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Summary

Compositional two-phase flow in fractured media has wide appli-
cations, including carbon dioxide (CO2) injection in the subsur-
face for improved oil recovery and for CO2 sequestration. In a
recent work, we used the fracture-crossflow-equilibrium (FCFE)
approach in single-phase compressible flow to simulate fractured
reservoirs. In this work, we apply the same concept in composi-
tional two-phase flow and show that we can compute all details of
two-phase flow in fractured media with a central-processing-unit
(CPU) time comparable with that of homogeneous media. Such a
high computational efficiency is dependent on the concept of
FCFE, and the implicit solution of the transport equations in the
fractures to avoid the Courant-Freidricks-Levy (CFL) condition in
the small fracture elements. The implicit solution of two-phase
compositional flow in fractures has some challenges that do not
appear in single-phase flow. The complexities arise from the
upstreaming of the derivatives of the molar concentration of com-
ponent i in phase aðca;iÞ with respect to the total molar concentra-
tion ðciÞ when several fractures intersect at one interface. In
addition, because of gravity, countercurrent flow may develop,
which adds complexity when using the FCFE concept. We over-
come these complexities by providing an upstreaming technique
at the fracture/fracture interface and the matrix/fracture interface.
We calculate various derivatives at constant volume V and tem-
perature T by performing flash calculations in the fracture ele-
ments and the matrix domain to capture the discontinuity at the
matrix/fracture interface. We demonstrate in various examples the
efficiency and accuracy of the proposed algorithm in problems of
various degrees of complexity in eight-component mixtures. In
one example with 4,300 elements (1,100 fracture elements), the
CPU time to 1 pore volume injection (PVI) is approximately 3
hours. Without the fractures, the CPU time is 2 hours and 28
minutes. In another example with 7,200 elements (1,200 fracture
elements), the CPU time is 4 hours and 8 minutes; without frac-
tures in homogeneous media, the CPU time is 2 hours and
53 minutes.

Introduction

Modeling of compositional two-phase flow in fractured media is
of interest in CO2 and N2 injection, and recycling in gas–
condensate reservoirs. In particular, injection of CO2 in hydrocar-
bon reservoirs can reduce global warming and at the same time
improve the oil recovery. To model the fracture entities, different
techniques have been suggested by various authors (Bastian et al.
2000; Bogdanov et al. 2003; Geiger et al. 2004; Martin et al.
2005; Hoteit and Firoozabadi 2008; Unsal et al. 2010; Reiter et al.
2012; Zidane and Firoozabadi 2014; Abushaikhaa et al. 2015;
Ahmed et al. 2015; Bahrainian and Dezfuli 2014; Chen et al.
2015; Hyman et al. 2015; Makedonska et al. 2015; Nejati et al.
2015; Andersen and Evje 2016). In this work, we will briefly
review different approaches.

In general, the models are categorized into two broad classes:
the dual-porosity/permeability models (dual-continuum) and the
discrete-fracture/discrete-matrix model (DFM). Because of low
computational cost, the dual-continuum models are widely used
to simulate flow in fractured media (Barenblatt et al. 1960;
Warren and Root 1963; Kazemi and Gilman 1969; Kazemi et al.
1992; Kazemi and Merrill 1979; Gilman and Kazemi 1983;
Thomas and Thurnau 1983; Quandalle and Sabathier 1989). In the
dual-continuum models, a transfer function is required to describe
the exchange between the fracture network and the rock matrix.
This transfer function may vary spatially in the domain. Thomas
et al. (1983) presented a three-phase model to simulate flow in
fractured media by use of dual porosity. An extension of the dual-
porosity model by use of the multirate-transfer function was used
to model incompressible two-phase flow by Di Donato et al.
(2005) and Geiger et al. (2013). Transfer functions between the
fractures and the rock matrix are estimated empirically (Gouze
et al. 2007) and are dependent on ad-hoc shape factors. There is
no theory to calculate the shape factors in two-phase flow with
capillary and gravity as well as in compositional compressible
flow (Hoteit and Firoozabadi 2008). In addition, in the dual-con-
tinuum models, barriers cannot be modeled. The DFM model is
an alternative and is known for high accuracy and flexibility in
fracture representation (Kim and Deo 2000; Karimi-Fard et al.
2004; Martin et al. 2005; Reichenberger et al. 2006; Matthäi et al.
2007a, b; Hoteit and Firoozabadi 2008; Geiger-Boschung et al.
2009; Nick and Matthäi 2011; Schmid et al. 2013; Zidane and
Firoozabadi 2014; Ahmed et al. 2015). In DFM, both the matrix
and the fracture entities are described explicitly in the computa-
tional domain. The fractures in DFM could have the same dimen-
sion as the matrix elements; the model is then referred to as
equidimensional (Hægland et al. 2009). However, in general, frac-
tures can be accurately modeled by a lower dimension of (n–1)-D
elements (Figs. 1a and 1b) in an n-D domain in the DFM models
(Noorishad and Mehran 1982; Baca et al. 1984; Granet et al.
1998; Ahmed et al. 2015). In a hybrid-grid method (Sandve et al.
2012), the fractures are lower-dimensional in the geometric mesh
and expanded to equidimensional elements in the computational
domain. In addition to making simpler mesh generation compared
with the equidimensional model, the hybrid approach excludes
the intermediate cell at the fracture intersections. In the equidi-
mensional model the numerical simulation is computational-wise
expensive, especially when fracture intersections are included in
the problem. In addition to the previously discussed broad catego-
ries, there is a third approach that combines the dual-continuum
and the DFM: the embedded-discrete-fracture model (EDFM). Li
and Lee (2008) proposed the idea of EDFM and it was later
adopted by Moinfar et al. (2014) and Siripatrachai et al. (2016). In
this approach, there is still a need to provide the transfer function.

