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We appreciate Parambathu et al.’s interest1 in our work.2

As stated in our paper, we derive working expressions
for calculating solid−fluid interfacial free energy based on the
free-energy perturbation method with consideration of solid
deformation.2 For clarity, we start with the basic expression for
the differential of Helmholtz free energy for a system
consisting of bulk fluid, bulk deformable solid, and the
interface between the two.
In a closed system with a general flat interface, including

solid−fluid or fluid−fluid interfaces,

F S T A V dd d d
i j

ij ij∑ ∑γ σ= − + + ϵ
(1)

where F is Helmholtz free energy, S is entropy, T is
temperature, γ is interfacial free energy density, A is interfacial
area, V is volume, σij and εij are components of the stress and
strain tensor, respectively, and i and j are plane indices.
Equation 1 (eq 8 in ref 2) is a key expression in the
representation of Helmholtz free energy of a two-phase system
composed of a solid−fluid system. It also represents a fluid−
fluid system. The work for change in the interfacial area is
represented by γdA. The third term, di j ij ijσ∑ ∑ ϵ , represents

the work of deformation of the two bulk phases.
Assume the system is under hydrostatic conditions,

p Vd di j ij ijσ∑ ∑ ϵ = − . Then, eq 1 reduces to

F S T A p Vd d d dγ= − + − (2)

where p is pressure. The derivation is provided in the
Supporting Information of ref 2.
For a fluid (f)−fluid (f) system at constant volume and

constant temperature, the expression for the interfacial free
energy density from eq 2 can be written as
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The factor 2 appears for two interfaces in a periodic system.
Note that our derivations are limited to descriptions of a flat
interface. A curved interface may require consideration of line
tension.3

For a solid (s)−fluid (f) system with two interfaces, eq 1
leads to2
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where Lz,s is the thickness of the solid phase. Other details and
axis definitions are presented in ref 2. When Δσ = (σxx + σyy)/2
− σzz = 0, eq 3 can be obtained from eq 4. Equation 4 is more
general. When eq 3 is applied to a solid−fluid system, it is not
guaranteed that the solid is stress-free. This is a key
consideration, which has led some authors to report negative
solid−fluid interfacial free energy density.
The perturbation method can be used to evaluate the solid

(s)−fluid (f) interfacial free energy density:
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where kB is the Boltzmann constant and ΔU (see definition of
terms not defined above in ref 2) is the change of potential
energy due to the perturbation.
The test-area method has been used to compute γff

extensively and γsf in a limited number of publications. While
the fluid−fluid interfacial free energy has been verified and
computed successfully, the method of calculation of γsf has
been reported to give a negative interfacial free energy
density.4

Negative interfacial free energy is only one aspect of the
potential problems in the conventional test-area method.
Other potential problems have been discussed in our paper.
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We have proposed working expressions for the calculation of
the solid−fluid interfacial free energy with consideration of
solid deformation, in which the effect has been quantified.
In this reply, we itemize the comments and concerns by

Parambathu et al. Hopefully, it will shed further light on our
proposed method.

1. DISCUSSION ABOUT THE DERIVATION OF
EQUATION 2 FROM EQUATION 1

Parambathu et al. state that “For a solid under hydrostatic
compression, because of isotropy the nondiagonal elements of the
strain tensor vanish. Hence, σik = −pδik and δikduik = duii = dV.
Thus, dF̃ = −S̃·dT − pdV. In modern notation, eq 4 is Gibbs’ eq
417.2 (See also his eq 356.) For a general deformation, note the
absence of the dA term, since the strain tensor already subsumes
this effect. ... Further, eq 3 is also mathematically erroneous as it
attempts to identify a separate response to dA when those area
changes are already included in the strain tensor.”
The statement that “For a general deformation, note the

absence of the dA term, since the strain tensor already subsumes
this effect. ... Further, eq 3 is also mathematically erroneous as it
attempts to identify a separate response to dA when those area
changes are already included in the strain tensor” is a huge
misunderstanding of the thermodynamics of interfaces and the
relationship between strain tensor and dA. The term σikduik
represents the work of bulk-phase deformation, not the
interface. The work for interface area change is described by
γdA. The contribution of stretching of the interfacial area is not
included in σikduik. dA is not subsumed in duik for the term
σikduik. Mathematically, dA can be “expressed” by strain tensor
as dA ≈ A × (dεxx + dεyy). But, it does not mean that any term
containing strain tensor must “include” the effect about dA.
The derivation of eq 2 from eq 1 shows a clear guide to the

understanding of this point. The work of the bulk phase σikduik
is a general term for both solids and fluids. The takeaway from
ref 5 is that σikduik for hydrostatic compression/expansion
reduces to −pdV (σikduik = −pdV), which is denoted as
V p Vd di j ij ijσ∑ ∑ ϵ = − in the unified notation of ref 2. In

fluids, hydrostatic compression/expansion is maintained. Then,
eq 2 is obtained from eq 1. Note that the derivations by
Landua et al.5 relate to the bulk phase without the interface. A
complete derivation in unified notation is presented in the
Supporting Information of ref 2 (eqs S10−S16).
Overall, eq 1 describes the physics for solid−fluid and fluid−

fluid systems. Equation 2 describes the physics in fluid−fluid
systems and some special conditions in solid−fluid systems
(e.g., hydrostatic and unstressed).

