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The density increase from carbon dioxide (CO2) dissolution in water or hydrocar-
bons creates buoyancy-driven instabilities that may lead to the onset of convection.
The convection is important for both CO2 sequestration in deep saline aquifers and
CO2 improved oil recovery from hydrocarbon reservoirs. We perform linear stability
analyses to study the effect of fluid compressibility and interface movement on the
onset of buoyancy-driven convection in porous media. Compressibility relates to a
non-zero divergence of the velocity field. The interface between the CO2 phase and
the aqueous or hydrocarbon phase moves with time as a result of the volume change
that occurs upon CO2 dissolution. Previous stability analyses have neglected these
two aspects by assuming that the aqueous or hydrocarbon phase is incompressible
and that the interface remains fixed in position. The stability analyses are used to
compute two key quantities: (1) the critical time and (2) the critical wavenumber. Our
results indicate that compressibility has a negligible effect on the critical time and the
critical wavenumber in CO2-water mixtures. We use thermodynamics to derive an
expression which shows that the two opposing physical processes which contribute
to the divergence are comparable in magnitude and largely cancel each other. This
result explains why compressibility does not significantly affect the onset, and it also
demonstrates the link between compressibility and the volume change that causes
movement of the interface. Compared to when the interface is fixed in position, a
moving interface in CO2-water mixtures may reduce the critical time by up to around
10%, which can be significant in low permeability formations. The decrease in the
critical time due to interface movement may be much more pronounced in hydro-
carbons than in water. This could have important implications for CO2 improved oil
recovery. C© 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4821743]

I. INTRODUCTION

Global energy demand from fossil fuels is expected to remain over 70% in the coming decades,
despite considerable efforts to develop alternative energy sources.1 Combustion of fossil fuels
contributes to rising atmospheric carbon dioxide (CO2) levels that have been linked to climate
change. Subsurface CO2 injection can help society meet its high demand for fossil fuels and reduce
atmospheric CO2 levels. Carbon dioxide has been employed for over four decades in improved oil
recovery.2, 3 Dissolution of CO2 in oil may reduce the viscosity by over an order of magnitude and
may increase the volume of the resulting mixture by up to 60%. The volume expansion helps to expel
the oil from smaller porous cavities. Within the past two decades, CO2 injection for sequestration in
deep saline aquifers has received considerable attention as a promising way to reduce atmospheric
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CO2 levels.4–6 This process involves capturing CO2 emissions from stationary sources, such as power
plants, and storing the CO2 by dissolving it in the aqueous phase that resides in the aquifers. The CO2

is usually injected at supercritical conditions and forms a free phase because CO2 is only partially
miscible with the in situ aqueous or hydrocarbon phase. We refer to the aqueous or hydrocarbon
phase collectively as the liquid phase. The CO2 phase is typically lighter than the liquid phase, and
it initially mixes with the underlying liquid only by diffusion.

Carbon dioxide is the only common atmospheric gas that increases the density of hydrocarbons
upon dissolution,7 and one of the few that increases the density of water.8 The density increase
creates an unstable situation where heavier, CO2-dissolved fluid lies on top of lighter fluid. The
instabilities may lead to the onset of buoyancy-driven convection in the liquid phase. Convection is
of great interest because it strongly enhances the CO2 dissolution rate over diffusion alone. In this
way, it increases the efficiency of improved oil recovery processes. However, the convection may also
lead to earlier appearance of CO2 in the production well, which is an undesirable consequence that
must be monitored in field-scale operations.9, 10 Convection not only increases the storage efficiency
of CO2 sequestration, it also has implications for the long-term storage security of the CO2. The
enhanced dissolution of CO2 into the aqueous phase reduces the pressure buildup in the free CO2

phase. The pressure reduction makes it less likely that the cap rock enclosing the aquifer will fracture,
which lowers the risk of CO2 leakage back into the atmosphere. Thus, convection is important for
both CO2 improved recovery and CO2 sequestration, and it is of interest to determine the conditions
under which the instabilities may lead to the onset of convection in the liquid phase.

Several authors have performed a linear stability analysis to theoretically predict the onset
of buoyancy-driven convection in the context of CO2 sequestration.11–16 Their work has been ex-
tended to include features such as hydrodynamic dispersion,17 temperature gradients,18, 19 chemical
reactions,20, 21 and permeability anisotropy.22–24 The state of the system before the onset of con-
vection, when CO2 is transported through the liquid phase only by diffusion, is referred to as the
base state. The stability analysis is a semi-analytical method that introduces small wave-like pertur-
bations to the base state in order to determine the conditions under which the base state becomes
unstable. The stability analysis is used to calculate two key quantities: (1) the critical time and
(2) the critical wavenumber. Onset of convection occurs at the critical time, which represents the
first instance when the base state becomes unstable. The critical wavenumber characterizes the
most unstable perturbation mode. There have also been a number of numerical simulations25–29 and
laboratory-scale experiments30–32 regarding CO2 sequestration. However, simulations and experi-
ments focus on the time when the average CO2 concentration in the liquid phase begins to deviate
from the diffusion-only profile. This time may be quite distinct from the critical time and is an aspect
of convection that is not examined by the stability analysis, which investigates only the onset of
instability.16, 24, 29

The aforementioned linear stability analyses have employed a common set of assumptions. For
example, various authors consider a situation where enough CO2 has been injected into the subsurface
to form a reservoir that keeps the interface between the CO2 phase and the liquid phase saturated
at a constant CO2 concentration. The studies have examined the dynamics in only the liquid phase
because the solubility of water or hydrocarbons in CO2 is assumed to be small compared to the CO2

solubility in the liquid phase. Evaporation of liquid is neglected. These are good approximations
at relatively low temperatures and high pressures. Other assumptions may not be as valid. For
instance, the liquid phase is treated as being incompressible, and the change in its volume due to
CO2 dissolution is neglected so that the interface remains fixed in position. Compressibility relates
to a non-zero divergence of the velocity field. The maximum possible volume change, which is
known as swelling, corresponds to when the liquid phase is saturated with CO2 at the equilibrium
concentration. Swelling may be quite significant under relevant conditions of temperatures between
30 and 200 ◦C and pressures up to 200 bars. The solubility of CO2 in water can be as high as 8 mass
percent under these conditions,33 and swelling can be as much as 7%. Under the same conditions,
the solubility of CO2 in hydrocarbons can be as high as 50 mass percent, and swelling can be as
much as 60%.2

