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We perform a linear stability analysis to examine the onset of buoyancy-driven
convection relevant to subsurface carbon dioxide sequestration in confined, porous
Cartesian and cylindrical domains. Our work amends the analysis in an earlier study
on cylindrical geometries. We consider Cartesian geometries where the aspect ratio
between the two horizontal dimensions is not necessarily equal to one. Two key ele-
ments of the stability analysis are: (1) the critical time and (2) the critical wavenumber.
Lateral boundaries have a much greater influence on the critical wavenumber than
on the critical time. The confinement due to these boundaries impedes the onset
of convection to the extent that convection cannot even occur in domains that are
smaller than a certain size. Large aspect ratios can significantly reduce boundary
effects. Patterns of the earliest-growing perturbation mode in the horizontal plane re-
veal many interesting dynamics which have not been examined in previous stability
analyses. We illustrate several differences between patterns in Cartesian geometries
and patterns in cylindrical geometries. Based on observations from earlier papers, we
hypothesize that the contrasts between the Cartesian and cylindrical patterns may lead
to significantly different behavior in the two geometries after the onset of convection.
Our results may guide future numerical studies that can investigate this hypothesis
and may help with understanding the onset of buoyancy-driven convection in real
systems where lateral boundary effects are significant. C© 2013 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4801930]

I. INTRODUCTION

Buoyancy-driven flows have generated much interest since the pioneering work of Lord
Rayleigh and Henri Bénard over a century ago.1–12 A classic example involving such flows is the
Horton-Rogers-Lapwood problem, which considers a vertical thermal gradient imposed between two
boundaries that enclose a fluid-filled porous medium.13, 14 Before the onset of convection, the tem-
perature profile is steady and increases linearly in the downward direction. This creates a buoyantly
unstable situation where heavier, colder fluid lies on top of lighter, hotter fluid. One may perform a
linear stability analysis to show that above a critical Rayleigh number (i.e., for a sufficiently strong
thermal gradient), the buoyancy-driven instabilities may lead to the onset of convection within the
porous medium. Many aspects of the Horton-Rogers-Lapwood problem have been studied.15, 16 For
example, several authors have performed linear stability analyses to investigate the effect of lateral
boundaries in Cartesian and cylindrical geometries on the onset of convection.17–22 A related, yet
different problem examines a fluid-filled porous medium where the temperature is initially uniform
everywhere except at the top boundary, which is suddenly cooled to a lower temperature and held
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fixed at that temperature. (Equivalently, we could instead have a bottom boundary that is suddenly
heated and held fixed at the higher temperature.) Like in the Horton-Rogers-Lapwood problem, the
state of the fluid before the onset of convection, which is called the base state, is buoyantly unstable.
The difference is that the base state in the second problem is described by a transient (unsteady)
temperature profile that obeys the one-dimensional heat equation. The linear stability analysis for
this problem calculates two key quantities: (1) the critical time and (2) the critical wavenumber.
Onset of convection occurs at the critical time. It represents the first instance when the base state
becomes unstable. The stability analysis works by subjecting the base state to small wave-like per-
turbations; the critical wavenumber characterizes the earliest-growing (most unstable) perturbation
mode.

Linear stability analyses are also important for modeling the dissolution of carbon dioxide
(CO2) in saline aquifers for geological sequestration.23–25 Carbon dioxide is one of the few common
atmospheric gases that increase the density of water upon dissolution.26 The density increase may
lead to the onset of buoyancy-driven convection in the aqueous phase. Convection is desirable for
sequestration in saline aquifers because it can greatly enhance the CO2 dissolution rate into the
aqueous phase. Thus, it is of interest to determine when the onset of convection occurs. For CO2

sequestration, we may consider CO2 transport through a water-saturated porous medium that is
initially devoid of CO2 everywhere except at the top boundary, which is held fixed at a constant
CO2 concentration. This setup follows the same governing equations and initial/boundary conditions
as its thermal analogue described in the preceding paragraph. As a result, they are mathematically
equivalent and may be treated interchangeably. We refer to both of them collectively as the transient
base state problem. Many authors have performed stability analyses27–37 to determine the critical
time and the critical wavenumber for the transient base state problem. These studies are based on
methods introduced in earlier papers on porous media38, 39 and open-space (cavities without porous
media).40–45 One issue that arises is that there is no universally accepted mathematical definition
of the critical time. Systematic comparisons35–37, 46 among the various studies in the literature27–37

have found that reported critical times may differ by a factor of several-fold. How to best de-
fine the critical time is still an open question. Nevertheless, this is not of concern for the present
work because we will use only one definition, the one introduced by Slim and Ramakrishnan,35

which yields the earliest onset of convection (the smallest critical time) reported in the
literature.

In this article, we present a linear stability analysis of the transient base state problem, and more
specifically the CO2 sequestration problem, to determine conditions for the onset of buoyancy-driven
convection in confined, porous Cartesian, and cylindrical domains. Most stability analyses of the
transient base state problem27–33, 35–37 have neglected lateral boundaries and focus on unconfined
domains. Kim et al.34 have studied CO2 dissolution in cylindrical geometries. They use boundary
conditions in which the radial CO2 diffusive flux and the radial derivative of the vertical velocity must
vanish at the center of the cylinder. Their stability analysis is based on “propagation theory,” in which
the perturbations do not depend explicitly on time.32, 46 Instead, time enters the equations implicitly
as a parameter. We use more physically realistic boundary conditions and allow the perturbations to
depend explicitly on time. In this sense, the present study amends the analysis of Kim et al.34 Our
work also considers confined Cartesian geometries where the aspect ratio between the two horizontal
dimensions is not necessarily equal to one. We present our formulation in Sec. II. We analyze the
influence of the lateral boundaries on the critical time and the critical wavenumber in Sec. III. We
show that the confinement effect may be appreciable in laboratory-scale experiments47–49 and in
numerical simulations. The patterns of the earliest-growing mode in the horizontal plane reveal
many interesting features of the dynamics. Section IV illustrates several ways in which patterns in
Cartesian geometries are distinct from patterns in cylindrical geometries. We compare our patterns
with those from a numerical study50 of the transient base state problem and from stability analyses
of the Horton-Rogers-Lapwood problem in Cartesian17, 18 and cylindrical19 geometries. Based on
observations from earlier papers, we hypothesize that the contrasts between the Cartesian and
cylindrical patterns may lead to significantly different behavior in the two geometries after the onset
of convection. Our results may guide future numerical studies that can investigate this hypothesis.
We conclude with a summary of our main findings.
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II. FORMULATION

A. Governing equations and initial/boundary conditions

Our system is an isothermal binary mixture of CO2 and water in a porous medium of height H that
is homogeneous in its porosity φ and permeability k. In both Cartesian and cylindrical coordinates,
the z axis is centered at the top boundary and points upward. The viscosity μ and diffusion coefficient
D are constants. The diffusive flux is given by Fick’s law as J = −φρD∇ω, where ρ is the mass
density and ω is the CO2 mass fraction. The medium is initially composed of water only, except at
the top boundary, which is saturated with CO2 at a fixed mass fraction ωsat. Fluid flow is governed
by Darcy’s law, which relates the velocity field q to the pressure gradient ∇p and gravitational force
−ρg∇z. We also have the continuity equation and a CO2 species balance equation, which we use
with the Boussinesq approximation. The governing equations may be expressed as

q = − k

μ
(∇ p + ρg∇z) , (1)