DFM for simulation of fractured reservoirs has received con-
siderable attention in the last decade. Many authors have used the
DFM with different discretization techniques in single-phase
flow: Koudina et al. (1998) used vertex-based finite volume (FV).
Caillabet et al. (2000) and Granet et al. (1998) used the cell-based
control volume (CV). Martin et al. (2005) used the mixed-finite-
element (FE) approximation. The FE approach was also used to
model single-phase flow in fractured media (Noorishad and
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Mehran 1982; Baca et al. 1984; Juanes et al. 2002). In the context
of DFM in single-phase flow, Hægland et al. (2009) used two dif-
ferent FV methods: a vertex-centered and cell-centered multi-
point-flux approximation (MPFA). Later, Sandve et al. (2012)
applied the control-volume-distributed (CVD) MPFA on a
hybrid-grid method, and Ahmed et al. (2015) applied the same
CVD-MPFA technique on a lower-dimensional model, both in
single-phase flow. Hoteit and Firoozabadi (2005) presented the
crossflow-equilibrium (CFE) concept in single-phase flow. The
CFE assumes that the pressure in the fracture element is equal
to the pressure in the surrounding matrix elements (Fig. 1b).
This is a good assumption when the matrix elements near the
fractures are sufficiently small (Fig. 1c). Zidane and Firoozabadi
(2014), following the work of Martin et al. (2005), and Hoteit and
Firoozabadi (2008) applied the FCFE to compressible multicom-
ponent single-phase flow and demonstrated its efficiency to be
much higher than CFE.

The DFM was extended to two-phase immiscible flow (Granet
et al. 2001) by use of a cell-based CV method and a vertex-cen-
tered FV method in Reichenberger et al. (2006). Karimi-Fard
et al. (2004) used the control-volume finite-difference (CVFD)
method with two-point flux approximation derived from DFM in
immiscible two-phase flow. To overcome the limitations of
CVFD at the fracture intersections (stability and efficiency issues
related to small elements at the intersection), the authors applied a
transformation in these elements. The type of transformation is
valid for single-phase flow but it may introduce errors in multi-
phase flow; the authors reported that the errors appear to be small.
Nick and Matthäi (2011) used the discontinuous-finite-element/
finite-volume method (DFEFVM) to model fractures in immisci-
ble two-phase flow. DFEFVM differs from FEFVM by the extra
nodes added at the matrix/fracture interfaces to capture the dis-
continuity in phase saturations/concentrations. DFEFVM allevi-
ates the need to have excessive refined mesh at the fracture/matrix
interfaces, which is required by FEFVM. Hoteit and Firoozabadi
(2008) proposed a model for immiscible two-phase flow by use of
the mixed-finite-element (MFE) and discontinuous Galerkin (DG)
methods, and a lower-dimensional fracture representation in the
context of FCFE with vast computational efficiency.

The DFM was also applied in compositional multiphase flow.
Hoteit and Firoozabadi (2006) extended the CFE concept to com-

positional flow by use of the MFE and DG methods. Geiger-
Boschung et al. (2009) used the FEFV method in a hybrid mesh to
model multiphase compressible flow in fractured media. Hui and
Mallison (2009) developed DFM on the basis of CVFD. Hui et al.
(2007a, b; 2013) presented the multiple-subregion procedure to
scale up the DFM to dual-porosity representation. In their model,
a network of fractures is stochastically generated after specifying
the distributions of fracture dimensions and orientations. In the
computational model, the fractures are represented by (n–1)-D
elements as interfaces of the n–D matrix elements (Lim et al.
2009; Hui et al. 2013). The multiple-subregion upscaling tech-
nique is then used to generate a coarse grid to reproduce the flow
behavior of DFM.

In this work, on the basis of the concept of FCFE, we incorpo-
rate the lower-dimensional fracture model for fractures and bar-
riers in compressible fully compositional two-phase flow with
species transfer between the phases. We use the locally conserva-
tive DG method in the matrix with a FV discretization in the frac-
tures, coupled with the mass-conservative MFE method. To avoid
the CFL condition in the small fracture entities, an implicit time
discretization is used in the fracture elements.

In compositional two-phase flow, the implicit solution of the
transport equations is more complicated compared with single-
phase flow. There are several publications on implicit formulation
of the compositional two-phase flow (Fussell and Fussell 1979;
Chien et al. 1985; Naimi-Tajdar et al. 2007; Voskov et al. 2009).
An important aspect in compositional modeling is the choice of
variables to solve for the mass-balance equations and the thermo-
dynamic constraints. Fussell and Fussell (1979) proposed an itera-
tive model where the variables consist of the pressure, phase
densities, and mole fractions of all components. These variables
are referred to as molar variables. Coats (1980) presented a fully
implicit scheme for compositional multiphase flow. In his model
the set of unknowns consist of pressure, saturations, and phase
mole fractions. These variables are referred to as natural-type var-
iables. Voskov et al. (2009) proposed a model where both type of
variables are included (molar and natural type). Naimi-Tajdar
et al. (2007) proposed a fully implicit compositional simulator
derived from the generalized dual-porosity model. In their model,
an iterative scheme is used to update the mass-balance equations
in the domain. In our compositional two-phase flow, we use the

(a) (b) (c)

(d) (e) (f)

Cell-average pressure in matrix element

Node/edge-average pressure in matrix element

Cell-average pressure in matrix element

Node/edge-average pressure in matrix element

Fig. 1—Physical and computational elements in CFE (a, b, c) and in FCFE (d, e, f).
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volume/temperature (VT) framework to compute coefficients of
the transport equations. The variables in our model are dependent
on the variation of pressure and number of moles in either gas or
liquid phase with respect to overall moles of all components. This
approach provides remarkable efficiency in implicit formulation
(Zidane and Firoozabadi 2015).

In this work, our implicit model (Zidane and Firoozabadi
2015) is adapted in the small fracture elements to avoid the CFL
condition. Solving the transport equations implicitly in the frac-
tures and explicitly in the matrix domain makes the time scheme
in our model similar to the adaptive implicit method (AIM)
(Thomas and Thurnau 1983; Russell 1989; Collins et al. 1992; de
Loubens et al. 2009). In the AIM, different levels of implicitness
are used in adjacent gridblocks, and these levels could shift in
space to maintain stability. In our model, however, the flow and
transport equations are decoupled, and the phase fluxes are
updated by use of the MFE (Zidane and Firoozabadi 2015), where
we have demonstrated the robustness of our implicit technique
compared with the existing commercial simulators. The applica-
tion of our implicit model was limited to unfractured media
(Zidane and Firoozabadi 2015). Compositional simulation of frac-
tured reservoirs is more challenging because of the large range in
spatial scales, permeabilities, and fluxes between the matrix do-
main and the fracture network. The variations of molar concentra-
tion of component i in phase aðca;iÞ with respect to the overall
molar concentration of component i ðciÞ (or @caxi;a=@czi) are
accounted for in our model. These derivatives are sensitive to the
composition in each phase. The computation of the equilibrium
compositions in all phases is provided by the equality of fugac-
ities of each component in gas and liquid phases. This calculation
is commonly referred to as flash (Firoozabadi 2015). To capture
the discontinuity at the matrix/fracture interface in phase compo-
sitions and the corresponding derivatives, we perform flash calcu-
lations in both the fracture and the matrix elements, as we will
discuss later.