In this paper, we perform linear stability analyses to examine the effect of fluid compressibility
and interface movement on the onset of buoyancy-driven convection. Previous stability analyses
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have neglected the former, while the effect of interface movement has been examined only recently
by Meulenbroek et al.34 We address fluid compressibility in Sec. II. We analyze how the non-
zero divergence affects the critical time and critical wavenumber. We use thermodynamics to derive
expressions for the two physical processes that contribute to the divergence. This allows us to achieve
two purposes: (1) gain insight into our results regarding compressibility, and (2) demonstrate the link
between compressibility and the volume change from CO2 dissolution, i.e., the moving interface.
Section III presents a stability analysis with the moving interface. We compare our results to those
obtained by Meulenbroek et al.34 Our work is applicable to both CO2 improved oil recovery and
CO2 sequestration, but for clarity and for reasons mentioned later, we focus mainly on the latter.
In the appropriate sections, we discuss how compressibility and interface movement may be more
pronounced in hydrocarbons than in water. We conclude with a summary of our main results
in Sec. IV.

II. FLUID COMPRESSIBILITY

A. Governing and constitutive equations

Our system is an isothermal binary mixture of CO2 and water (or a liquid hydrocarbon) residing
in an inert, permeable, rectangular medium of height H that is homogeneous and isotropic in its
porosity φ and permeability k. The z axis is centered at the interface, which forms the top boundary,
and points upward so that porous domain is defined between z = −H at the bottom and z = 0 at the
interface. The viscosity μ and diffusion coefficient D are constants. The diffusive flux is given by
Fick’s law as J = −φρD∇c, where ρ is the mass density and c is the CO2 mass fraction. Fluid flow
is governed by Darcy’s law which relates the velocity field q = (u, v, w)T to the pressure gradient
∇p and the gravitational force −ρg∇z. We also have the continuity equation and a CO2 species
balance. These equations may be expressed, respectively, as

q = − k

μ
(∇ p + ρg∇z) , (1)

φ
∂ρ

∂t
+ ∇ · (ρq) = 0, (2)

φ
∂cρ

∂t
= −∇ · (cρq) + φD∇ · (ρ∇c) . (3)

Substituting (2) into (3), we obtain(
φ

∂

∂t
+ q · ∇

)
c = dc

dt
= φD

(
1

ρ
∇ρ · ∇c + ∇2c

)
, (4)

where d/dt = φ∂/∂t + q · ∇ denotes the total time derivative (or material derivative) operator. The
density obeys the constitutive equation used in previous studies

ρ = ρ0(1 + αc). (5)

We have previously shown24 that (5) is a Taylor series approximation about c = 0 at a particular
pressure p. Its validity depends on the specific fluid mixture and the conditions considered. The
equation is accurate for CO2-water mixtures under the conditions mentioned in Sec. I. The density
of pure water (or hydrocarbon) is ρ0. We show in Sec. II D that ρ0 and α depend on temperature,
but are nearly invariant with respect to pressure and composition so that they may be approximated
as being constants in our isothermal system. As a result, (5) is linear in c. Using (5) and letting
P = p + ρ0gz, (1) becomes

q = − k

μ
(∇ P + ρ0αcg∇z) . (6)

The liquid side of the interface is saturated with CO2 at a fixed mass fraction csat. Initially, CO2 is
present only at the interface, and the bulk is pure water (or hydrocarbon). The maximum increase in
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density from CO2 dissolution is �ρ = ρ0αcsat. It is less than 2% of ρ0 for CO2-water mixtures, but
it can be as high as several percent of ρ0 for CO2-hydrocarbons.35 Rearranging (2) gives

∇ · q = − 1

ρ

dρ

dt
. (7)

Since ρ = ρ(T, p, c), the temperature T is a constant, and ∂ρ/∂p ≈ 0, we have

∇ · q = − 1

ρ

∂ρ

∂c

dc

dt
= −ρ0α

ρ

dc

dt
.

Substituting (4), we get

∇ · q = −φDρ0α

ρ

(
1

ρ
∇ρ · ∇c + ∇2c

)
. (8)

Equation (8) shows that the divergence of q at a point in space is proportional to the divergence of
the diffusive flux at that point. We follow earlier works13, 16, 26 and nondimensionalize our equations
with a velocity scale � = k�ρg/μ, a length scale � = (φD)/� = (Dφμ)/(k�ρg), and a time scale
τ = (φ�)/� = D [(φμ)/(k�ρg)]2. We define the dimensionless variables

(x̃, ỹ, z̃)T = 1

�
(x, y, z)T ,

q̃ = (ũ, ṽ, w̃)T = 1

�
(u, v, w)T ,

t̃ = 1

τ
t, c̃ = 1

csat
c, P̃ = 1

�ρg�
P.