∇ · q = 0, (2)

∂ω

∂t
= − q

φ
· ∇ω + D∇2ω. (3)

The density obeys the linear constitutive equation

ρ = ρ0(1 + αω), (4)

where ρ0 and α are constants. The maximum increase in density from dissolution is �ρ = ρ0αωsat.
Using (4) and letting P = p + ρ0gz, we may express (1) as

q = − k

μ
(∇ P + ρ0αωg∇z) . (5)

We follow earlier works30, 35, 51 and nondimensionalize equations (2), (3), and (5) with a ve-
locity scale � = k�ρg/μ, a length scale � = (φD)/� = (Dφμ)/(k�ρg), and a time scale
τ = (φ�)/� = D [(φμ)/(k�ρg)]2. Using these quantities, we introduce the variables t̃ = t/τ ,
ω̃ = ω/ωsat, P̃ = P/(�ρg�). In Cartesian geometries, the position is specified by r = (x, y, z)T .
Vectorial quantities are represented by column vectors following the usual mathematical convention.
We nondimensionalize r and q according to r̃ = (x̃, ỹ, z̃)T = (x, y, z)T /� and q̃ = (

q̃x , q̃y, q̃z
)T

= (
qx , qy, qz

)T
/�. The size of the domain in the x̃ direction is the width W̃ = W/� so that x̃

ranges from 0 to W̃ . The size in ỹ is AW̃ , where A is the aspect ratio. In cylindrical geometries, we
have r̃ = (r̃ , θ, z̃)T = (r/�, θ, z/�)T , and q̃ = (q̃r , q̃θ , q̃z)T = (qr , qθ , qz)T /�. The radius is R and
r̃ ranges from 0 to R̃ = R/�. We do not normalize θ by 2π since doing so does not simplify the
equations. The governing equations (2), (3), and (5) in nondimensionalized form are

q̃ = −∇ P̃ − ω̃∇ z̃, (6)

∇ · q̃ = 0, (7)

∂ω̃

∂ t̃
= −q̃ · ∇ω̃ + ∇2ω̃. (8)

In this choice of scaling, the Rayleigh number Ra = (k�ρgH )/(φμD) does not appear in the
governing equations. Instead, Ra appears in the location of the boundary so that the porous domain
is defined in the range −Ra ≤ z̃ ≤ 0. At the onset of convection, the CO2 concentration will be small
at the bottom boundary for sufficiently tall porous domains. Slim and Ramakrishnan35 have shown
that the results of the stability analysis are independent of the Rayleigh number for domains where
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Ra > 75. Following Bestehorn,52 a velocity field q̃ that satisfies (7) can be represented by two scalar
functions � and  as

q̃ = ∇ × (�∇ z̃) + ∇ × [∇ × (∇ z̃)] . (9)

We now show that ∇ × (�∇ z̃) = 0 for this problem. Taking the curl of (6) and using (9), we
obtain ∇2

h� = 0, where ∇2
h is the horizontal Laplacian. This operator is defined as ∇2

h = ∂2/∂ x̃2

+ ∂2/∂ ỹ2 and ∇2
h = ∂2/∂ r̃2 + (1/r̃ )∂/∂ r̃ + (1/r̃2)∂2/∂θ2 in Cartesian and cylindrical coordinates,

respectively. Let D be an arbitrary region in the horizontal plane (x̃ ỹ or r̃θ plane) enclosed by a
positively oriented, simple closed curve C. Green’s theorem states that∫

D
∇2

h� dA = −
∮
C
[∇ × (�∇ z̃)] · dr̃, (10)

where dA denotes dx̃ dỹ or r̃ dr̃ dθ . Since the integrand in the left-hand side of (10) is zero and
the region D is arbitrary, ∇ × (�∇ z̃) must identically be zero. Thus, we may compute the velocity
components from a single scalar function  so that (9) becomes

q̃ = ∇ × [∇ × (∇ z̃)] . (11)

In Cartesian coordinates, the components of q̃ are q̃x = ∂2/∂ x̃∂ z̃, q̃y = ∂2/∂ ỹ∂ z̃, and
q̃z = −∇2

h. In cylindrical coordinates, they are q̃r = ∂2/∂ r̃∂ z̃, q̃θ = (1/r̃ )∂2/∂θ∂ z̃, and
q̃z = −∇2

h. Taking twice the curl of (6) and using (7) and (11), we have

∇2 = ω̃. (12)

The base state is characterized by a concentration profile ω̃base(z̃, t̃ ) that satisfies

∂ω̃base

∂ t̃
= ∂2ω̃base

∂ z̃2
, (13)

ω̃base(z̃, 0) = 0, −Ra ≤ z̃ < 0, (14)

∂ω̃base

∂ z̃

∣∣∣∣
(z̃=−Ra,t̃ )

= 0, ∀t̃, (15)

ω̃base(z̃ = 0, t̃ ) = 1, ∀t̃ . (16)

The solution to (13) with the initial/boundary conditions (14)–(16) is35

ω̃base(z̃, t̃ ) = 1 + 4

π

∞∑
l=1

1

2l − 1
sin

[(
l − 1

2

)
π z̃

Ra

]
exp

{
−

[(
l − 1

2

)
π

Ra

]2

t̃

}
. (17)

Bulk fluid motion is absent in the base state (q̃base = 0), which requires that the scalar function base

be a function of only z̃ and t̃ . From (12), we see that base(z̃, t̃ ) satisfies

∇2base = ∂2base

∂ z̃2
= ω̃base. (18)

We may express perturbations to the base state as  ′ =  − base and ω̃′ = ω̃ − ω̃base. We substitute
the perturbations into (8) and (12), use (13) and (18), and linearize to obtain

∂ω̃′

∂ t̃
= ∇2

h ′ ∂ω̃base

∂ z̃
+ ∇2ω̃′, (19)

∇2 ′ = ω̃′. (20)

We use  ′ rather than work directly with the velocity field like in previous stability analyses of
the transient base state problem27–37 because using  ′ allows for straightforward implementation of
the lateral boundary conditions. Impermeable walls enclose the lateral boundaries and the bottom
boundary; the normal velocity and the normal CO2 flux through them are zero. The vanishing normal
velocity implies that the normal derivative of  ′ must be zero along these boundaries. Along the
top boundary, ω̃ is fixed (equal to one) and ω̃′ = 0. We follow earlier papers27–37 and treat the top
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boundary as being impermeable to convection but not diffusion (see Cheng et al.36 for theoretical
reasoning behind this condition) so that q̃z = 0. This implies that  ′ must be a constant along this
boundary. Without loss of generality, we may set the constant equal to zero, since q̃ is invariant with
respect to the value of the constant. The same reasoning is used to justify  ′ = 0 along the bottom.
In summary, the stability analysis solves (19) and (20) for the perturbations  ′ and ω̃′, with ω̃base

given by (17). The boundary conditions in Cartesian geometries are

∂ ′

∂ x̃

∣∣∣∣
(x̃=0,ỹ,z̃,t̃ )