The rest of the paper is organized as follows. In the next sec-
tion we provide a general description of the model, followed by
differential equations describing the multicomponent compressi-
ble two-phase flow in fractured porous media. Then we discuss
the discretization of pressure and species mass-balance equations.
Some of the derivations appear in Appendix A. We demonstrate
the efficiency and accuracy of our model in several examples.

General Description of the Model

In our approach the total flux at the interface of the matrix and the
fracture elements is calculated by the hybridized MFE method
(Raviart and Thomas 1977; Brezzi and Fortin 1991; Hoteit and
Firoozabadi 2005; Ackerer and Younes 2008; Younes et al. 2011,
2014; D’Angelo and Scotti 2012; Zidane et al. 2012, 2014a, b;
Zidane and Firoozabadi 2014; Shahraeeni et al. 2015). In the
MFE method, we evaluate the pressure inside a finite element and
traces of pressure at the interfaces of each finite element in the
computational domain. The phase fluxes are deduced from the
total flux from the phase mobility. The discretization of the trans-
port equations is based on the FV method in the fracture elements
and higher-order DG method in the matrix elements. The DG
method is known to be mass conservative at the element level and
also has low numerical dispersion. When using higher-order
methods, one may expect nonphysical oscillations. A multidimen-
sional slope limiter is used to reconstruct the molar densities over
the simulation domain. By using the maximum principle, the
slope limiter imposes local constraints in such a way that the
reconstructed molar densities in each element remain between
the minimum and the maximum of the cell averages of all the sur-
rounding elements. The MFE-DG efficiency has been demon-
strated in several publications (Siegel et al. 1997; Younes et al.
2011, 2014). The higher-order methods coupled with FCFE in the
DF approach can be applied to field-scale problems (in order of
kilometer-long domains), as we will show in the examples.

We refer to our model as the FCFE. The CFE model proposed
by Hoteit and Firoozabadi (2005) assumes the pressure in the frac-

ture (as well as the transport variables, such as molar density and
compositions) to be equal to the pressure in the adjacent matrix ele-
ments (Fig. 1b). In this approach, the matrix elements near the frac-
tures are assumed to be small (Fig. 1c). In an implicit-pressure/
explicit-concentration scheme, the CFL condition makes the CFE
approach computational-wise expensive. In the FCFE model, we
assume a constant pressure across the fracture width (Figs. 1d and
1e). The pressure and/or molar densities in the fracture and the ad-
jacent matrix elements may not be the same. This alleviates the
need for small elements near the fractures. The most-severe CFL
condition comes from an explicit time discretization of the mass-
balance equations in the small fracture elements. To overcome the
CFL restriction in the fracture network, an implicit time discretiza-
tion is used to compute the species-transport equations inside the
fractures, as will be discussed later. This approach was adopted in
Hoteit and Firoozabadi (2008) for incompressible two-phase flow
and in Zidane and Firoozabadi (2014) for compressible single-
phase flow. Zidane and Firoozabadi (2014) demonstrated that in
single-phase flow, the CFE model converges to the same solution
as FCFE only if the mesh is refined significantly so that the matrix
elements near the fractures are relatively small compared with the
rest of the elements. Extension from single-phase to two-phase has
subtleties. When using the Newton-Raphson (NR) method in the
implicit solution of compositional two-phase flow, variation of
molar densities of each component in the two phases with respect
to the global molar density (@ca;i=@czi) should be known. In single-
phase flow, there is only one molar density for each component,
and as a result the derivative is either zero or unity. In addition,
countercurrent flow may occur in two-phase flow with gravity; the
upstream value of such variation is not straightforward, as in
single-phase flow. In the Mathematical Model section and in Appen-
dix A, we will show in detail how we overcome these challenges.
The phase fluxes in our approach are decoupled from the implicit
update of the transport equations, and are updated at each timestep.

Fractures usually have higher permeability than the matrix do-
main (often orders of magnitude). Therefore, flow in the fracture
network affects the phase behavior differently than in the matrix
elements. A matrix element can be in liquid phase and the fracture
element can be in a gas phase. The jump from one phase to another
affects the implementation of FCFE because the fractures are rep-
resented by the interfaces of the matrix elements. The MFE-DG
coupling helps to capture this jump, as we will discuss later.

The overall molar densities (ci) are updated by use of FV in
fracture elements and DG in matrix elements. In a previous work,
we have used the MFE-FV formulation in an implicit scheme
to model two-phase flow in unfractured media (Zidane and
Firoozabadi 2015). The implicit solution of the transport equa-
tions in the fractures requires two different matrix inversions. One
is related to updating the molar densities within the NR iterations,
and the second is related to the derivatives of molar densities. The
latter does not appear in single-phase flow. We will show later
how we avoid the calculation of these derivatives in some
fracture elements to reduce the computational cost. In Zidane and
Firoozabadi (2015), the molar densities are evaluated by the FV
method at the element center only. In this work the molar den-
sities are evaluated with the DG method at the element nodes/
edges in addition to the element center (Figs. 2a and 2b). The
molar densities at the edges and traces of pressure allow capturing
the discontinuity in composition and phase saturation at the ma-
trix/fracture interface in FCFE. The overall mole fraction of all
the components are calculated from the overall molar densities by
use of (zi ¼ ci=c), where c is the molar density of the mixture.
The trace of pressure, temperature, and updated overall mole frac-
tion are used to perform flash calculations in FCFE elements to
capture the discontinuity at the matrix/fracture interface in phase
composition and saturation.

In the global system of equations, the pressure system is
solved implicitly in both the matrix domain and the fracture net-
work. First, traces of pressure are updated, and then pressure at
the element level is evaluated through back substitution to reduce
the size of the global system of equations. Once pressure and
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traces of pressure are calculated, the fluxes at the interfaces are
evaluated at element levels in both the matrix and the fractures.
Next, an implicit update of the mass-balance equations is made by
use of the NR method (often takes two to four iterations), fol-
lowed by an explicit update of the mass-balance equations in the
matrix domain. In this approach, the only restriction on the size of
timestep arises from the CFL condition in the matrix domain.
With the accuracy of higher-order DG and the FCFE concept,
large-enough elements are used in the matrix domain to allow
larger timesteps.