In nondimensional terms, the quantity in parentheses on the right hand side of (4) or (8) is
(csat/�

2)[(�ρ/ρ)|∇ c̃|2 + ∇2c̃]. The (�ρ/ρ)|∇ c̃|2 term is negligible compared to ∇2c̃ because
|∇ c̃|2 = ∇ c̃ · ∇ c̃ is on the same order as ∇2c̃, but �ρ � ρ. We use this approximation and nondi-
mensionalize (4), (6), and (8) to get

∂ c̃

∂t
= −q̃ · ∇ c̃ + ∇2c̃, (9)

q̃ = −∇ P̃ − c̃∇ z̃, (10)

∇ · q̃ = −�ρ

ρ
∇2c̃. (11)

In this choice of scaling, the Rayleigh number Ra = H/� = (k�ρgH)/(φμD) does not appear in
the governing equations. Instead, Ra appears in the location of the bottom boundary so that porous
domain is defined in the range −Ra ≤ z̃ ≤ 0. At the onset of convection, the CO2 concentration
will be small at the bottom boundary for sufficiently tall domains. This implies that the bottom
boundary becomes irrelevant for large enough values of H. Slim and Ramakrishan16 have shown
that the results of the stability analysis are independent of the Rayleigh number for domains where
Ra > 75.

B. The base state

The base state is characterized by a pressure field P̃base and the absence of bulk fluid motion
(q̃base = 0). The CO2 concentration profile c̃base(z̃, t̃) of the base state obeys

∂ c̃base

∂ t̃
= ∂2c̃base

∂ z̃2
. (12)

We stated in Sec. II A that the bottom boundary of the porous domain is irrelevant for our problem.
To simplify the calculations, we treat the domain as a semi-infinite medium where −∞ < z̃ ≤ 0.
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The initial/boundary conditions are

c̃base(z̃, t̃ = 0) = 0, −∞ < z̃ < 0, (13)

c̃base(z̃ → −∞, t̃) = 0, ∀t̃, (14)

c̃base(z̃ = 0, t̃) = 1, ∀t̃ . (15)

The solution to (12) with the initial/boundary conditions (13)–(15) is

c̃base(z̃, t̃) = 1 + erf(z̃/2
√

t̃), (16)

where erf(x) is the error function.16 Applying Leibniz’s rule to (16) yields

∂ c̃base

∂ z̃
= 2√

π
exp

(−z̃2

4t̃

)
∂

∂ z̃

(
z̃

2
√

t̃

)
= 1√

π t̃
exp

(−z̃2

4t̃

)
, (17)

∂2c̃base

∂ z̃2
= − z̃

2(π t̃3)1/2
exp

(−z̃2

4t̃

)
. (18)

C. Linearized perturbation equations

1. Formulation

The perturbations to the base state are defined as

q̃ ′ = q̃ = (
ũ′, ṽ′, w̃′)T

, (19)

P̃ ′ = P̃ − P̃base, (20)

c̃′ = c̃ − c̃base. (21)

We substitute (19)–(21) into (9)–(11) and linearize the equations (neglect products of perturbations)
to obtain

∂ c̃′

∂ t̃
= −w̃′ ∂ c̃base

∂ z̃
+ ∇2c̃′, (22)

q̃ ′ = −∇ P̃ ′ − c̃′∇ z̃, (23)

∇ · q̃ ′ = −�ρ

ρ

(
∇2c̃′ + ∂2c̃base

∂ z̃2

)
. (24)

Following previous work,11–16 we eliminate P̃ ′, ũ′, and ṽ′ by taking twice the curl of (23), using
the identity ∇ × ∇ × q̃ ′ = ∇(∇ · q̃ ′) − ∇2q̃ ′, applying (24), and equating the vertical components
to obtain

∇2w̃′ = −∇2
h c̃′ − ∂

∂ z̃

[
�ρ

ρ

(
∇2c̃′ + ∂2c̃base

∂ z̃2

)]
, (25)

where ∇2
h = ∂2/∂ x̃2 + ∂2/∂ ỹ2 is the horizontal Laplacian. Using (5) with the quantities �ρ

= ρ0αcsat and c̃ = c̃base + c̃′ defined in Sec. II A, the second term on the right hand side of (25) is

− ∂

∂ z̃

[
�ρ

ρ

(
∇2c̃′ + ∂2c̃base

∂ z̃2

)]
= − 1

[1/(αcsat) + c̃]

(
∂

∂ z̃
∇2c̃′ + ∂3c̃base

∂ z̃3

)

+ 1

[1/(αcsat) + c̃]2

(
∇2c̃′ + ∂2c̃base

∂ z̃2

)(
∂ c̃′

∂ z̃
+ ∂ c̃base

∂ z̃

)
.
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The nondimensionalized mass fraction c̃ is less than or equal to one. We show in Sec. II D that over
the range of conditions stated in Sec. I, α varies between 0.27 and 0.30 for CO2-water mixtures.
The interfacial mass fraction csat may be as large as 0.08 for CO2-water. Thus, 1/(αcsat) is typically
one or two orders of magnitude larger than c̃. We may neglect c̃ when it is added to 1/(αcsat) and
linearize (25) to get

∇2w̃′ = −∇2
h c̃′ − αcsat

(
∂

∂ z̃
∇2c̃′ + ∂3c̃base

∂ z̃3

)
+ (αcsat)

2

[(∇2c̃′) ∂ c̃base

∂ z̃

+ ∂ c̃′

∂ z̃

∂2c̃base

∂ z̃2
+ ∂ c̃base

∂ z̃

∂2c̃base

∂ z̃2

]
.