= ∂ω̃′

∂ x̃

∣∣∣∣
(x̃=0,ỹ,z̃,t̃ )

= ∂ ′

∂ x̃

∣∣∣∣
(x̃=W̃ ,ỹ,z̃,t̃ )

= ∂ω̃′

∂ x̃

∣∣∣∣
(x̃=W̃ ,ỹ,z̃,t̃ )

= 0, ∀ỹ, z̃, t̃, (21)

∂ ′

∂ ỹ

∣∣∣∣
(x̃,ỹ=0,z̃,t̃ )

= ∂ω̃′

∂ ỹ

∣∣∣∣
(x̃,ỹ=0,z̃,t̃ )

= ∂ ′

∂ ỹ

∣∣∣∣
(x̃,ỹ=AW̃ ,z̃,t̃ )

= ∂ω̃′

∂ ỹ

∣∣∣∣
(x̃,ỹ=AW̃ ,z̃,t̃ )

= 0, ∀x̃, z̃, t̃, (22)

 ′(x̃, ỹ, z̃ = −Ra, t̃ ) = ∂ω̃′

∂ z̃

∣∣∣∣
(x̃,ỹ,z̃=−Ra,t̃ )

= 0, ∀x̃, ỹ, t̃, (23)

 ′(x̃, ỹ, z̃ = 0, t̃ ) = ω̃′(x̃, ỹ, z̃ = 0, t̃ ) = 0, ∀x̃, ỹ, t̃ . (24)

The boundary conditions in cylindrical geometries are

∃M ∈ R such that | ′(r̃ = 0, θ, z̃, t̃ )| ≤ M, |ω̃′(r̃ = 0, θ, z̃, t̃ )| ≤ M, ∀θ, z̃, t̃, (25)

∂ ′

∂ r̃

∣∣∣∣
(r̃=R̃,θ,z̃,t̃ )

= ∂ω̃′

∂ r̃

∣∣∣∣
(r̃=R̃,θ,z̃,t̃ )

= 0, ∀θ, z̃, t̃, (26)

 ′(r̃ , θ, z̃, t̃ ) =  ′(r̃ , θ + 2π, z̃, t̃ ), ω̃′(r̃ , θ, z̃, t̃ ) = ω̃′(r̃ , θ + 2π, z̃, t̃ ), ∀r̃ , θ, z̃, t̃, (27)

 ′(r̃ , θ, z̃ = −Ra, t̃ ) = ∂ω̃′

∂ z̃

∣∣∣∣
(r̃ ,θ,z̃=−Ra,t̃ )

= 0, ∀r̃ , θ, t̃, (28)

 ′(r̃ , θ, z̃ = 0, t̃ ) = ω̃′(r̃ , θ, z̃ = 0, t̃ ) = 0, ∀r̃ , θ, t̃ . (29)

The perturbations  ′ and ω̃′ must be bounded at the center, as stated in (25).

B. Solution to the linearized perturbation equations

If the horizontal dimensions are infinite in extent, we may follow earlier studies27–33, 35–37 and
express the perturbations  ′(x̃, ỹ, z̃, t̃ ) and ω̃′(x̃, ỹ, z̃, t̃ ) in terms of Fourier transforms

 ′(x̃, ỹ, z̃, t̃ ) = 1

4π2

∫ +∞

−∞

∫ +∞

−∞
̂ ′(s̃x , s̃y, z̃, t̃ ) exp

[√−1
(
s̃x x̃ + s̃y ỹ

)]
ds̃x ds̃y, (30)

ω̃′(x̃, ỹ, z̃, t̃ ) = 1

4π2

∫ +∞

−∞

∫ +∞

−∞
ω̂′(s̃x , s̃y, z̃, t̃ ) exp

[√−1
(
s̃x x̃ + s̃y ỹ

)]
ds̃x ds̃y, (31)

where s̃x and s̃y are the dimensionless wavenumbers in x̃ and ỹ, respectively. Let us define a
wavenumber

s̃ f =
√

s̃2
x + s̃2

y . (32)
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The only requirement on s̃ f is that it must be positive in order for it to be physically meaningful.
Substituting (30) and (31) into (19) and (20), we obtain

∂ω̂′

∂ t̃
= −s̃2

f ̂
′ ∂ω̃base

∂ z̃
+

(
∂2

∂ z̃2
− s̃2

f

)
ω̂′, (33)

(
∂2

∂ z̃2
− s̃2

f

)
̂ ′ = ω̂′. (34)

For confined Cartesian geometries, the lateral boundary conditions (21) and (22) are satisfied if we
represent  ′ and ω̃′ in series expansions

 ′(x̃, ỹ, z̃, t̃ ) =
∞∑

i=0

∞∑
j=0

̂ ′(s̃i j , z̃, t̃ ) cos

(
iπ x̃

W̃

)
cos

(
jπ ỹ

AW̃

)
, (35)

ω̃′(x̃, ỹ, z̃, t̃ ) =
∞∑

i=0

∞∑
j=0

ω̂′(s̃i j , z̃, t̃ ) cos

(
iπ x̃

W̃

)
cos

(
jπ ỹ

AW̃

)
, (36)

where the wavenumber s̃i j , which is required to be positive, is

s̃i j = π
√

i2 + ( j/A)2

W̃
. (37)

Substituting (35) and (36) into (19) and (20) gives

∂ω̂′

∂ t̃
= −s̃2

i j ̂
′ ∂ω̃base

∂ z̃
+

(
∂2

∂ z̃2
− s̃2

i j

)
ω̂′, (38)

(
∂2

∂ z̃2
− s̃2

i j

)
̂ ′ = ω̂′. (39)

Comparing (38) and (39) with (33) and (34), it is evident that the lateral boundaries affect the results
by allowing only perturbation modes with wavenumbers of the form (37) to develop. The base state
may be significantly more stable (the onset of convection delayed) in a confined domain if modes
similar to the earliest-growing one cannot be admitted.

