of n-hexane/water/
DDABr. The run that corresponds to the global minimum of
the Gibbs free energy is marked in the plots as open squares.
For each PSO run, we generate new initial estimates for the

independent variables using a random number generator. In
Figure 7, we observe that the PSO runs do not depend on the
result of the previous run. The plots of the independent

variables versus the PSO run number give results similar to
those in Figure 7.
To investigate the dependence on the total number of molec-

ules, we increase the total number of molecules and perform
1000 PSO runs for each composition. The results show that the
search for the total Gibbs free energy minimum for a larger
total number molecules takes longer, but the global minima of
the Gibbs free energy for both set of runs are comparable and
the geometrical and compositional features remain the same.

Global Minima of the Gibbs Free Energy.When we plot
the minima of Gibbs free energy versus the independent
variables for a large number of PSO runs, we observe the
global minimum in the Gibbs free energy for each independent

Figure 6. (a) Contour and (b) surface plots showing the roughness of
the Gibbs free energy surface. The color map represents G′/(kT). The
overall composition and the fixed independent variables are given in
Tables 3 and 4.

Table 3. Compositional Features at the Global Minimum of
the Gibbs Free Energy for the Overall Composition of the
66/20/14 Weight Ratio of n-Hexane/Water/DDABr

overall composition

NO = 612 704
NW = 29 263
NS = 888 134

composition of the continuous oil phase

Ng = 32
NO

O = 572 872.1
NW

O = 11 408.7
NS

O = 83.3
composition of the interfacial layer

gS
I = 910.3
gO
I = 1243.3

composition of the aqueous core

gO
core = 1.37
gW
core = 25 888.4
gS

core = 1.54
composition of the excess phase

NO
ex = 1.93

NW
ex = 48 296.2

NS
ex = 0.984
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variable as expected. Figure 8 depicts the result for 100 PSO
runs for the surface area of the droplet in contact with water per

surfactant molecule, a. For the given overall composition, the
global minimum in the total Gibbs free energy corresponds to
a = 0.454 nm2, and in Figure 9, we have the result for 100 PSO
runs for the ratio gO

I /gS
I when the global minimum corresponds

to gO
I /gS

I = 1.366.
In Figure 10, we observe that the global minimum in the

Gibbs free energy with respect to β is not well defined, as it is
for a and gO

I /gS
I . However, as the number of PSO runs in-

creases, the global minimum becomes well defined for all inde-
pendent variables.
Microstructure and Composition. In Figure 11, we plot

the minimum in the total Gibbs free energy versus the radius of

the aqueous core for 100 PSO runs. The global minimum of
the total Gibbs free energy corresponds to the radius of the
aqueous core, which is equal to 5.73 nm. Droplets that are
smaller or larger than 5.73 nm have a higher Gibbs free energy.
Figure 12 shows the minimum in the total Gibbs free energy

versus the number of droplets for 100 PSO runs. There are
around 32 droplets at the global minimum, which gives a
volume fraction of droplets in the continuous oil phase of 30%.
The total number of molecules for each component defined

for each overall composition is large enough that the system
can arrange to form a significant number of aggregates. By using
our minimization strategy, in Figure 12 we see that a configura-
tion with as many as 500 droplets has been evaluated.
Tables 3 and 4 present compositional and geometrical results

corresponding to the global minimum marked in Figures 7−12
for the overall composition of the 66/20/14 weight ratio of
n-hexane/water/DDABr. Table 3 provides the compositional
outcomes of the global minimization. The results show that the

Figure 7. Minima in the total Gibbs free energy vs the PSO run
number. The open square corresponds to the global minimum in the
Gibbs free energy among 100 PSO runs for the overall composition of
the 66/20/14 weight ratio of n-hexane/water/DDABr.

Table 4. Geometrical Features at the Global Minimum of the
Gibbs Free Energy for the Overall Composition of the 66/
20/14 Weight Ratio of n-Hexane/Water/DDABr

droplet radii

RO = 7.403 nm
RW = 5.735 nm
interfacial layer

a = 0.4541 nm2

gO
I /gS

I = 1.3658
degree of ion adsorption

β = 0.736
volumes

Vg = 1 699.6 nm3

Vcore = 779.7 nm3

Vtotal = 181 205 nm3

Figure 8. Minima in the total Gibbs free energy vs a. The open square
corresponds to the global minimum in the Gibbs free energy among
100 PSO runs for the overall composition of the 66/20/14 weight
ratio of n-hexane/water/DDABr.