Terms involving only cbase(z̃, t̃) vanish if we apply the horizontal Laplacian to both sides

∇2
(∇2

h w̃′) = −∇2
h

(∇2
h c̃′) − αcsat

∂

∂ z̃
∇2

(∇2
h c̃′)

+(αcsat)
2

{[∇2
(∇2

h c̃′)] ∂ c̃base

∂ z̃
+

[
∂

∂ z̃

(∇2
h c̃′)] ∂2c̃base

∂ z̃2

}
. (26)

The medium is taken to be infinitely large in x̃ and ỹ so that we may neglect interactions
with the lateral boundaries and allow for perturbations of arbitrary wavenumbers. Differentiation
in these horizontal directions may be simplified by expressing the perturbations c̃′ and w̃′ in terms
of the Fourier transforms ĉ′(s̃, z̃, t̃) and ŵ′(s̃, z̃, t̃), where s̃ is a dimensionless wavenumber. This

wavenumber is defined as s̃ =
√

s̃2
x + s̃2

y , where s̃x and s̃y are the dimensionless wavenumbers in x̃

and ỹ, respectively. The Fourier transforms give a clear physical interpretation of the perturbations.
Each mode may be thought of as a wave in the x̃ ỹ plane specified by a wavenumber s̃. Perturbations
are represented as linear superpositions over all possible modes, with ĉ′ and ŵ′ (which may be
interpreted as wave amplitudes) acting as weighting factors. Equations (22) and (26) in terms of the
Fourier transforms are

∂ ĉ′

∂ t̃
= −ŵ′ ∂ c̃base

∂ z̃
+

(
∂2

∂ z̃2
− s̃2

)
ĉ′, (27)

(
∂2

∂ z̃2
− s̃2

)
ŵ′ = s̃2ĉ′ − αcsat

(
∂2

∂ z̃2
− s̃2

)
∂ ĉ′

∂ z̃

+(αcsat)
2

{[(
∂2

∂ z̃2
− s̃2

)
ĉ′

]
∂ c̃base

∂ z̃
+ ∂ ĉ′

∂ z̃

∂2c̃base

∂ z̃2

}
. (28)

For an incompressible fluid, only the first term on the right hand side of (28) appears. The terms
which depend on α and c̃sat arise from the non-zero divergence of q̃ ′. Equations (27) and (28) form
a set of coupled partial differential equations for ĉ′(s̃, z̃, t̃) and ŵ′(s̃, z̃, t̃). The boundary conditions
are

ŵ′(s̃, z̃ → −∞, t̃) = ĉ′(s̃, z̃ → −∞, t̃) = 0, ∀s̃, t̃, (29)

ŵ′(s̃, z̃ = 0, t̃) = ĉ′(s̃, z̃ = 0, t̃) = 0, ∀s̃, t̃ . (30)

The boundary condition ĉ′(s̃, z̃ = 0, t̃) = 0 follows from the fact that at the interface, we have
c̃ = c̃base + c̃′ = 1 and c̃base = 1 so that c̃′ must be zero. The boundary condition ŵ′(s̃, z̃ = 0, t̃) = 0
for the liquid vertical velocity through the interface is also used in previous stability analyses.11–16

This velocity may be approximated as zero because evaporation of liquid is neglected, as we stated
in Sec. I.

2. Non-modal stability analysis

In summary, the stability analysis solves (27) and (28) for ĉ′ and ŵ′, with boundary conditions
(29) and (30) and c̃base given by (16). We solve these equations with the non-modal stability analysis
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described earlier.15, 19 The Laplacian operator L and its inverse L−1 in Fourier space are

L = ∂2

∂ z̃2
− s̃2, (31)

L−1 =
(

∂2

∂ z̃2
− s̃2

)−1

, (32)

respectively. In the non-modal stability analysis, we combine (27) and (28) to get

∂ ĉ′

∂ t̃
=

{
−∂ c̃base

∂ z̃

[
s̃2L−1 − αcsat

∂

∂ z̃
+ (αcsat)

2

(
∂ c̃base

∂ z̃
+ ∂2c̃base

∂ z̃2
L−1 ∂

∂ z̃

)]
+ L

}
ĉ′, (33)

where the base state derivatives are given by (17) and (18). We numerically integrate (33) over time
by discretizing ĉ′ in z̃ using finite differences on a uniformly spaced mesh with N grid points spaced
apart by a distance �z̃

z̃i = −(i − 1)�z̃, i = 1, 2, . . . , N , (34)

c(s̃, t̃) = ĉ′(s̃, z̃i , t̃), i = 1, 2, . . . , N . (35)

Following Bestehorn and Firoozabadi,19 we achieve a high spatial resolution by considering only
the top 10% of a large, but finite domain defined in the range −Ra/10 ≤ z̃ ≤ 0. The value of the
Rayleigh number Ra is chosen to be sufficiently large so that the system does not feel the effect
of the bottom boundary. We use Ra = 1600 and N = 256 so that �z̃ = 160/255 = 32/51. The
discretization in z̃ transforms (33) to

dc
dt̃

= Mc, (36)

where M is a N × N matrix that represents the operator acting on ĉ′ in (33). The wavenumber s̃ enters
(36) as a parameter. A few studies11, 12, 14 numerically integrate a matrix equation that is analogous
to (36) by using a “white noise” initial condition where the amplitude ĉ′ of all perturbation modes
are equal to unity at t̃ = 0. This condition leads to the earliest critical time compared to some other
initial conditions for a related problem in free space (cavities without porous media).36 However, the
white noise condition does not necessarily lead to the earliest critical time in our problem.15, 16 The
underlying issue is that it is not clear what the most physically realistic initial condition for c should
be. The non-modal stability analysis circumvents this problem by defining a N × N propagator
matrix P(s̃, t̃) that relates the vector c(s̃, t̃ = 0) at the initial time to its value c(s̃, t̃) at a later time

c(s̃, t̃) = Pc(s̃, t̃ = 0). (37)

Substitution of (37) into (36) leads to

dP
dt̃

= MP. (38)

We integrate (38) instead of (36) to update the propagator matrix over time. It is clear from (37) that
P should initially be equal to the identity matrix. We use the fourth-order Runge-Kutta method to
integrate (38) over time t̃ for many values of the wavenumber s̃. The integration begins at an initial
time of t̃ = 0.01; the singularity at t̃ = 0 of (17) and (18) prohibits starting the integration at very
early times. The integration ends at t̃ = 300, and the step size is �t̃ ≈ 300/2000 = 3/20. We have
checked our results for convergence with respect to the values of N, �z̃, �t̃ , and the initial time.