We apply the same eigenfunction expansion approach to simplify (19) and (20) in cylindrical
coordinates. The radial dependence of  ′ and ω̃′ is expressed in terms of Bessel functions of the first
kind, which are eigenfunctions of the radial part of the Laplacian.53 The boundary condition (25)
precludes the use of Bessel functions of the second kind, since these functions become unbounded
as their argument approaches zero.54 The Bessel function of order m is denoted as Jm(s̃lmr̃ ) and is
the solution to [

d2

dr̃2
+ 1

r̃

d

dr̃
+

(
s̃2

lm − m2

r̃2

)]
Jm(s̃lmr̃ ) = 0, (40)

where the wavenumber s̃lm is

s̃lm = blm

R̃
. (41)

Only positive values of s̃lm that satisfy (26) are allowed. Thus, blm represents the positive zeros of
dJm(s̃lmr̃ )/dr̃ for r̃ = R̃. Each Bessel function Jm has an infinite number of possible values of s̃lm

that satisfy (26); we use the index l to keep track of each value. We may represent  ′ and ω̃′ in series
expansions

 ′(r̃ , θ, z̃, t̃ ) =
∞∑

l=0

∞∑
m=0

̂ ′(s̃lm, z̃, t̃ )Jm(s̃lmr̃ ) cos(mθ ), (42)

ω̃′(r̃ , θ, z̃, t̃ ) =
∞∑

l=0

∞∑
m=0

ω̂′(s̃lm, z̃, t̃ )Jm(s̃lmr̃ ) cos(mθ ). (43)
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Equations (42) and (43) satisfy the boundary condition (27) because m is an integer. Substituting
(42) and (43) into (19) and (20) yields

∂ω̂′

∂ t̃
= −s̃2

lm̂ ′ ∂ω̃base

∂ z̃
+

(
∂2

∂ z̃2
− s̃2

lm

)
ω̂′, (44)

(
∂2

∂ z̃2
− s̃2

lm

)
̂ ′ = ω̂′. (45)

We mentioned in Sec. I that Kim et al.34 have studied the effect of lateral boundaries in cylindrical
domains for the transient base state problem. In their analysis, the perturbations are required to have
a vanishing radial derivative at the center, which implies that the derivative of the Bessel functions
must be zero at r̃ = 0. This requirement excludes the m = 1 solution, because dJ1(0)/dr̃ 
= 0. Bessel
functions with m 
= 1 are allowed, however. We show in Sec. IV A that the m = 1 solution is
the earliest-growing mode in some cases. Thus, Kim et al.34 impose boundary conditions that may
artificially stabilize the base state.

The three sets of coupled partial differential equations (33)–(34), (38)–(39), and (44)–(45)
closely resemble each other, with the only difference being in the allowable perturbation modes. All
three sets may be solved using the method described in earlier papers.28, 29, 31, 33, 35, 36 In this method,
we expand ̂ ′ and ω̂′ in Fourier series that take into account the boundary conditions (23) and (28)
at z̃ = −Ra and (24), (29) at z̃ = 0,

̂ ′(s̃, z̃, t̃ ) ≈
N∑

n=1

̂ ′
n(s̃, t̃ ) sin

(
nπ

z̃

Ra

)
, (46)

ω̂′(s̃, z̃, t̃ ) ≈
N∑

n=1

ω̂′
n(s̃, t̃ ) sin

[(
n − 1

2

)
π

z̃

Ra

]
, (47)

where N is a sufficiently large integer and s̃ could represent s̃ f , s̃i j , or s̃lm . We substitute (46) and (47)
into (33)–(34), (38)–(39), and (44)–(45), multiply the equations by a complementary set of orthogonal
(sinusoidal) functions, and integrate over the spatial coordinate z̃ to eliminate the dependence on z̃.
Performing this sequence of steps transforms the coupled partial differential equations into a system
of ordinary differential equations

dω

dt̃
= Aω, (48)

where ω is the column vector
(
ω̂′

1, ω̂
′
2, ...., ω̂

′
N

)T
, and A is the time-dependent real matrix derived

in earlier works.28, 29, 31, 33, 35, 36 This matrix depends on time t̃ and on the wavenumber s̃. Before the
onset of convection, all perturbation modes decay with time because they are dissipated by diffusion.
We define the critical time to be the earliest instance (the minimum time over all wavenumbers)
when a perturbation mode begins to grow. This is equivalent to the first instance when the most
positive eigenvalue of A + AT becomes greater than zero.35, 36 This eigenvalue, which we denote
as σ , represents the largest instantaneous growth rate of a particular mode. The wavenumber of the
earliest-growing mode is the critical wavenumber. To find the critical time and critical wavenumber,
we compute σ for many points in wavenumber–time space, i.e., the space of possible values for s̃
and t̃ .

III. THE CRITICAL TIME AND THE CRITICAL WAVENUMBER

A. Unconfined domains

The base state is most unstable in an unconfined domain because all perturbation modes,
including the earliest-growing one, are allowed when the horizontal dimensions are infinitely large.
For an unconfined domain, we label the critical time as t̃c and the critical wavenumber as s̃c.
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FIG. 1. (a) Marginal stability (σ = 0) contour in dimensionless wavenumber–time space in an unconfined domain; (b)
zoomed-in view around the critical time t̃c ≈ 47.9 and critical wavenumber s̃c ≈ 0.0545. The base state is unstable in
the shaded region above the contour and is stable under it. The dashed line represents the large wavenumber cutoff of
s̃ f ≈ 2.07s̃c ≈ 0.113. Perturbation modes with wavenumbers larger than this cutoff do not become unstable.

Previous studies35, 36 have found that t̃c ≈ 47.9 and s̃c ≈ 0.0545. Figure 1 depicts the σ = 0 contour
in wavenumber–time space. This contour represents states of marginal stability, because the base
state is unstable in the shaded region above the contour (σ > 0 and the onset of convection has
occurred) and is stable under it. The figure reveals two key features. First, there is a large wavenumber
cutoff of s̃ f ≈ 2.07s̃c ≈ 0.113, which is represented by the dashed line. Perturbation modes with
wavenumbers larger than this cutoff do not become unstable. We show in Secs. III B–III C that
convection cannot occur in confined domains where the wavenumbers are restricted to be larger than
this cutoff. There is also a small wavenumber cutoff, but this limit is not important for our work.
Convection may occur for only an intermediate range of wavenumbers because diffusion strongly
dissipates perturbation modes at the two extremes. More details on the diffusive dissipation may
be found in our earlier paper.36 The second key feature from Figure 1 is that many modes with
wavenumbers close to s̃c are nearly degenerate in the sense that they become unstable at almost the
same time. Modes that are within roughly 30% of s̃c in either direction become unstable at a time
that is still within a few percentage points of t̃c. Thus, we expect the lateral boundaries to have a
much greater effect on the wavenumber of the earliest-growing mode than on the onset time.

B. Cartesian versus cylindrical domains

We now compare the onset of convection in Cartesian versus cylindrical geometries. In confined
domains, only perturbation modes with wavenumbers that satisfy the lateral boundary conditions
are allowed to develop. In order to quantify how the boundaries affect the results, we analyze how
closely the allowable wavenumbers converge to s̃c as a function of the dimensionless width W̃ or the
dimensionless diameter 2R̃. Towards this goal, we examine two quantities: (1) a percent difference
|�s̃|min and (2) a wavenumber s̃min. The percent difference |�s̃|min is defined as

|�s̃|min = 100 inf
s̃

|s̃ − s̃c|
s̃c

, (49)

where s̃ denotes s̃i j or s̃lm and inf denotes the infimum (greatest lower bound). The value of s̃i j or
s̃lm that minimizes the quantity |s̃ − s̃c| is s̃min. We may interpret s̃min as the wavenumber of the
earliest-growing mode in confined domains (i.e., the analogue to s̃c). Figure 2 presents the effect of
the lateral boundaries on |�s̃|min and s̃min. These quantities are plotted as a function of 2R̃ instead
of R̃ so that we can more readily compare the behavior in the two geometries. The aspect ratio A
is equal to one in Figures 2(a) and 2(c) so that both x̃ and ỹ range from 0 to W̃ . We present the
effect of varying the aspect ratio in Secs. III C and III D. As expected, the boundaries generally
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FIG. 2. (a) and (b) |�s̃|min vs. W̃ or 2R̃; (c) and (d) s̃min vs. W̃ or 2R̃. The aspect ratio A is unity in (a) and (c) so that both
x̃ and ỹ range from 0 to W̃ . The dashed line represents W̃ = π/s̃c ≈ 58 or 2R̃ = 2b01/s̃c ≈ 68. The behavior of the system
is very different depending on whether it lies to the left or the right of the dashed line, as we describe in the text.