Figure 9. Minima in the total Gibbs free energy versus gO
I /gS

I . The
open square corresponds to the global minimum in the Gibbs free
energy among 100 PSO runs for the overall composition of the 66/20/
14 weight ratio of n-hexane/water/DDABr.

Figure 10. Minima in the total Gibbs free energy vs β. The open
square corresponds to the global minimum in the Gibbs free energy
among 100 PSO runs for the overall composition of the 66/20/14
weight ratio of n-hexane/water/DDABr.

Figure 11. Minima in the total Gibbs free energy vs RW. The open
square corresponds to the global minimum in the Gibbs free energy
among 100 PSO runs for the overall composition of the 66/20/14
weight ratio of n-hexane/water/DDABr.
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continuous oil phase is composed mostly of oil, with a small
mole fraction of droplets, water, and surfactant. The aqueous
core and the excess phase are composed mostly of water and
trace amounts of surfactant and oil. Although gO

core is very small
for W/O microemulsions, it is different from zero. This low
solubility of oil in water is an important aspect of the phase-
equilibrium calculation. If water and oil would be completely
insoluble, some of the interesting features of microemulsions
may not be observed. The geometrical outcomes of the mini-
mization are given in Table 4. The results provide the size of
the droplets and the composition of the interfacial layer.
The results in Tables 3 and 4 correspond to the global mini-

mum in the total Gibbs free energy, but as we will discuss in
the next section, microemulsion systems are polydisperse. As a
result of the polydispersity, it is expected that the specific values
of the number of molecules in each phase given in the tables
above undergo variation; however, the general behavior of the
predominance of oil molecules in the oil phase and the pre-
dominance of water molecules in the water phase should
remain unchanged.
Droplet Size Distribution. It has been experimentally

verified by different analytical techniques that microemulsions
are, in fact, polydisperse.57 Moreover, it has been observed that
the reported polydispersity of microemulsion droplets depends
on the experimental technique. For example, the polydispersity
measured by dynamic light scattering is much less than that
measured by elastic light scattering or neutron scattering.58

Our results support the evidence that microemulasions are
polydisperse systems. In Figure 11, we observe that for very
similar Gibbs free energies the droplets may have different radii.
The polydispersity of the microemulsions can be obtained by
traditional methods such as the one proposed by Nagarajan
and Ruckenstein.3 For the calculation of the size distribution
of the microemulsion droplets, one can take advantage of
the stochasticity of the PSO optimization method and use the
Monte Carlo approach to calculate the size distribution of the
droplets. The central idea of the Monte Carlo methods is to use
random samples of inputs to explore the behavior of a complex
system or process by scanning a phase space with multiple
dimensions. In our methodology, the algorithm may sample
anywhere within set limits, but the result is statistically directed
toward the minimum by the PSO.
After performing the PSO minimization for a given overall

composition a large number of times, we use the Gibbs mea-
sure to calculate the average of the aqueous core radius of the
droplets. The Gibbs measure is a probability measure associated
with the Boltzmann distribution that generalizes the notion of
the canonical ensemble. The Gibbs measure is a natural mathe-

matical description of an equilibrium state of a physical system
that consists of a very large number of interacting components,
or in probabilistic terms, a Gibbs measure is the distribution of
a countably infinite family of random variables that admit some
prescribed conditional probabilities.59

Using the Gibbs measure, we can calculate the average of the
aqueous core radius of the droplets from

̅ =
∑

∑

− ′

− ′
R

R e

e

G kT

G kTW
W

/( )

/( )
(82)

For example, for the overall composition of the 66/20/14
weight ratio of n-hexane/water/DDABr the average of the
aqueous core radius of the droplets is found to be 5.35 nm
whereas the global minimum in the total Gibbs free energy
gives a radius of 5.73 nm.

Comparison with Experimental Data. In a series of
papers, Ninham et al. have investigated the three-component
microemulsions of surfactant DDABr.14−20 In an investigation
on the structure and dynamics of DDABr/water/alkanes,
Blum et al.18 provide phase diagrams for DDABr, water, and
alkanes showing the region of bicontinuous and water-in-oil
droplet microemulsions. Using X-ray techniques, they also have
estimated the size of the microemulsion droplets, given in
Table 5.14 Because basic data of the phase diagram are not

provided, we compare the results from our model for size of the
droplets with experimental data in terms of the trend and the
order of magnitude.
In this work, we focus on the water-in-oil droplet micro-

emulsions formed in the ternary systems according to the
experimental data by Chen et al.14 From the phase diagrams for
DDABr/water/n-hexane provided by these authors,14 we extract
the overall compositions for the water-in-oil droplet micro-
emulsion. We perform Gibbs free energy minimizations for each
of these selected overall compositions given in Table 6.