Before the onset of convection, all perturbation modes decay with time because they are
dissipated by diffusion. We define the critical time t̃c to be the earliest instance (the minimum time
over all wavenumbers) when a perturbation mode begins to grow. The instantaneous growth rate at
time t̃ of a mode with wavenumber s̃ is

ς = 1

�

d�

dt̃
, (39)
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where � = �(s̃, t̃) is the spectral radius of P. The critical time may be defined as the first instance
when ς > 0. The wavenumber that corresponds to the critical time is the critical wavenumber s̃c.
We consider wavenumbers between 10−4 ≤ s̃ ≤ 0.15 and times between 0.01 ≤ t̃ ≤ 300, and we
divide these intervals into 400 and 2000 evenly spaced points, respectively. Essentially, we compute
ς at each of the 400 × 2000 points in wavenumber–time space by integrating (38) over time for
each value of the wavenumber and calculating ς (s̃, t̃).

D. Results and discussion

We see from (28) that the terms which arise from the non-zero divergence depend on both α

and csat. Our previous work24 has studied a CO2-water mixture where the temperature is 30 ◦C, and
the pressure at the interface is 50 bars. We have used the cubic-plus-association (CPA) equation of
state33 to find that α = 0.27 and csat = 0.043 at this temperature and pressure. Figure 1 depicts the
marginal stability (ς = 0) contours in wavenumber–time space for these values of α and csat. The
base state is unstable above the contours, where ς > 0 and the onset of convection has occurred. It is
stable below the contours. Figure 1 shows that the effect of compressibility is negligible, as there is
nearly complete overlap between the two contours. The critical time t̃c and the critical wavenumber
s̃c are given by the minimum of the corresponding contours. We have t̃c ≈ 50.4 and s̃c ≈ 0.0666 for
a compressible fluid. For an incompressible fluid, we have a slightly earlier critical time of t̃c ≈ 50.2,
which agrees with the result from Bestehorn and Firoozabadi.19

Our study considers temperatures between 30 and 200 ◦C and pressures up to 200 bars, as
stated in Sec. I. We expect fluid compressibility to have a negligible effect on the critical time and
the critical wavenumber in CO2-water mixtures under these conditions. We justify this assertion by
examining the range of values for α and csat. Table I presents values for relevant parameters. We
have previously shown24 that

α = 1 − ρ0

(
V̄1 + c1

M1

)
. (40)

The density ρ0 decreases from about 1000 kg/m3 at 30 ◦C to about 870 kg/m3 at 200 ◦C and has a
relatively weak dependence on pressure (see, e.g., the NIST Chemistry WebBook). Water at 200 ◦C
is a gas for pressures below 15.5 bars. We have used the CPA equation of state33 to find that the
partial molar volumes V̄1 and V̄2 depend on temperature, but are nearly constant with respect to
pressure and composition (variation is less than 1%). The CO2 shift parameter c1 is a constant, while
the H2O shift parameter c2 is a function of temperature only33 and is small compared to V̄2. Thus,

FIG. 1. Marginal stability (ς = 0) contours in wavenumber–time space. The base state is unstable in the shaded region
above the contours, where ς > 0 and the onset of convection has occurred. It is stable below the contours. The dashed-dotted
contour lies slightly above the solid contour, but there is nearly complete overlap. This indicates that fluid compressibility
does not significantly affect the critical time t̃c or the critical wavenumber s̃c.
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TABLE I. Parameter values for temperatures between 30 and 200 ◦C and pressures up to 200 bars.

Symbol Definition Range of values

ρ0 Density of pure water 1004 kg/m3 (200 bars)–995 kg/m3 (1 bar) at 30 ◦C
878 kg/m3 (200 bars)–864 kg/m3 (15.5 bars) at 200 ◦C

V̄1 CO2 partial molar volume 3.5 × 10−5 m3/mole (30 ◦C)–3.9 × 10−5 m3/mole (200 ◦C)
c1 CO2 shift parameter −3.1 × 10−6 m3/mole
M1 CO2 molar mass 44 × 10−3 kg/mole
V̄2 H2O partial molar volume 1.76 × 10−5 m3/mole (30 ◦C)–1.86 × 10−5 m3/mole (200 ◦C)
c2 H2O shift parameter 3.6 × 10−7 m3/mole (30 ◦C) to −3.5 × 10−7 m3/mole (200 ◦C)
M2 H2O molar mass 18 × 10−3 kg/mole
csat Maximum CO2 solubility Up to 8 mass percent (at 30 ◦C and 200 bars)

α depends primarily on temperature, and we may approximate it as a constant in our isothermal
system. It ranges between 0.27 and 0.30 for CO2-water mixtures. Since csat may be as high as 8% for
CO2-water, the product αcsat may be up to twice as large as the value used in our stability analysis.
However, it is clear from Figure 1 that fluid compressibility will not significantly affect the onset of
convection even for this large value.

We gain insight into why compressibility has a negligible effect in CO2-water mixtures if we
examine the divergence of the velocity field. Equation (7) relates ∇ · q to the total time derivative
of the mass density ρ = m/V . The mass density of a fluid particle may change if its mass m or its
volume V changes so that

∇ · q = 1

V

dV

dt
− 1

m

dm

dt
= 1

V

(
dV

dt
− 1

ρ

dm

dt

)
. (41)

There are two contributions to the compressibility: (1) a change in the volume, which is expressed
by the first term in the parentheses, and (2) a change in the mass, which is expressed by the second
term in the parentheses. We may estimate the relative importance of the two contributions as follows.
From thermodynamics,37 we have

V = (V̄1 + c1)n1 + (V̄2 + c2)n2, (42)

where n1 and n2 represent the moles of CO2 and water, respectively, in the fluid particle. Since the
partial molar volumes may be approximated as constants, we have

dV = (V̄1 + c1)dn1 + (V̄2 + c2)dn2,

dm = M1dn1 + M2dn2.