have a greater influence when W̃ or 2R̃ is small. In Cartesian geometries, we see from (37) that the
smallest wavenumber possible when A = 1 is π/W̃ . In order for a mode with a wavenumber of s̃c

to develop, W̃ must be at least as large as π/s̃c ≈ 58. This is equal to half of a quantity called the
critical wavelength27–37 λ̃c, which is defined as λ̃c = 2π/s̃c. In cylindrical geometries, the smallest
positive value53, 54 that blm in Eq. (41) can assume is the first zero (the one that corresponds to l = 0)
of the derivative of the Bessel function J1. Thus, 2R̃ must be at least 2b01/s̃c ≈ 2(1.8412)/s̃c ≈ 68
for a mode with a wavenumber of s̃c to develop. The dashed line in Figure 2 represents W̃ = π/s̃c

or 2R̃ = 2b01/s̃c. The behavior of the system is very different depending on whether it lies to the
left or the right of the dashed line.

To the right of the dashed line, s̃min fluctuates about s̃c and converges to s̃c as the size of the domain
increases. The convergence reflects the fact that the confinement effect becomes negligible in the limit
of a large domain. The fluctuations occur because of the following reasons. In Cartesian geometries,
we have s̃min = s̃c (or equivalently, |�s̃|min = 0%) when W̃ is of the form

√
i2 + j2 (π/s̃c), for

i, j ∈ N. When W̃ is not of this form, s̃min 
= s̃c and |�s̃|min > 0%. Similarly, s̃min = s̃c only when
2R̃ in cylindrical geometries is of the form 2blm/s̃c. The influence of the lateral boundaries is more
pronounced in cylindrical geometries. The largest |�s̃|min is about 25% in Figure 2(b), whereas it
is 17% in Figure 2(a). Nevertheless, the boundaries have little effect on the onset time for domains
that lie to the right of the dashed line. Even if |�s̃|min = 25%, the earliest-growing mode becomes
unstable at a time that is only slightly later than t̃c, as we discussed in Sec. III A.
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The effect on the onset time may be appreciable when W̃ < π/s̃c or 2R̃ < 2b01/s̃c. To the left
of the dashed line in Figure 2, s̃min rapidly increases to the large wavenumber cutoff value of 2.07s̃c

≈ 0.113. Thus, the onset of convection may be significantly delayed. In fact, s̃min cannot be smaller
than the cutoff when W̃ < (1/2.07)π/s̃c ≈ 28 or 2R̃ < (2/2.07)b01/s̃c ≈ 33. Convection cannot
even occur in domains smaller than these limits. The lateral boundaries have a more pronounced
effect in smaller cylindrical geometries, just like the case in larger domains. This is why the cutoff
is reached at a larger value of 2R̃ compared to W̃ . Our results are similar to the results from Kim
et al.,34 despite the differences between their formulation and ours (see Secs. I and II B). They have
found that the lateral boundaries have a negligible effect on the onset time when 2R̃ > 60 (our value
is 68) and that convection cannot occur in domains where 2R̃ < 30 (our value is 33).

C. Influence of the aspect ratio in Cartesian geometries

In Sec. III B, we considered Cartesian domains where the aspect ratio A is equal to one. We now
examine the case of A 
= 1. Figure 3 depicts s̃min vs. W̃ for different values of A. The size in the x̃
direction is W̃ , while the size in the ỹ direction is AW̃ . As we expect, the confinement effect becomes
more severe as the aspect ratio decreases. When W̃ > π/s̃c, the amplitude of the fluctuations about s̃c

is larger in domains with small aspect ratios. When W̃ < π/s̃c and A ≤ 1, s̃min rapidly increases to the
large wavenumber cutoff value of 2.07s̃c. However, when W̃ < π/s̃c and A > 1, s̃min fluctuates about
s̃c until W̃ becomes small enough that s̃min begins to monotonically increase towards 2.07s̃c. We
explain these observations from a careful examination of (37). This equation shows that increasing
the aspect ratio reduces the discrete character of the wavenumber s̃i j , causing it to behave more like
a continuous quantity. In this sense, s̃i j can be more finely tuned in domains where A is large, so that
it is easier to attain a value of s̃min that is similar to s̃c. Figure 3 shows that for larger aspect ratios,
s̃min = s̃c is achieved more frequently (i.e., s̃min = s̃c occurs at more values of W̃ ). This is because
s̃min = s̃c when W̃ can be expressed in the form

√
i2 + ( j/A)2 (π/s̃c). In domains where A ≤ 1, the

smallest wavenumber possible from (37) is π/W̃ , so that W̃ must be at least as large as π/s̃c in
order for a mode with a wavenumber of s̃c to develop. When W̃ is less than this value [to the left of
the dashed line in Figures 3(d)–3(f)], s̃min increases to 2.07s̃c. However, in domains where A > 1,
s̃min increases to 2.07s̃c only when W̃ is less than π/(As̃c). Between W̃ = π/(As̃c) and W̃ = π/s̃c in
Figures 3(a)–3(c), s̃min fluctuates about s̃c and is equal to s̃c when W̃ = jπ/ (As̃c). Convection may
occur in domains where A > 1 as long as W̃ > (1/2.07)π/(As̃c); this limit is the width at which
s̃min = 2.07s̃c. Thus, if A is large, it is possible for convection to occur even when one dimension
is very small in size. We conclude from this section that large aspect ratios can significantly reduce
boundary effects for both small and large values of W̃ .

D. Laboratory-scale experiments and numerical simulations

Our stability analysis helps with the interpretation of laboratory-scale experiments conducted
in isothermal diffusion-convection cells.47–49 In the experiments, CO2 is dissolved into a water-
saturated sand column (or an analogous permeable medium such as a Hele-Shaw cell) that resides
in the cell, which is cylindrical47, 49 or rectangular48 in shape. The diameter of the cell is 0.007 m
and 0.032 m in Farajzadeh et al.47 and Nazari Moghaddam et al.,49 respectively. The horizontal
dimensions of the Hele-Shaw cell in Kneafsey and Pruess48 are 0.24 m and 0.0024 m. These
experimental studies have used artificial porous media where the permeability k is extremely high
(estimated to be over 1000 darcy). We can perform a simple calculation to demonstrate that high
permeabilities may be necessary in laboratory-scale domains for boundary effects to be negligible.
For our calculation, we consider a representative set of conditions where D = 2 × 10−9 m2/s,
φ = 0.2, μ = 0.001 Pa s, k = 1 darcy, and �ρ = 15 kg/m3, for which the length scale is
� = (Dφμ)/(k�ρg) ≈ 0.00275 m. Note the inverse relation between k and �. A value of k = 1
darcy is on the higher end for conventional saline aquifers, where the permeability is typically less
than 0.1 darcy. Our calculation will show that k = 1 darcy may not be sufficiently high in some
laboratory-scale domains. For the representative conditions above, the diameter 2R̃ is approximately
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FIG. 3. s̃min vs. W̃ for various values of the aspect ratio A: (a) A = 10; (b) A = 5; (c) A = 2; (d) A = 0.5; (e) A = 0.2; (f) A =
0.1. The dashed line represents W̃ = π/s̃c. Large aspect ratios can significantly reduce boundary effects for both small and
large values of W̃ .