Mathematical Model

The mathematical model is presented for the sake of complete-
ness. The discrete fractures and the matrix have different geomet-
rical dimensions in the simulation domain, which is n-D for the
matrix domain and (n–1)-D for the fracture network. We present
the governing equations separately.

Governing Equations in the Matrix. The mass balance of com-
ponent i in compressible two-phase (gas and oil) flow of an nc-
component mixture is given by

/
@czi

@t
þr:

X
a

caxi;ava

 !
¼ Fi; i ¼ 1:::nc in X� ð0; sÞ;

� � � � � � � � � � � � � � � � � � � ð1Þ

which is subject to the following constraints:

Xnc

i¼1

zi ¼
Xnc

i¼1

xi;a ¼ 1: ð2Þ

In Eqs. 1 and 2, / denotes the porosity; va the velocity of
phase a; c the overall molar density of the mixture; and zi and Fi

are the overall mole fraction and the sink/source term of compo-
nent i in the mixture, respectively. ca is the molar density of phase
a and xi;a is the mole fraction of component i in phase a. X is the
computational domain, s denotes the simulation time, and nc is
the number of components. We neglect diffusion in Eq. 1.

The velocity of phase a is given by Darcy’s law:

va ¼ �
Kkra

la
ðrp� qagÞ ¼ �kaKðrp� qagÞ ; a ¼ o; g;

� � � � � � � � � � � � � � � � � � � ð3Þ

where K is the absolute permeability; kra, la, and qa are the rela-
tive permeability, dynamic viscosity, and mass density of phase a,
respectively, with ka ¼ kra=la; p is the pressure; and g is the grav-
itational acceleration. The relative permeability of phase a is
assumed to be a function of the phase saturation (Sa) by use of
kra ¼ kra0

Sn
a, where kra0

is the endpoint relative permeability and
n is a constant. A quadratic relationship is used in the matrix, and
a linear relationship is used in the fractures. We use the Lohrenz-
Bray-Clark model to describe the phase viscosities (Lohrenz et al.
1964). The low surface tension in compositional two-phase flow
justifies the neglect of capillary pressure.

The pressure equation is derived from the concept of total vol-
ume balance (Acs et al. 1985; Watts 1986), which is given by

/Ct
@p

@t
þ
Xnc

i¼1

V ir:
X

a

caxi;ava

 !
¼
Xnc

i¼1

V iFi; ð4Þ

where Ct is the total compressibility and Vi is the total partial
molar volume of component i (Firoozabadi 2015).

The local thermodynamic equilibrium implies the equality of
the fugacities of each component in the two phases:

fo;iðT; p; xj;oÞ ¼ fg;iðT; p; xj;gÞ; i ¼ 1; :::nc and j ¼ 1; :::nc � 1:

� � � � � � � � � � � � � � � � � � � ð5Þ

. . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . .

Cell-average pressure in matrix element

Cell-average pressure in fracture element

Cell-average composition in matrix element

Matrix

Matrix

MFE-FV
(Unfractured)

(a) (b) (c)

MFE-DG
(Fractured)

Fracture Intersection
(FCFE)

Matrix

Matrix

Fracture Fracture

Edge-average pressure in fracture element

Edge-average pressure in matrix element

Node/Edge-average composition in matrix element

Fig. 2—Variables in unfractured domain in (a) MFE-FV, (b) fractured domain in MFE-DG, and (c) fracture intersection in FCFE.
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Fig. 3—Interaction between a fracture element (thick black
lines) and the two adjacent matrix elements K and K 0.
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In addition, we use stability analysis to incorporate the global
Gibbs free-energy minimum in our calculations. The phase and
volumetric behavior are described by the Peng-Robinson (PR)
equation of state (EOS) (Peng and Robinson 1976):

ca ¼
Na

Va
¼ p

ZaRT
; qa ¼ ca

Xnc

i¼1

xi;aMiZ
3
a

�ð1� BaÞZ2
a þ ðAa � 3B2

a � 2BaÞZa

�ðAaBa � B2
a � B3

aÞ ¼ 0; � � � � � � � � � � � � � � � � � ð6Þ

where Na;Va;Za are the number of moles, volume, and compressibil-
ity factor of phase a, respectively. Mi is the molar weight of compo-
nent i; R is the universal gas constant; and T is the temperature. Aa
and Ba are the parameters of the PR-EOS that depend on pressure,
temperature, and composition of each phase (Firoozabadi 2015).

The saturation of each phase is calculated from

Sa ¼
c

ca
xa; ð7Þ

where xa ¼ Na

�X
b

Nb, where b ¼ o, g. From Eq. 7, the satura-

tion constraint could be then written in the following form:

1� c
xo

co
þ xg

cg

� �
¼ 0: ð8Þ

Eq. 8 serves as a criterion for the selection of a timestep. The
total molar densities of all the components are calculated through
the mass-conservative DG method; however, the phase densities
are updated by use of the EOS in phase-splitting calculations.
Therefore, the total molar density from DG and phase molar den-
sities from EOS should always follow Eq. 8 and the timestep is
increased as long as Eq. 8 is satisfied and as long as the timestep
is less than the matrix CFL condition. Eq. 8 cannot be relaxed,
otherwise a mass-balance error is observed. The material balance
in our algorithm is very low, on the order of 10�10.

Governing Equations in the Fractures. In the (n–1)-D domain,
the species mass-balance equations in the fractures are integrated
along the fracture width e:

/
@czi

@t
þr �

X
a

caxi;aðva � v fr
a Þ

" #
¼ Fi; i ¼ 1; :::nc:

� � � � � � � � � � � � � � � � � � � ð9Þ

We use the symbol va for the velocity across the fracture
width. For the velocity across the fracture length, we use a differ-
ent symbol, v fr

a . In the matrix we use the notation of va as a vector
to represent velocity at the interface in all faces. For the matrix
face next to the fracture, va ¼ v fr

a . In the fracture element, the four
velocities at the faces are represented differently. As a result, in
the fracture-flow equation and in the species mass-balance equa-
tion for the fractures there are two different velocity symbols. In
the discretization for the expressions for the fracture, two different
velocity-exchange terms appear: one for one side of the fracture
and the other from the other side of the fracture. Taken to the
right-hand side of Eq. 9, this term (v fr

a ) could be treated as a sink
or source term, varying with time. In the dual-porosity model, as
well as in the EDFM, there is only one term that represents the
exchange between the fracture element and the matrix domain.
When a fracture is at the boundary of the domain, then there is
one exchange term in our model.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . .

Parameter Value 

Porosity 20%
Permeability (matrix) 1 md 
Permeability (fracture) 106 md
Fracture thickness 1 mm 
Injection rate 1 PV/yr 
Temperature 403.15 K
Pressure 276 bar

Table 1—Relevant data: Example 1.

Component
Acentric
Factor Tc (K) pc (bar) 

Molecular 
Weight
(g/mol) Vc (m3/kg)

Oil Composition 
(mole fraction) 

Injection Gas 
(mole

fraction)

CO2 0.239 304.14 7.375×101 44 0.00214 0.0086 1
N2 0.039 126.21 3.39×101 28 0.00321 0.0028 0
C1 0.011 190.56 4.599×101 16 0.00615 0.4451 0
C2–3 0.11783 327.81 4.654×101 34.96 0.00474 0.1207 0
C4–5 0.21032 435.62 3.609×101 62.98 0.00437 0.0505 0
C6–10 0.41752 574.42 2.504×101 110.21 0.00425 0.1328 0
C11–24 0.66317 708.95 1.502×101 211.91 0.00443 0.1660 0
C25+ 1.7276 891.47 0.76×101 462.79 0.00417 0.0735 0

Table 2—Relevant data of oil and injected gas: Example 1.
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Fig. 4—Domain with fractures (thick black segments) and barriers (thin gray segments): Example 1.
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Similar to the pressure equation in the matrix domain, the pres-
sure equation in the fractures is given by

/Ct
@p

@t
þ
Xnc

i¼1

Vi r �
X

a

caxi;aðva � vfr
a Þ

" #
� Fi

( )
¼ 0:

� � � � � � � � � � � � � � � � � � � ð10Þ

Evaluation of v fr
a will be discussed in Appendix A. The phase

fluxes and viscosities in the fractures are calculated in the same
manner as in the matrix domain.

Discretization

We use the DG method to discretize the species-transport equa-
tions in the matrix with a linear spatial approximation on the
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Fig. 5—Overall mole fractions of CO2 and N2 and gas saturation at 5% PVI: Example 1.
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element level and an explicit time scheme. The transport equa-
tions in the fractures are solved implicitly by a FV discretization
to reduce the computational cost. The MFE method is used to dis-
cretize the total flux in the whole domain. The lower-dimensional
fractures allow more than two fracture elements intersecting at
one interface (Fig. 2c). In addition, the flux between fracture ele-
ments and the matrix domain is divided into two parts, as shown
in Fig. 3. The MFE-DG coupling provides accurate results and is

efficient in CPU time in density-driven flow problems (Mosé
et al. 1994; Ackerer and Younes 2008; Younes et al. 2011).
Details of discretization are presented in Appendix A.

Numerical Examples

In the following, we present a set of numerical examples with
eight components in structured grids to demonstrate the efficiency
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Fig. 6—Overall mole fractions of CO2 and N2 and gas saturation at 30% PVI: Example 1.
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and accuracy of the proposed model. The use of eight components
when all can dissolve in gas and liquid phases is a severe test. In
compositional reservoir simulation, often four to six components
can describe realistic phase behavior. An Intel Core-i5 PC with 3
GHz CPU and 4 GB of RAM is used in all the runs. Unless other-
wise specified, the CPU time is given at 1 PVI.

Example 1: Fractures and Barriers. As mentioned previously,
the fracture elements in FCFE are at the edges of the matrix ele-
ments. This makes the implementation of fractures and/or bar-
riers straightforward. The barriers could be either low-
permeability fractures or impermeable faults. We assume zero
permeability for an impermeable fault. If an interface between
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Fig. 7—Overall mole fractions of CO2 and N2 and gas saturation at 60% PVI (white lines represent the streamlines in gas phase):
Example 1.
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two matrix elements is a barrier, the total and the phase fluxes are
set to zero across the interface in both of the matrix elements. In
this example, we consider a 500� 200-m horizontal domain with
a set of intersecting fractures and four barriers. The discretization
is made by a total of 1,600 elements including 100 fracture ele-
ments. The barriers are shown by thin gray segments and the
fractures by thick black segments (Fig. 4). The relevant data of
the domain and the oil composition are given in Tables 1 and 2,
respectively. We have examined two different cases: The first
case consists of injecting N2 into the eight-component oil, and
the second case involves injecting CO2. We use a 0.3 endpoint
relative permeability for CO2. In both cases, the gas is injected at
one corner and the production well is at the opposite corner of
the domain. In Figs. 5 through 7, we depict the overall mole
fractions of CO2 and N2 and the gas saturation at 5, 30, and 60%
PVI, respectively. The plots show that more CO2 is dissolved
into oil than N2. N2 breakthrough is fast. CO2 breakthrough is
approximately at 45% PVI. The recovery is enhanced by
more than 25% when CO2 is injected compared with N2 injection
(Fig. 8). The CPU time in this example is 1 hour and 24 minutes
for CO2 injection and 1 hour and 26 minutes for N2 injection. In
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Fig. 8—Oil recovery in CO2 and N2 injection: Example 1.
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Fig. 10—(a) CO2 overall mole fraction and (b) gas saturation at 10% PVI: Example 2.
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homogeneous media, the CPU time is 51 and 52 minutes for CO2

and N2 injections, respectively.

Example 2: CO2 Injection With Gravity. In this example, we
consider a 2� 0.2-km domain that has the same properties as the
previous example. The domain with the fracture network is shown
in Fig. 9. The numbers of matrix and fracture elements are 3,200
and 1,100, respectively. We consider the injection of CO2 into the
eight-component oil. At the reservoir conditions (276 bar at the
bottom of the reservoir initially and 403 K), the mass density of
CO2 is 530 kg/m3, which is less than the oil mass density of
660 kg/m3. It is more efficient to inject CO2 at the top to enhance
oil recovery. CO2 is injected at the top-right corner of the domain,
and the production well is at the bottom-left corner. Figs. 10 and
11 show the overall mole fraction of CO2 and the gas saturation at
10 and 20% PVI, respectively. As shown in Figs. 10 and 11,
because of gravity, CO2 forms a secondary gas cap that pushes
the oil down toward the production well at the bottom. Moreover,
at the gas/oil interface, the light components in oil evaporate into
the gas phase. The gas density therefore decreases. This effect
results in the rise of gas inside the fracture network. The CPU
time in this example is 3 hours and 4 minutes. In all the examples,

refining the mesh does not change the results. For more details
regarding the effect of mesh refinement, we present an example in
Appendix B with different mesh refinements where we calculate
the normalized L2 error norm of the fluid composition at the pro-
duction well. To study the effect of the fractures on CPU time in
our algorithm, we have removed all the fracture elements. The
CPU time of the homogeneous media is 2 hours and 28 minutes.
We have also simulated the same problem in a horizontal domain,
and the CPU time is 47 minutes. With gravity, countercurrent
flow in a two-phase system adds complexity to flow and phase
behavior. A lighter phase can rise up, which adds more restriction
to the size of the timestep.