Using values of V̄1 + c1 = 3.2 × 10−5 m3/mole, V̄2 + c2 = 1.8 × 10−5 m3/mole, and ρ = 1000
kg/m3, we find

dV

dt
= (3.2 × 10−5)

dn1

dt
+ (1.8 × 10−5)

dn2

dt
, (43)

1

ρ

dm

dt
= (4.4 × 10−5)

dn1

dt
+ (1.8 × 10−5)

dn2

dt
. (44)

From (43) and (44), we see that dV/dt can be similar in magnitude to (1/ρ)dm/dt. In other words, the
volume change term in (41) is comparable to the mass change term so that they largely cancel each
other to produce a relatively small divergence. This shows why the non-zero ∇ · q has a negligible
effect on the onset of convection in CO2-water mixtures. Volume change causes movement of the
interface. We investigate the consequences of a moving interface on the onset of convection in
Sec. III.

We conclude this section with a discussion of two key points. First, we note that compressibility
is likely to be more significant in CO2-hydrocarbon mixtures due to the higher CO2 solubility in
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hydrocarbons (see Sec. I). However, the linear density equation of state (5) is expected to be invalid
for very high solubility hydrocarbons since c is required to be sufficiently small, and we cannot
perform a linear stability analysis for such mixtures. Another complication is that CO2 dissolution
may significantly change the viscosity2, 3 and the partial molar volumes37 of the hydrocarbon phase,
so that μ and α cannot be approximated as constants. The second key point is that compressibility
may be important for CO2 sequestration even if it does not noticeably affect the onset of convection
in the aqueous phase. Numerical simulations have shown that both rock compressibility and fluid
compressibility can significantly reduce the pressure buildup that occurs during CO2 injection.38 As
we mentioned in Sec. I, the pressure reduction has implications for the long-term storage security of
CO2 in saline aquifers. It may lower the risk of cap rock fracture and subsequent CO2 leakage back
into the atmosphere.

III. INTERFACE MOVEMENT

A. Governing and constitutive equations

Much of our formulation in Sec. III remains the same as in Sec. II. There are two important
differences, however: (1) we treat the liquid (aqueous or hydrocarbon) phase as being incompressible
(∇ · q = 0), and (2) the position h(t) of the interface between the CO2 phase and the liquid phase
moves with time as a result of the volume change from CO2 dissolution. We consider a semi-infinite
medium where −∞ < z ≤ h(t), with h(0) = 0. The velocity dh/dt with which the interface moves
can be obtained from performing mass balances across the interface. The total mass balance and
CO2 mass balance across the interface are,39–41 respectively,

φρG

(
wG

t − dh

dt

)
= φρL

(
wL

t − dh

dt

)
, (45)

− φρG DG ∂cG

∂z
+ φcGρG

(
wG

t − dh

dt

)
= −φρL DL ∂cL

∂z
+ φcLρL

(
wL

t − dh

dt

)
, (46)

where G denotes the CO2-rich side of the interface, L denotes the liquid side of the interface, and wt is
the true vertical velocity. This velocity is related to the Darcy vertical velocity w by wt = w/φ. The
composition derivatives ∂cG/∂z and ∂cL/∂z are evaluated at the interface. We combine (45) and (46)
to eliminate wG

t and obtain

wL
t − dh

dt
= − 1(

cG − cL
)

(
DL ∂cL

∂z
− ρG

ρL
DG ∂cG

∂z

)
.

If we use the fact that cG ≈ 1 throughout the entire CO2 phase because the solubility of liquid in
CO2 is negligible (see Sec. I), the second term in the parentheses vanishes so that

dh

dt
= wL

t + DL(
1 − cL

) ∂cL

∂z
. (47)

We approximate the convective velocity wL
t as being zero because evaporation of liquid is negligible,

as stated in Secs. I and II C. Thus, (47) becomes

dh

dt
= DL(

1 − cL
) ∂cL

∂z
= D

(1 − csat)

∂c

∂z

∣∣∣∣
z=h

. (48)

The governing equations in nondimensionalized form are given by (9), (10), and

∇ · q̃ = 0, (49)

dh̃

dt̃
= csat

(1 − csat)

∂ c̃

∂ z̃

∣∣∣∣
z̃=h̃

, (50)
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where h̃ = h/�. The boundary conditions in z̃ are

c̃(x̃, ỹ, z̃ = h̃, t̃) = 1, ∀x̃, ỹ, t̃, (51)

w̃(x̃, ỹ, z̃ = h̃, t̃) = 0, ∀x̃, ỹ, t̃, (52)

c̃(x̃, ỹ, z̃ → −∞, t̃) = w̃(x̃, ỹ, z̃ → −∞, t̃) = 0, ∀x̃, ỹ, t̃ . (53)

B. The base state

The base state concentration profile c̃base(z̃, t̃) with a moving interface satisfies the one-
dimensional diffusion equation (12), along with (50), the initial condition (13), the bottom boundary
condition (14), and the interface boundary condition

c̃base(z̃ = h̃, t̃) = 1, ∀t̃ . (54)

The solution of this set of equations is analogous to the solution of the classical Stefan problem,
which involves phase changes (e.g., melting of ice) that occur as a result of one-dimensional heat
conduction.42 The moving interface in the Stefan problem represents the front where the phase
change occurs. The position h̃(t̃) of the interface in our problem indicates the extent of the volume
change; its value depends on the amount of CO2 dissolved in the liquid phase. The average CO2

concentration grows with the square root of time when the interface is fixed in position and the base
state is given by (16), as shown earlier.24, 43, 44 As an ansatz, we take h̃(t̃) to be proportional to the
square root of time

h̃(t̃) = 2η
√

t̃, (55)

where η is a dimensionless constant. The solution to (12)–(14) and (54)–(55) is

c̃base(z̃, t̃) = 1 + erf(z̃/2
√

t̃)

1 + erf(η)
. (56)

The base state derivative with respect to z̃ is

∂ c̃base

∂ z̃
= exp(−z̃2/4t̃)

1 + erf(η)

1√
π t̃

. (57)

By substituting (55) and (57) into (50), we obtain a nonlinear equation

η[1 + erf(η)] exp(η2) = 1√
π

csat

(1 − csat)
. (58)

For a given interfacial mass fraction csat, we must first solve (58) for η. This value of η can then
be substituted into (55) to compute the interface position, into (56) to determine the concentration
field, or into (57) to calculate the diffusive flux. In addition to (56), the base state is described by a
pressure field P̃base and q̃base = 0.