2.5 and 11.6 for Farajzadeh et al.47 and Nazari Moghaddam et al.,49 respectively. Our analysis predicts
that the onset of convection cannot occur in these experimental setups, since 2R̃ < 33. The width W̃
is about 87 for Kneafsey and Pruess,48 with an aspect ratio of 0.01. Equivalently, their setup could
be viewed as one where W̃ ≈ 0.87 and A = 100. In either case, we find that |�s̃|min and s̃min are
about 32.1% and 0.0720, respectively. This s̃min leads to an onset time of about 51, which is 6.5%
larger than the critical time t̃c ≈ 47.9 in unconfined media. The aspect ratio plays an important role
in the Kneafsey and Pruess48 experiments. If the aspect ratio were equal to one, instead of 100,
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FIG. 4. λ̃min vs. W̃ in Cartesian geometries at two different aspect ratios: (a) A = 1; (b) A = 0.1. The dashed line represents
W̃ = π/s̃c. Finer gridding in numerical simulations may be necessary to capture the earliest-growing mode in domains where
W̃ is small, especially when A < 1.

convection would not occur since W̃ ≈ 0.87 < 28. The lateral boundaries may also affect the onset
in natural formations where the permeability is low (a few millidarcy or less). In such formations,
the width or diameter may have to be larger than several tens of meters for the boundary effects to
be negligible since � would be large. Previous studies emphasize the fact that high permeabilities
permit early onset times and strong convective flows. Our work presents a complementary view:
high permeabilities minimize confinement effects that impede the onset of convection.

The results may give additional insight into numerical simulations of laboratory-scale or low
permeability Cartesian domains where W̃ is small. We define the wavelength of the earliest-growing
perturbation mode in confined Cartesian geometries as λ̃min = 2π/s̃min. The wavelength gives an
indication of the size of this mode. Since it is not clear how to define the wavelength in cylindrical
geometries, we focus only on Cartesian geometries for this part of our analysis. Figure 4 demonstrates
the effect of the boundaries on λ̃min. From the definition of λ̃min, we can see that Figures 4(a) and 4(b)
are just “reciprocal mirror images” of Figures 2(c) and 3(f), respectively. The dashed line represents
W̃ = π/s̃c. To the right of this line, λ̃min fluctuates about the critical wavelength λ̃c = 2π/s̃c and
converges to this value as W̃ increases. To the left of the dashed line, λ̃min linearly decreases as W̃
becomes smaller. It is important in numerical simulations to use gridding fine enough to capture
the earliest-growing mode. This means that the grid spacing must be smaller than λ̃min. Our results
suggest that even if all fluid and rock properties are the same as in large domain, finer gridding
may be necessary to capture this mode in laboratory-scale or low permeability domains where W̃ is
small, especially when A < 1.

IV. PATTERNS OF THE EARLIEST-GROWING MODE IN THE HORIZONTAL PLANE

A. Indices of the earliest-growing mode

Equation (37) shows that as W̃ becomes larger, the quantity
√

i2 + ( j/A)2 must also increase in
order for the wavenumber s̃i j to assume a value of s̃min that is close to s̃c. This means that the indices
i and j generally increase with W̃ . This trend is illustrated in Figure 5. The figure indicates that as W̃
becomes larger, more terms in the series expansions (35) and (36) for  ′ and ω̃′ are generally needed
to capture the earliest-growing perturbation mode. Nevertheless, we have found that a relatively small
number of terms (i and j less than 200) is sufficient even when W̃ is 1000, a value which is more than
eight times larger than the critical wavelength λ̃c defined in Sec. III B. Figure 5 shows that i increases
with W̃ in a discrete stepwise fashion, while j increases in a more continuous manner. Although the
transient base state problem is fundamentally different from the Horton-Rogers-Lapwood problem,
there are similarities between our results and the results of Beck,17 who has studied the Horton-
Rogers-Lapwood problem in confined Cartesian geometries. Beck reports that when the size in one
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FIG. 5. The indices i and j of the wavenumber s̃min of the earliest-growing mode as a function of the width W̃ and the aspect
ratio A: (a) the index i in the x̃ direction; (b) the index j in the ỹ direction. The size in this direction ranges from 0 to AW̃ ;
(c) the index j plotted using the same colorbar axis as in (a). The indices generally increase with W̃ .

horizontal dimension is small and the size in the other horizontal dimension is much larger, the index
in the smaller dimension is zero, while the index in the larger dimension is non-zero. In essence,
such geometries prefer modes that are two-dimensional in nature (modes that have a structure
in only one horizontal direction as well as the vertical direction). We observe similar results in
Figures 5(a) and 5(c). When A � 1, we have j = 0 for most values of W̃ , while i 
= 0. When A  1
and W̃ is small, the earliest-growing mode is characterized by j 
= 0 and i = 0. In Figure 5(c), there
are several vertical lines that are spaced evenly apart from each other. These vertical lines correspond
to W̃ that are of the form iπ/s̃c. For these values of W̃ , we have s̃min = s̃c and j = 0.

Figure 6 shows that like in Cartesian geometries, a relatively small number of terms in the
series expansions (42) and (43) is sufficient to capture the earliest-growing mode in cylindrical
domains. However, the indices l and m change erratically with the diameter 2R̃. This behavior can
be understood from an examination of Table I, which shows that some of the zeros of dJm1 (r̃)/dr̃ and
dJm2 (r̃ )/dr̃ for m1 
= m2 can be close to each other (e.g., b50, b52, and b44). The number of closely
matching zeros becomes greater as we consider larger values of l and m; in our study we go up to l,
m = 100. Thus for a given diameter, there are several Bessel functions (for which the values of m
may be very different) that can produce a wavenumber s̃lm that is close to s̃c. The earliest-growing
mode is usually non-axisymmetric (m 
= 0). It is axisymmetric in a few cases. Zebib19 has also
found that the preferred mode for the Horton-Rogers-Lapwood problem in cylindrical geometries is
usually non-axisymmetric. The sharp change in m for certain R̃ suggests that adjusting the diameter
of the cylinder by a small increment around these R̃ may dramatically alter the patterns of the
earliest-growing mode, which we discuss below.
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FIG. 6. The indices l and m of the wavenumber s̃min of the earliest-growing mode as a function of the diameter 2R̃: (a) l; (b)
m. The earliest-growing mode is usually non-axisymmetric (m 
= 0).