Example 3: 6-km-Long Domain. In this example, we consider a
6-km domain with 1600-m width. CO2 is injected at one corner to
displace the oil to the opposite corner. Relevant data of the prob-
lem are the same as in Example 1. The domain includes fractures
that are randomly distributed (Fig. 12). The number of elements
in the x- and y-axis are, respectively, 150 and 40, which make a
total of 6,000 elements in the matrix domain. The number of frac-
ture elements is 1,200. The overall mole fraction of CO2 and the
gas saturation at 10% PVI are shown in Fig. 13. The large number
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Fig. 11—(a) CO2 overall mole fraction and (b) gas saturation at 20% PVI: Example 2.
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Fig. 13—(a) CO2 overall mole fraction and (b) gas saturation at 10% PVI: Example 3.
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Fig. 14—(a) CO2 overall mole fraction and (b) gas saturation at 60% PVI: Example 3.
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of fracture elements in the NR iterations implies a relatively large
matrix to invert. In addition, in compositional two-phase flow, the
derivatives in each fracture element are updated as well, and the
derivatives also require matrix inversions (Zidane and Firooza-
badi 2015). However, we do not update all the derivatives for all
the fractures. As seen in Fig. 13, the composition at low PVI is
almost in one-third of the fractures and may be in single phase, or
there may be no composition changes in two-phase. Therefore,
the calculation of the derivatives is avoided in almost one-third of
the fracture elements. In a similar way, at higher PVI, the fracture
elements near the injection well will be saturated after some
time. When these fracture elements are in single phase, then the
calculation of the derivatives in these elements is also avoided. In
Fig. 14, we show the overall mole fraction of CO2 and the gas sat-
uration at 60% PVI. The CPU time in this example is 4 hours and
8 minutes. The CPU time of simulating the same problem with
explicit solution of the transport equation in the fractures is 46
hours and 28 minutes. Note that the high number of components
affects the CPU time. The calculations carried per element are
proportional to the number of components in the system. To dem-
onstrate the efficiency of the model, we simulate the same prob-
lem by removing all the fractures; as a result, no more matrix
inversions are needed in the NR method or for the calculation of
the derivatives. The CPU time in unfractured homogeneous do-
main is 2 hours and 53 minutes. Simulation of the fractured media
in our model is within the same order as in unfractured media.

Concluding Remarks

In this work, we have introduced an efficient numerical algorithm
for compositional two-phase flow in fractured porous media by
use of the FCFE concept, where we provide all compositions and
flow paths. The main features in our model are the following.
1. Despite all details, the CPU time is comparable with that for

unfractured media. The CPU time with eight-component oil in
fractured media and homogeneous media differs by less than a
factor of two.

2. In two-phase compositional flow, a matrix element could be in
one phase and the adjacent FCFE element in a different phase.
To capture the discontinuity in composition and phase satura-
tion at the matrix/fracture interface, we perform flash calcula-
tions at the edges of the elements by use of the traces of
pressure from MFE and the molar densities from DG.

3. In compositional two-phase flow, the implicit solution of the
transport equation in the fractures requires two different matrix
inversions. One is related to updating the molar densities within
the NR iterations, and the second is related to updating the
derivatives of the molar densities. The latter does not appear in
single-phase flow. We avoid the calculation of these derivatives
at every timestep. The derivatives of fractures in parts of the do-
main that are in single-phase flow (or no composition changes
in two-phase flow) are not updated. This significantly reduces
the size of the inverted matrix to update @ca;i=@czi.

4. Gravity in two-phase flow may develop countercurrent flow at
the interfaces. This creates challenges related to upstreaming
in multiple intersecting fractures that does not appear in single-
phase flow. The upstreaming technique in our model allows
calculating the derivatives to be used in NR updates when sev-
eral fractures intersect at one interface.

Nomenclature

c ¼ overall molar density
ca ¼ molar density
Ct ¼ total fluid compressibility
fa,i ¼ fugacity
Fi ¼ sink/source term
g ¼ gravitational acceleration
g ¼ gas

kra ¼ relative permeability
K ¼ absolute permeability tensor

Mi ¼ molar weight
nc ¼ total number of components

Na ¼ number of moles
o ¼ oil
p ¼ pressure

Q f
a ¼ matrix/fracture flux
R ¼ universal gas constant

Sa ¼ saturation
t ¼ time

T ¼ temperature
va ¼ velocity

v fr
a ¼ velocity in fractures

Vi ¼ total partial molar volume
Va ¼ volume
w ¼ Raviart-Tohmas basis vector

xi,a ¼ species molar fraction
zi ¼ overall molar fraction

Za ¼ compressibility factor
a ¼ phase index

ka ¼ mobility
la ¼ viscosity
qa ¼ phase mass density
/ ¼ porosity
u ¼ discontinuous Galerkin basis function

xa ¼ phase molar fraction
X ¼ computational domain
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Appendix A—Numerical Discretization

We first present the discretization of the species-transport equa-
tions in the matrix domain and in the fracture network. We then
show the discretization of the pressure equation in the whole
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domain and how to couple the fractures and the matrix to solve
the system of equations for pressure in the entire domain. We also
present the upstreaming technique of the derivatives in multiple
intersecting fractures.

Discretization of the Transport Equations in the Matrix. In
two-phase compositional flow, one element could be in gas phase
and the adjacent element could be in liquid phase; the MFE-DG
provides accurate description of the fluids at the interface of the
neighboring elements. In the MFE, once the pressure at the ele-
ment interface is known, one can find pressure at the element cen-
ter. The DG method provides the compositions at the element
interfaces. A flash computation is performed at the interface on
the basis of the pressure at the interface from MFE and the com-
positions from DG. This is particularly important in fractured
media, to capture the discontinuity at the matrix/fracture interface.
The MFE-DG describes the physics more accurately than the
lower-order methods, where the upstream quantities are depend-
ent on the center of the elements. The basic idea in DG consists of
multiplying the mass-balance equation (Eq. 1) by the shape func-
tion uK; j and integrating over each matrix element K to obtainð

K

/
@czi

@t
uK; j þ

X
E

ð
E

X
a

ðcaxi;avaÞnEuK; j

�
ð
K

X
a

ðcaxi;avaÞruK; j ¼
ð
K

FiuK; j: � � � � � � � � � � ðA-1Þ

An explicit forward Euler time discretization is used to update
czi in each matrix finite element. In the fracture elements, the
molar densities are updated implicitly. Use of different time inte-
grations in matrix and fractures does not affect mass conservation
in our model.