C. Linearized perturbation equations

We follow the procedure described in Sec. II C and introduce perturbations to the base state,
linearize the equations, and expand the perturbations using the Fourier transforms ĉ′(s̃, z̃, t̃) and
ŵ′(s̃, z̃, t̃) to get

∂ ĉ′

∂ t̃
=

{
−s̃2

[
exp(−z̃2/4t̃)

1 + erf(η)

1√
π t̃

]
L−1 + L

}
ĉ′. (59)

We perform the non-modal stability analysis described in Sec. II C 2 to numerically integrate a
matrix equation analogous to (38) using the same values of N, �z̃, �t̃ , and the initial time. The only
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difference is that after every time step, each grid point is moved a distance

dh̃

dt̃
�t̃ = η√

t̃
�t̃,

so that the topmost grid point is always located at z̃ = h̃. As a result, we must add

dh̃

dt̃

∂

∂ z̃
= η√

t̃

∂

∂ z̃
, (60)

to the matrix M to account for the movement of the mesh.

D. Results and discussion

Figure 2 illustrates marginal stability contours of ς = 0 in wavenumber–time space.
Equation (58) shows that the value of η, and therefore the extent of the volume change, depends on
csat. We present results for three different values of csat: 0.043, 0.08, and 0.12. The first is the same
value used in Sec. II D. The second is the maximum solubility of CO2 in water at the conditions
examined in our study. For comparison, we also present results for csat = 0.12, which could represent
a CO2-hydrocarbon mixture or a CO2-water mixture at pressures much higher than those considered
in our study.45, 46 In all cases, the effect of interface movement is much more prominent than the
effect of fluid compressibility. The contours are shifted downward and to the left with increasing
values of csat, which indicates that interface movement decreases the critical time t̃c and the critical
wavenumber s̃c. Another way to quantify the effect of interface movement is to plot t̃c and s̃c as a
function of csat. This relationship is shown in Figure 3. Interface movement becomes negligible in
the limit as csat → 0. The critical time and critical wavenumber approach the values of t̃c ≈ 50.2
and s̃c ≈ 0.0666 from Sec. II D in this limit. We obtain the following scaling relations for the
dimensionalized critical time tc and critical wavenumber sc from the best-fit lines:

tc = (50.2 − 66.4csat)τ = (50.2 − 66.4csat)

(
D1/2φμ

k�ρg

)2

, (61)

sc = (0.0666 − 0.0192csat)/� = (0.0666 − 0.0192csat)

(
k�ρg

Dφμ

)
. (62)

These relations hold as long as csat is sufficiently small for (5) to be valid (see our discussion in
Sec. II A). We summarize our results in Table II, where “% difference” refers to the absolute percent
difference compared to the fixed interface. The decrease in t̃c in CO2-water mixtures can be up to

FIG. 2. (a) Marginal stability (ς = 0) contours in wavenumber–time space; (b) zoomed-in view around the critical time t̃c
and the critical wavenumber s̃c. The moving interface shifts the contours downward and to the left, indicating a decrease in
the critical time and critical wavenumber. The effect becomes more pronounced for larger values of the interfacial CO2 mass
fraction csat.
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FIG. 3. (a) and (b) The critical time t̃c and critical wavenumber s̃c for several values of the interfacial CO2 mass fraction
csat. Interface movement becomes negligible in the limit as csat → 0. The best-fit lines represent t̃c = 50.2 − 66.4csat and
s̃c = 0.0666 − 0.0192csat.

around 10% at the conditions examined in our study, but realistically not more than 20% even at very
high pressures. In contrast, Meulenbroek et al.34 have found that interface movement can lead to
more than a tenfold decrease in t̃c. They also model the time-dependence of h̃ using (55). However,
they determine η not from mass balances, but by examining the volume increase observed in PVT
cell experiments where CO2 is mixed with oil or water.47 Determining η in this way may severely
overestimate its magnitude because (55) is valid only before the onset of convection, yet the onset
is virtually instantaneous in these experiments so that much of the volume increase is due to the
enhanced dissolution by convection. As a result, Meulenbroek et al.34 obtain a range for η between
2 and 4, values that are roughly 100 times larger than our values. We expect the effect of interface
movement to be much less pronounced than predicted by their analysis.

Nevertheless, since the time scale τ varies inversely with the square of the permeability k, a 10%
reduction in t̃c can still be significant in low permeability media where τ is large. For a representative
set of conditions where D = 2 × 10−9 m2/s, φ = 0.2, μ = 0.001 Pa s, k = 0.1 darcy, and �ρ

= 10 kg/m3, we have τ ≈ 10 days. A 10% reduction in t̃c is equivalent to a decrease in the critical
time tc of about 50 days for these conditions. If instead k = 0.01 darcy (it is not uncommon to find
such low permeability formations), a 10% reduction in t̃c corresponds to a time period of about 5000
days ≈ 13.5 years.

Movement of the interface affects the critical time in two opposing ways. Comparing
(16) and (56), we see that the ratio of the concentration field c̃base when the interface moves with

TABLE II. Summary of results in Figure 3. Interface movement may reduce t̃c in CO2-water mixtures by up to around 10%
at the conditions examined in our study, but realistically not more than 20% even at very high pressures where the CO2

solubility is relatively high.