B. Patterns in Cartesian geometries

The patterns of the earliest-growing perturbation mode in the horizontal plane (x̃ ỹ or r̃θ plane)
reveal many features of the dynamics. In Cartesian domains where A = 1, the patterns are symmetric
with respect to a reflection across ỹ = x̃ because the solution of the form cos(iπ x̃/W̃ ) cos( jπ ỹ/W̃ )
is equally unstable with the solution of the form cos( jπ x̃/W̃ ) cos(iπ ỹ/W̃ ). Therefore, the earliest-
growing mode of the perturbations  ′ and ω̃′ for A = 1 may be expressed, respectively, as

 ′(x̃, ỹ, z̃, t̃ ) = ̂ ′(s̃i j , z̃, t̃ )

[
cos

(
iπ x̃

W̃

)
cos

(
jπ ỹ

W̃

)
+ cos

(
jπ x̃

W̃

)
cos

(
iπ ỹ

W̃

)]
, (50)

ω̃′(x̃, ỹ, z̃, t̃ ) = ω̂′(s̃i j , z̃, t̃ )

[
cos

(
iπ x̃

W̃

)
cos

(
jπ ỹ

W̃

)
+ cos

(
jπ x̃

W̃

)
cos

(
iπ ỹ

W̃

)]
, (51)

where i and j are the indices of s̃min for the corresponding W̃ . For simplicity, we may set the Fourier
coefficients ̂ ′ = ω̂′ = 1. Doing this does not change the appearance of the patterns in the horizontal
plane because ̂ ′ and ω̂′ do not depend on x̃ and ỹ. Figure 7 shows that the perturbations tend to
be highly localized in very positive (red) or very negative (blue) regions. Negative regions are areas
where  = base +  ′ < base and ω̃ = ω̃base + ω̃′ < ω̃base. Table II presents the values of i and j
used in Figure 7. Except in the special cases where i = j [Figure 7(b)] or one of the indices is equal to
zero [Figure 7(c)], there are channels that connect positive regions to each other and other channels
that connect negative regions to each other. To the best of our knowledge, patterns in the horizontal
plane have not been examined in previous stability analyses of the transient base state problem.
We can, however, compare our results with the patterns from Pau et al.,50 who have performed

TABLE I. Zeros (values of blm) of the Bessel function derivatives dJm (r̃ )/dr̃ for l, m = 0, 1, 2, . . . , 5. Note that dJ1(0)/dr̃ 
= 0.
This has implications for Kim et al.,34 as we discussed in Sec. II B.

m = 0 m = 1 m = 2 m = 3 m = 4 m = 5

l = 0 0 1.8412 0 0 0 0
l = 1 3.8317 5.3314 3.0542 4.2012 5.3176 6.4156
l = 2 7.0156 8.5363 6.7061 8.0152 9.2824 10.5199
l = 3 10.1735 11.7060 9.9695 11.3459 12.6819 13.9872
l = 4 13.3237 14.8636 13.1704 14.5858 15.9641 17.3128
l = 5 16.4706 18.0155 16.3475 17.7887 19.1960 20.5755
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FIG. 7. Patterns in the x̃ ỹ plane of the earliest-growing mode for various W̃ with A = 1: (a) W̃ = 125; (b) W̃ = 250;
(c) W̃ = 400; (d) W̃ = 600; (e) W̃ = 1000; (f) W̃ = 3000. Perturbations tend to be highly localized in very positive
(red) or very negative (blue) regions. In most cases, there are channels that connect positive regions to each other and
other channels that connect negative regions to each other. Pau et al.50 have observed similar channels in their numerical
simulations.
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TABLE II. The indices i and j of s̃min for various widths W̃ with A = 1.

W̃ = 125 W̃ = 250 W̃ = 400 W̃ = 600 W̃ = 1000 W̃ = 3000

i 1 3 7 10 17 52
j 2 3 0 3 3 2

three-dimensional numerical simulations of Cartesian geometries. Most simulations of the transient
base state problem have been in two-dimensions and are unable to examine the dynamics in the
horizontal plane. Pau et al.50 examine patterns after the onset of convection, at sufficiently late times
when the fluid flow is strong enough to significantly affect the CO2 dissolution rate into the aqueous
phase. Interestingly, Pau et al.50 observe channels for the CO2 concentration field that are similar to
the channels described above. One difference is that their patterns are less ordered (e.g., they are not
symmetric with respect to an interchange of x̃ and ỹ) because of the nonlinearities that arise after
the onset of convection.

Figure 8 illustrates patterns for W̃ = 400 at two different aspect ratios: A = 2 and A = 0.5.
The earliest-growing mode when A = 2 is of the form cos(6π x̃/W̃ ) cos[7π ỹ/(2W̃ )], while it is of
the form cos(7π x̃/W̃ ) when A = 0.5 (j = 0 for this aspect ratio). Again we set ̂ ′ = ω̂′ = 1 so
that only the relative (not absolute) difference in  ′ or ω̃′ from one region of the plane to another
is meaningful. As expected, the patterns are asymmetric with respect to an interchange of x̃ and ỹ.
This asymmetry allows two-dimensional modes to develop. In fact, as we discussed in Sec. IV A
and show in Figure 8(b), two-dimensional modes tend to be preferred when one of the dimensions
is small.

C. Patterns in cylindrical geometries

Patterns of the earliest-growing mode in cylindrical geometries are rich in variety, as portrayed
in Figures 9 and 10. The earliest-growing mode of the perturbations  ′ and ω̃′ are

 ′(r̃ , θ, z̃, t̃ ) = ̂ ′(s̃lm, z̃, t̃ )Jm(s̃lmr̃ ) cos(mθ ), (52)

ω̃′(r̃ , θ, z̃, t̃ ) = ω̂′(s̃lm, z̃, t̃ )Jm(s̃lmr̃ ) cos(mθ ), (53)
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FIG. 8. Patterns in the x̃ ỹ plane of the earliest-growing mode for W̃ = 400 at two different aspect ratios: (a) A = 2;
(b) A = 0.5. Patterns are asymmetric with respect to an interchange of x̃ and ỹ. Two-dimensional modes tend to be preferred
when one of the dimensions is small, as it is in (b).
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FIG. 9. Top-down and bird’s-eye views of patterns in the r̃θ plane of the earliest-growing mode for smaller values of R̃ with
̂ ′ = ω̂′ = 1: (a), (b) 2R̃ = 180; (c), (d) 2R̃ = 260; (e), (f) 2R̃ = 400.

respectively. The indices l and m of the wavenumber s̃min are listed in Table III. The patterns are
antisymmetric in the horizontal plane [e.g., ω̃′(r̃ , θ, z̃, t̃ ) = −ω̃′(r̃ , θ + π, z̃, t̃ )], except when m = 0,
in which case they are axisymmetric [see Figures 9(c) and 9(d)]. The sinusoidal nature in θ creates
alternating positive and negative regions of ω̃′ or  ′ that are distinct from the channeling seen in
Cartesian geometries. For certain values of R̃, the perturbations are nearly zero (yellowish green)
within a large, contiguous circular region around the center. Examples of this type of pattern are
shown in Figures 9(a)–9(b), 9(e)–9(f), and 10(e)–10(f). This region near the center may be virtually
undisturbed by the earliest-growing mode at early times, which implies that around the onset time,
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FIG. 10. Top-down and bird’s-eye views of patterns in the r̃θ plane (for clarity, only one quarter of the plane is shown) of the
earliest-growing mode for larger values of R̃ with ̂ ′ = ω̂′ = 1: (a), (b) 2R̃ = 600; (c), (d) 2R̃ = 1000; (e), (f) 2R̃ = 3000.