2. DISCUSSION ABOUT “AN INSEPARABLE PART OF
THE PHYSICS”

Parambathu et al. state that “Stated dif ferently, dA can never be
identified as an independent variation for a solid: any deflections of
the area will always be coupled with changes in the bulk, and
seeking to separate a bulk contribution is a futile endeavor. ... To
summarize, for a solid (and by extension a solid in contact with a
liquid), a change in the surface area will necessarily involve
changes in the bulk energetics, as that is an inseparable part of the
physics. Equation 3 is inconsistent with this physics.”
“An inseparable part of the physics” does not mean an

inseparable part of the “contribution”. In other words, the
change in surface area and the deformation of the bulk phases
occur at the same time, which is a “coupling process”. But,

their contributions can be measured and analyzed separately,
which is also the contribution of our work. Otherwise, all the
studies about interfacial behavior of solid−fluid systems would
be “a futile endeavor”. More generally, all the studies for
analyzing the “coupling process” would be “a futile endeavor”,
too.

3. “A POSTERIORI CORRECTION” AND
MISUNDERSTANDING ABOUT γSL VS (∂F/∂A)N,V,T

Parambathu et al. state that “Assuming the simulations are done
with care, f inding γsl < 0 f rom eqs 1 and 2 is complete and cogent
information about the system is simulated: it just shows that if the
constraint on the area is relaxed, the system will expand until such
time a stable state, if it exists, is found. Sampling from such a state
may be of uncertain value, but the results f rom equilibrium
statistical mechanics needs no ‘f ixing’. ... The authors propose their
a posteriori correction based on the following dif ferential relation
....”
We disagree. We do not apply “a posteriori correction”. The

source of the misunderstanding by Parambathu et al. may be
from mixing up the concepts of γsl and (∂F/∂A)N,V,T. From the
simulations, we can obtain (∂F/∂A)N,V,T by the perturbation
method. Indeed, it is straightforward to calculate (∂F/∂A)N,V,T
and it can be negative, but it is not the motivation in ref 2. The
challenge is how to calculate interfacial free energy density γsl.
In fluid−fluid systems, (∂F/∂A)N,V,T is equal to the interfacial
free energy density. In solid−fluid systems, it may not. We
propose a working equation based on the relationship between
γsl and (∂F/∂A)N,V,T. It is expressed through eqs 3 and 4. In
the conventional test-area method, it is assumed that γsl =
(∂F/∂A)N,V,T for all conditions that may lead to significant
deviation in solid−fluid systems. The statement that “we
ref rain f rom giving this quantity any name for a system with a
solid−liquid interface” may be a consequence of this
misunderstanding.

4. DISCUSSION ABOUT THE SIMULATIONS IN
FIGURE 1

Parambathu et al. perform simulations to match our work.
There may be serious issues. The details are discussed below:
(1) Validation
Rigorous validation is required for the method proposed by

Parambathu et al. In our work, we have conducted validation
through two types of simulations: surface tension of the solid−
vacuum system and examination of size dependency for the
solid−fluid system. Based on eq 12 of our paper,2 whether the
molecular simulations are conducted at high-compression,
high-tension, or random low-stress conditions, the calculated
interfacial free energy is the same due to the use of the
proposed formulation.
In Figure 1 of ref 1, the solid−fluid results match our work,

but the solid−vacuum results do not. The only supporting
information for the results of Parambathu et al. is the statement
“We equilibrate the starting conf iguration taking care”. However,
the challenge is how to quantify “care”.
Compared to rigorously validated results in ref 2, a different

result without validation may be an indication of the problem.
The fact that it sometimes agrees and sometimes does not puts
the result by Parambathu et al. in doubt. It may also be a
consequence of the lack of robustness.
(2) “Very low pressure” and “p* = 0.1” for the solid−

vacuum system
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To “match” our results, Parambathu et al. equilibrate the
system at a “very low pressure” and “p* = 0.1” for the solid−
vacuum system. There is a conflict between “vacuum” and
“very low pressure” (p* = 1 × 10−5) or “p* = 0.1”. This may not
be appropriate.
Perhaps Parambathu et al. mean the simulations are

conducted in an “unstressed” (or unstrained) system instead
of a “very low pressure”. If the system were unstressed, the
multiplier of the second term in eq 5 (eq 12 of ref 2) would be
zero. The results from the conventional test-area method
should be the same as those from our method. However, it is
often a challenge to create a rigorous unstressed solid−fluid or
solid−vacuum system. For example, in Figure 1 of ref 1, there
is still a difference between the results of “very low pressure” and
our “solid−vacuum” results . On the other hand, Parambathu
et al. mention the “unchangeable solid”, which is only in concept
and may not be a good approximation. Equation 6 in
Parambathu et al. is still in need of the calculation of γsl and
γsv. Then, one comes back to the challenges discussed in our
paper.
The “p* = 0.1” may be referring to a stressed (compressed)

system. Then, the results in Figure 1 exactly agree with our
analyses in section 2 of ref 2. We provide a framework to
quantify the effects of the strain (or stress) on the results and
present a universal expression for general conditions. Figure 6
of ref 2 shows the contributions of the two terms in eq 5 (eq
12 of ref 2) and provides a clear guideline for calculations of
the solid−fluid interfacial free energy density. The central
panel in Figure 6 of our work is directed to address this
condition. The unrealistic interfacial free energy density values
in the conventional test-area method (γTA) are due to neglect
of the deviatoric stress Δσ (=0.5 (σxx + σyy) − σzz) in eq 14 in
ref 2:

L

2TA sf
z s,γ γ σ= + Δ

(7)

Generally, higher compression leads to lower Δσ. Note that
compressive stress is defined as negative. If it is slightly
compressed, γTA will be lower than γsf, which is exactly the case
in Figure 1 by Parambathu et al. If it is highly compressed, γTA
will be even negative. There are also conditions for which the
calculated interfacial free energy density is positive but may not
be correct. The right panel in Figure 6 of ref 2 shows that at
high tensile stress conditions, one may get an unrealistically
high interfacial free energy density without the use of our
formulation. Other detailed discussions are provided on p 5845
of our paper.
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