For each overall composition, we perform a minimum of
1000 PSO runs. In Figure 13, we plot the radius corresponding
to the global minimum of the total Gibbs free energy for each

Figure 12. Minima in the total Gibbs free energy vs the number of
droplets. The open square corresponds to the global minimum in the
Gibbs free energy among 100 PSO runs for the overall composition of
the 66/20/14 weight ratio of n-hexane/water/DDABr.

Table 5. Experimental Radius of the Aqueous Core of the
W/O Microemulsion Droplet, RW

14

n-alkane RW (nm)

n-hexane 4.1
n-octane 5.7

Table 6. Overall Composition in Weight Percent for Water/
n-Hexane/DDABr

n-hexane water DDABr

30 42 28
33 40 27
42 35 23
50 30 20
59 25 16
66 20 14
73 15 12
78 13 9
82 10 8
90 5 5
95 2 3
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overall composition. The general trend points to the fact that
the aqueous core radius increases as the fraction of water in the
system increases. We also observe a discontinuity that we inves-
tigate further. The computed radius of the aqueous droplet core
falls in the range of the experimentally estimated radius (∼4 nm)
for the n-hexane-rich overall compositions.14

To investigate the discontinuity further, we plot in Figure 14
the 10 minima of the 1000 PSO repetitions for each overall
composition. In this figure, we observe that the radii lie on two
different slopes. We mark the radius corresponding to the
global minimum in red squares and apply a color scheme of a
different marker for each slope in order to facilitate the analysis.
At higher oil fractions, the slope is steeper (blue upward-

pointing triangles), and as the water and surfactant fractions
increase, the minimum moves to a less-steep slope (green
circles). In the region around the discontinuity, some minima
lie on one slope and other minima lie on the other slope for the
same composition. Despite noticeable differences in size, these
systems have a very small difference in the total Gibbs free
energy. We plot the total Gibbs free energy for these systems
from Figure 14, and we see that for each composition there is

only a small difference in the total Gibbs free energy (plot
omitted for the sake of brevity). In line with experimental data,
our calculations may indicate that the microemulsion systems
are polydisperse for very similar total Gibbs free energy results
in droplets of different sizes.
In this work, we have focused on water-in-oil droplet micro-

emulsion for the ternary system. However, this system may
need to be revisited once the model for bicontinuous micro-
emulsions is developed. Some of the discontinuities that we
calculate using the droplet-type microemulsion model may
become smooth with the complete model.

We also select three overall compositions (Table 7) from
the phase diagrams for DDABr/water/n-octane provided by
Chen et al.14 and perform Gibbs free energy minimizations.
The minimization shows that the radius of the aqueous droplet
core for the selected overall compositions ranges between 8.2
and 8.5 nm.
Let us compare the droplet size of mixtures containing

between 27 and 40 wt % n-hexane and n-octane. In n-octane-
containing systems, the radius of the aqueous droplet core is
between 8.2 and 8.5 nm; n-hexane-containing systems have a
radius of the aqueous droplet core that is between 7 and 7.4 nm
(Figure 13). Consistent with experimental data (Table 5), the
results indicate that the system containing n-octane promotes
larger droplets than the system containing n-hexane.

■ CONCLUDING REMARKS
In this article, we have developed a molecular thermodynamic
theory for droplet-type microemulsions. We derive a theoretical
formulation for three-component microemulsions that predicts
the structural and compositional features of microemulsions.
In the future, we intend to develop a unified thermodynamic
model for four- and five-component and bicontinuous micro-
emulsions.
For the minimization scheme, we use the particle swarm

optimization method to minimize the total Gibbs free energy.
We chose this heuristic optimization method over the direct
optimization method because of the unusual number of local
minima and the ruggedness of the Gibbs free energy func-
tion. One may interpret the extreme ruggedness of the Gibbs
free energy function with respect to the polydispersity of the
microemulsions.
For a demonstration of predictions from our proposed model,

we have selected double-tailed surfactant DDABr that forms
water-in-oil droplet microemulsions. The ternary system con-
sists of water, alkane, and DDABr. Computations are performed for
two different alkanes: n-hexane and n-octane. For these systems,
there is experimental data available to which we compare the
computed results.
The results indicate that the system containing n-octane

promotes larger droplets than the system containing n-hexane, in
agreement with experimental data. The computed radius of the
aqueous droplet core falls in the range of the measured radius.
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