TABLE III. The indices l, m of s̃min and the zeros blm for various diameters 2R̃.

2R̃ = 180 2R̃ = 260 2R̃ = 400 2R̃ = 600 2R̃ = 1000 2R̃ = 3000

l 1 2 1 5 8 11
m 4 0 9 2 3 37
blm 5.3176 7.0156 10.7114 16.3475 27.3101 81.7936
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fluid flow in it may be insignificant compared to the flow in other regions. This is unlike the situation
in Cartesian geometries, where the earliest-growing mode acts over the entire domain. Convection
may later become significant near the center of the cylinder as the perturbation modes grow with
time. We also see that the amplitude and the width of the peaks and valleys decrease in the radial
direction. These features result from the spacing of the zeros and other well-known properties of
the Bessel functions.53 These observations indicate that the perturbations are stronger closer to the
center, excluding the circular region described above.

D. Cartesian versus cylindrical geometries

The contrasts between the Cartesian and cylindrical patterns may lead to significantly different
behavior in the two geometries after the onset time. We hypothesize that the behavior may be
different even if the onset time and the wavenumber s̃min are the same in both geometries. One
important quantity is the CO2 dissolution rate into the aqueous phase. Pau et al.50 have numerically
simulated both two-dimensional (2D) and three-dimensional (3D) Cartesian domains. They report
that differences in convection patterns between 2D and 3D translate to a significantly higher CO2

dissolution rate in 3D after the onset time. This result is observed despite the fact that linear
stability analyses predict the same critical time and critical wavenumber in 2D and 3D. Zebib
and Kassoy18 have also discovered that the patterns of the preferred mode can noticeably affect
fluid transport rates. They have performed a weakly nonlinear analysis of the Horton-Rogers-
Lapwood problem in confined Cartesian geometries. Their analysis shows that three-dimensional
perturbation modes (where both i 
= 0 and j 
= 0) allow considerably more heat transfer than two-
dimensional modes when the Rayleigh number is large. The reverse situation is observed for small
Rayleigh numbers. Their results are in qualitative agreement with the numerical simulations of Holst
and Aziz.55

In future studies, we may investigate whether disparate convection patterns in Cartesian and
cylindrical geometries persist after the onset time. This may lead to different CO2 dissolution rates
in the two geometries, which could have important implications for sequestration in natural forma-
tions and for the interpretation of experiments in laboratory-scale permeable media. Simulations in
cylindrical geometries could be compared with the Cartesian geometry results from Pau et al.50 and
with our theoretical predictions. Our results in Sec. IV A suggest that a spectral or pseudospectral
method may be ideal for solving the Poisson’s equation (12) that governs this problem, because
a relatively small number of terms in the eigenfunction expansions is sufficient to capture the
earliest-growing mode. In addition to comparing the CO2 dissolution rate, we may examine whether
convective flow can be insignificant near the center of the cylinder at early times, as implied by
this work.

V. CONCLUSIONS

We have presented a linear stability analysis to determine conditions for the onset of buoyancy-
driven convection induced by CO2 dissolution into water in confined, porous Cartesian and cylin-
drical geometries. Our problem is characterized by a transient base state. Most stability analy-
ses of the transient base state problem27–33, 35–37 have neglected lateral boundaries and focus on
unconfined domains. Kim et al.34 have studied CO2 dissolution in cylindrical geometries. This
article amends their analysis by using more physically realistic boundary conditions and by al-
lowing the perturbations to depend explicitly on time. Our work also considers confined Carte-
sian geometries where the aspect ratio A between the two horizontal dimensions is not neces-
sarily equal to one, so that the sizes in these directions are W̃ and AW̃ . We draw the following
conclusions:

� Lateral boundaries impede the onset of convection. The earliest possible onset occurs in
unconfined domains at the critical time t̃c ≈ 47.9 with a critical wavenumber s̃c ≈ 0.0545.
Perturbation modes with wavenumbers > 2.07s̃c do not become unstable.
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� When A > 1, the lateral boundaries have a negligible effect on the onset time (say, less than
7% larger than t̃c) if the width W̃ is greater than π/(As̃c). Convection cannot occur in domains
where W̃ < (1/2.07)π/(As̃c). Thus, if A is large, it is possible for convection to occur even
when one dimension is very small in size. When A ≤ 1, these limits become π/s̃c ≈ 58 and
(1/2.07)π/s̃c ≈ 28, respectively.

� The onset time in cylindrical geometries is close to t̃c as long as the diameter 2R̃ > 2b01/s̃c ≈
68. Convection cannot occur when 2R̃ < (2/2.07)b01/s̃c ≈ 33. These results are similar to
those of Kim et al.,34 despite the differences between their formulation and ours. Their values
are 60 and 30, respectively.

� The effect on the onset time may be appreciable when W̃ < π/(As̃c) (or W̃ < π/s̃c if A ≤ 1)
and 2R̃ < 2b01/s̃c. We have demonstrated that such conditions may be realized in laboratory-
scale systems or in low permeability formations. Moreover, our results have implications for
numerical simulations of Cartesian geometries. They suggest that even if all fluid and rock
properties are the same as in large domain, finer gridding may be necessary to capture the
earliest-growing mode in domains where W̃ is small, especially if A < 1.

� When A = 1, patterns of the earliest-growing perturbation mode are symmetric about a reflection
across ỹ = x̃ and are three-dimensional in nature. In many cases, we see channels that are
similar to those observed in the numerical study of Pau et al.50 Two-dimensional modes tend
to be preferred in geometries where the size in one horizontal dimension is small, while the
size in the other horizontal dimension is much larger.

� In contrast, the patterns of the earliest-growing mode in cylindrical geometries are antisymmet-
ric in the horizontal plane. The sinusoidal nature in θ creates alternating positive and negative
regions of the perturbations that are distinct from the channeling seen in Cartesian geometries.
For certain values of 2R̃, the perturbations may be insignificant near the center of the cylinder
at early times.

� Based on observations from earlier papers,18, 50, 55 we hypothesize that the contrasts between the
Cartesian and cylindrical patterns may lead to significantly different behavior (e.g., different
CO2 dissolution rates) in the two geometries after the onset time. In future studies, we may test
this hypothesis by performing numerical simulations in cylindrical geometries. The simulations
could be compared with the Cartesian geometry results from Pau et al.50 and with our theoretical
predictions. Our results suggest that a spectral or pseudospectral method may be ideal for
solving the Poisson equation that governs the transient base state problem.
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