The local reduction of order at the matrix/fracture interface
does not imply a discretization error because the values at the
same interface are discontinuous at the adjacent elements (matrix/
matrix or matrix/fracture).

Discretization of the Transport Equations in the Fractures.

Here, we show how we solve implicitly for the species-transport
equations in the fractures. We use FV integration in the species-
transport equations in the fractures (Eq. 9):

Gk;i ¼ /jkj
cznþ1

i;k � czn
i;k

Dt
þ
X

a

"X
e2@k

ðcaxnþ1
i;a qa;k;eÞ

� Q
fr

a;i

#
� jkjFi ¼ 0; � � � � � � � � � � � � � � � � � ðA-2Þ

where jkj is the surface area of the finite element k; caxi;a is the
upstream value of caxi;a; and qa;k;e is the normal flux of phase a at

the interface e of element k. The term Q
fr

a;i represents the mass flux

of component i in phase a between the fracture and the two adjacent
matrix elements. qa;k;e is the volumetric flux between the fracture k
and the surrounding fractures intersecting with k at the interface e

(Fig. 2). Q
fr

a;i is divided into two quantities because each fracture

usually has two adjacent matrix elements (Fig. 3). If a fracture is at
the boundary of the domain, the mass flux between the fracture and

the matrix Q
fr

a;i reduces to one side, and on the opposite side Q
fr

a;i is

set to zero in all the equations of the fracture element.
In Eq. A-2, Gk;i is a function of czi;k and the surrounding ele-

ments of the element k. In the NR method, we evaluate the inverse
of the Jacobian matrix of a system of equations that consists of
Gk;i for all fracture elements and for all components (Zidane and
Firoozabadi 2015). The derivative of Gk;i, with respect to czi;k

(@Gk;i=@cznþ1
i ), may be written as follows:

@Gk;i

@cznþ1
i

¼ /jkj
Dt

6
@caxi;a

@czi
jQfr

a j
� �

þ
X
e2@k

X
a

@caxnþ1
i;a

@cznþ1
i

qa;k;e:

� � � � � � � � � � � � � � � � � � � ðA-3Þ

The two major complexities in Eq. A-3 are the evaluation of
the term @caxi;a=@czi and upstreaming the derivatives in multiple
fracture intersections (Fig. 2). We have shown recently how to cal-
culate analytically the derivative @caxi;a=@czi at the conditions of
constant volume and temperature (Zidane and Firoozabadi 2015).
We use thermodynamic equilibrium that is based on fugacity
equality and constant volume at each grid-cell element in the com-
putational domain (Zidane and Firoozabadi 2015). In the follow-
ing, we discuss how to upstream a derivative if the surrounding
elements are in a different phase state than the fracture element k.

In Eq. A-3, Q f r
a represents the volumetric flux (note that Q

f r

a;i
represents the mass flux of component i between the fracture and
the adjacent matrix elements). Theþ sign indicates an implicit
treatment of ð@caxi;a=@cziÞQ f r

a and the – sign indicates an explicit
treatment during the NR iterations. The exchange between a frac-
ture and its adjacent matrix elements includes one of three possi-
bilities: the fracture is feeding the adjacent matrix elements; the
two matrix elements are feeding the fracture; or one matrix ele-
ment is feeding the fracture and the fracture is feeding the other
matrix element (Fig. 3). In the first case, both of the fluxes are
treated implicitly (time level nþ1); in the second case, both are
treated explicitly (time level n); and in the third case, one flux is
treated implicitly and the other flux is treated explicitly. In an
explicit treatment, the flux is added to the residual function at each
NR iteration. In an implicit treatment, the flux is added to the cal-
culated function during the NR iteration; the same applies to the
derivative @caxi;a=@czi. Note that in two-phase flow, the fracture
could be feeding a matrix element in the gas phase, whereas the
same matrix element is feeding the fracture in the oil phase.

We denote by ca;e molar density of phase a at the interface e.
To upstream the derivatives @ca;exi;a=@ci, we use the phase flux
qa;k;e at each interface of element k, as follows:

1. If qa;k;e � 0, then @caxi;a=@czi is evaluated at element k.
2. If qa;k;e < 0 and only two fractures intersect at the interface

e, then @caxi;a=@czi is evaluated at the adjacent element of k
that we denote by k0.

3. If qa;k;e < 0 and more than two fractures intersect at
the interface e, then a combination of the conservation of
mass with Kirchhoff’s law (Riedel and Nilsson 2015) at the
interface leads to the following equation:

Xnu

j¼1

qa;kj;e þ
Xnt

j¼nuþ1

qa;kj ;e ¼
Xnt

j¼1

qa;kj;e ¼ 0: ðA-4Þ

At interface e, nt is the total number of intersecting fractures
and nu is the number of upstreaming fluxes of phase a (Fig. 2c).

The mass balance at the interface e gives

Xnu

j¼1

ca;kj
qa;kj;e ¼ �ca;e

Xnt

j¼nuþ1

qa;kj;e: ðA-5Þ

Taking the derivative of Eq. A-5 with respect to czi and by use
of Eq. A-4,

@ca;e

@czi
¼

Xnu

j¼1

@ca;kj

@czi
qa;kj;eXnu

j¼1
qa;kj;e

: ðA-6Þ

Discretization of the Total Flux and Phase Fluxes. In the MFE
method, the total velocity in each grid cell K is written in terms of
the normal fluxes across each interface E of element K as follows:

v ¼
X

a

va ¼
X

E2@K

qK;EwK;E; ðA-7Þ

where wK;E is the RT0 basis function across edge E of element K
and qK;E is the normal flux at interface E calculated through the
average cell pressure of matrix element K and the trace of pres-
sure at the interfaces of K, as follows:

. . . . . . .

. . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .
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qK;E ¼ aK;EpK �
X

E02@K

bK;E;E0 tpK;E0 � cK;E: ðA-8Þ

The coefficients aK;E, bK;E;E0 , and cK;E depend on the geometry
of the element and the mobility. For more details about these
coefficients and the MFE formulation, one may refer to Chavent
and Roberts (1991), Mosé et al. (1994), Brezzi and Fortin (1991),
or Chavent et al. (1990).