η t̃c % difference for t̃c s̃c % difference for s̃c

Fixed interface 0 50.2 . . . 0.0666 . . .
csat = 0.02 0.0114 48.9 2.6 0.0663 0.5
csat = 0.043 0.0246 47.4 5.6 0.0658 1.2
csat = 0.06 0.0346 46.3 7.8 0.0655 1.7
csat = 0.08 0.0465 44.9 10.6 0.0651 2.3
csat = 0.10 0.0586 43.6 13.2 0.0647 2.9
csat = 0.12 0.0709 42.3 15.7 0.0643 3.5
csat = 0.14 0.0834 40.9 18.5 0.0638 4.2
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time to c̃base when the interface remains fixed is 1/[1 + erf(η)]. This ratio is less than one and mono-
tonically decreases with η for η > 0. Thus, movement of the interface reduces the magnitude of c̃base

because the increase in volume dilutes the CO2 concentration in the liquid phase. This translates to
a reduction in the density ρ and an increase in the critical time. However, the volume expansion also
increases the thickness of the dense, CO2-dissolved liquid layer near the interface. The increased
thickness destabilizes the base state and allows the onset of convection to occur earlier. Previous
studies11, 16 have found that onset of convection cannot occur when the Rayleigh number Ra is less
than about 30. Since Ra appears in location of the bottom boundary, this value of Ra represents the
minimum height of the porous domain necessary for onset to occur. Slim and Ramakrishan16 reason
that the vertical confinement when Ra < 30 impedes the growth of small wavenumber modes and
prevents the formation of large-scale convection cells. We offer a different interpretation. We believe
that Ra ≈ 30 represents a critical thickness of the CO2-dissolved liquid layer. When the thickness of
the layer is less than this critical value (i.e., when only a small amount of CO2 has dissolved in the
liquid phase), the buoyancy-driven instabilities are insufficiently strong to overcome the dissipation
of the perturbations due to diffusion. The base state does not become unstable in such a case.

The onset of convection occurs earlier when the interface moves because the relative increase
in the thickness is greater than the decrease in ρ. To show this, we examine the average mass density
〈ρ〉, which is the value obtained by spatially averaging ρ in all directions. It is equal to

〈ρ〉 = ρ0(1 + α〈c〉) = ρ0(1 + α〈cbase〉),

where the second equality follows from the fact that the perturbations do not affect the average
CO2 concentration. For illustration, we consider a binary mixture where csat = 0.08 and 〈ρ〉 − ρ0

= 0.01ρ0. We have η = 0.0465 and 1/[1 + erf(η)] = 0.95 for this value of csat, and find that

〈ρ〉moving

〈ρ〉fixed
= ρ0(1 + 0.0095)

ρ0(1 + 0.01)
= 0.9995.

Interface movement decreases the average density by only 0.05%. Using the value of the Rayleigh
number from the preceding paragraph, the relative increase in the thickness of the CO2-dissolved
layer may be estimated as h̃(t̃c)/30. For t̃c = 44.9, we have

h̃(44.9)

30
= 2(0.0465)

√
44.9

30
= 0.021.

Therefore, the relative increase in thickness may be over an order of magnitude greater than the
decrease in 〈ρ〉. In reality, the decrease in 〈ρ〉 may be even less than the value calculated in our
example. As mentioned in Sec. II A, the maximum density increase �ρ may be as high as about
0.02ρ0 for CO2-water mixtures, and several percent of ρ0 for CO2-hydrocarbon mixtures. The onset
of convection occurs well before the liquid phase becomes saturated with CO2 at the equilibrium
concentration. Thus, 〈ρ〉 − ρ0 � �ρ, and the ratio 〈ρ〉moving/〈ρ〉fixed will be closer to unity than in
our example.

For the reasons discussed at the end of Sec. II D, we are unable to perform a stability analysis
for high CO2 solubility hydrocarbons where csat may be as large as 50 mass percent and swelling can
be as much as 60%. Nevertheless, the trends in our results strongly suggest that the decrease in the
critical time may be much more pronounced in hydrocarbons than in water. It may be comparable
to the decrease in the critical time due to permeability anisotropy, which we have studied in our
previous paper.24 This could have important implications for CO2 improved oil recovery.

IV. CONCLUSIONS

We have performed linear stability analyses to study the effect of fluid compressibility and
interface movement on the onset of buoyancy-driven convection in porous media. Our work has
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applications to both CO2 improved oil recovery and CO2 sequestration, although we have focused
mainly on the latter. We draw the following conclusions:

� Compressibility, which is related to a non-zero divergence of the velocity field, has a negli-
gible effect on the onset of convection in CO2-water mixtures. The critical time and critical
wavenumber for an incompressible vs. compressible fluid are virtually the same.

� There are two contributions to the divergence of the velocity field: (1) a change in the volume
and (2) a change in the mass. The two contributions are comparable in magnitude for CO2-
water mixtures and largely cancel each other. This explains why compressibility has a negligible
effect, and it also suggests that the volume change from CO2 dissolution may be significant.
The volume change is manifested in the form of a moving interface between the CO2 phase
and the liquid (aqueous or hydrocarbon) phase.

� Interface movement may reduce the critical time by up to around 10% in CO2-water mixtures.
The critical wavenumber also decreases, but to a lesser extent. A 10% reduction in the critical
time can be significant in low permeability media, where it could represent a time period of
several months or even years.

� The base state becomes more buoyantly unstable because interface movement increases the
thickness of the dense, CO2-dissolved liquid layer near the interface. The end result is that the
onset of convection occurs earlier.

� The effect of a moving interface may be much more pronounced in hydrocarbons than in water.
This could have important implications for CO2 improved oil recovery.
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