Once the total velocity is evaluated, we calculate the velocity
of each phase independently as follows:

va ¼ faðvþ GaÞ: ðA-9Þ

The phase fluxes are updated by use of the solution of molar
concentrations and mole fractions from the explicit DG and
implicit FV calculations. To calculate the phase flux, one needs to
evaluate the phase mobilities. In absence of gravity, the upstream
direction is always the direction of total flux calculated through
MFE. With gravity, however, no difference was observed in
applying harmonic or arithmetic average at the interface (as we
will show in Appendix B).

The phase mobilities are evaluated in the upstreaming element
as follows (Hoteit and Firoozabadi 2006):

fa ¼
kaX

b
kb

and Ga ¼
koðqo � qgÞg; if a ¼ g

kgðqg � qoÞg; if a ¼ o
:

(

� � � � � � � � � � � � � � � � � � � ðA-10Þ

Discretization of the Pressure Equation in Matrix. From the
pressure equation (Eq. 4),

ð
K

/Ct
@p

@t
þ
Xnc

i¼1

Vi r �
X

a

caxi;afaðvt þ GaÞ
" #

� Fi

( )
¼ 0:

� � � � � � � � � � � � � � � � � � � ðA-11Þ

FV integration of the pressure equation over a matrix finite
element K and use of the Gauss’s theorem on the divergence
terms are

/jKjCt
Dp

Dt
þ
Xnc

i¼1

Vi;K

�
X

a

X
E2@K

ð
E

caxi;afaðvþ GaÞ � nE � Fi;K

2
4

3
5 ¼ 0:

� � � � � � � � � � � � � � � � � � � ðA-12Þ

By use of Eq. A-9,

/CtjKj
Dp

Dt
þ
Xnc

i¼1

Vi

X
E

X
a

caxi;afaqt

þ
Xnc

i¼1

Vi

X
E

ð
E

X
a

caxi;afaGanE �
X

i

V ijKjFi ¼ 0:

� � � � � � � � � � � � � � � � � � � ðA-13Þ

By use of Eq. A-8,

/CtjKj
Dp

Dt
þ
Xnc

i¼1

Vi

X
E

ðmi;K;EaK;Epnþ1
K

�mi;K;E

X
E0

bK;E;E0Tpnþ1
K;E0 � mi;K;EcK;EÞ

þ
Xnc

i¼1

Vi

X
E

ð
E

X
a

caxi;afaGanE �
X

i

V ijKjFi ¼ 0:

� � � � � � � � � � � � � � � � � � � ðA-14Þ

with

mi;K;E ¼
X

a
caxi;afa; VK;E ¼

X
i
V imi;K;E;

âK;E ¼
X

E
VK;EaK;E; b̂K;E ¼

X
E

VK;EbK;E;

si;K ¼
X

a
caxi;afaGa; ŝi;K;E ¼

ð
E

si;K � nE;

ĉK;E ¼
X

E
ðVK;EcK;E �

X
i
V iŝi;K;EÞ:

� � � � � � � � � � � � � � � � � � � ðA-15Þ

By substitution of Eq. A-15 into Eq. A-14,

/CtjKj
Dt

þ âK;E

� �
pnþ1

K �
X

E

b̂K;ETpnþ1
K;E

¼ /CtjKj
Dt

pn
K þ ĉK;E þ

X
i

V ijKjFi: ðA-16Þ

Writing Eq. A-16 in matrix form results in

½Dm�½Pm� � ½ R̂mm
R̂

mf � Tpm

Pf

� �
¼ Gm; ðA-17Þ

With

Dm ¼ /CtjKj
Dt

þ âK;E;

R̂ ¼ b̂K;E;

Gm ¼ /CtjKj
Dt

pn
K þ ĉK;E þ

X
i

V ijKjFi: � � � � � � ðA-18Þ

Discretization of Pressure Equation in Fractures. By use of
the same FV integration of the pressure equation (Eq. 10) over a
fracture element k,

/Ctjkj
Dp

Dt
þ
Xnc

i¼1

V i;k

X
e

ð
e

X
a

caxi;afaðvþ GaÞ � ne

�
X

Ei

ð
Ei

X
a

caxi;av f r
a � nEi � jkjFi

2
666664

3
777775¼ 0:

� � � � � � � � � � � � � � � � � � � ðA-19Þ

In Eq. A-19, Ei is the number of the edges in the neighboring
matrix elements of the FCFE element k. The integral over the lat-
eral length of the fracture is computed in both of the adjacent ma-
trix elements (Fig. 3).

In a domain where the fractures are represented by (n–1)-D in
an n–D domain, three different cases apply when writing the con-
tinuity of fluxes and trace of the pressure at the matrix-element
interfaces.

First, if the intersection between two matrix elements is a frac-
ture, then the following equalities apply:

Tpm
K;E ¼ Tpm

K0 ;E ¼ p f
E

qm
o;K;E þ qm

o;K0 ;E ¼ Q f
o;K;E

qm
g;K;E þ qm

g;K0 ;E ¼ Q f
g;K;E

;

8><
>: ðA-20Þ

where Q f
o;K;E and Q f

g;K;E are matrix–fracture volumetric flux of oil
and gas phases, respectively; the fracture element is E and the ad-
jacent matrix elements are K and K0; p f

E is the cell average pres-
sure of the fracture element E; and Tpm

K;E and Tpm
K0;E are the traces

of the pressure at the interface E in matrix elements K and K0,
respectively. Eq. A-20 shows that the pressure at the fracture ele-
ment may be different from the pressure in the adjacent matrix
elements; hence, the proposed model is valid whether the inter-
face has a very-high or very-low permeability with respect to the
adjacent matrix elements.

Second, if the interface E between the two matrix elements K and
K0 is not a fracture, then the continuity of pressure and flux imply

. . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . .

. . . . . . . . .

. . . . . . . . . . . . . . . . .
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Tpm
K;E ¼ Tpm

K0 ;E

qm
o;K;E þ qm

o;K0;E ¼ 0

qm
g;K;E þ qm

g;K0;E ¼ 0
:

8<
: ðA-21Þ

Third, if the interface E is at the domain’s boundary, then

Tpm
K;E ¼ TpD

E

qm
K;E ¼ qN

E

;

�
ðA-22Þ

where TpD
E is a Dirichlet boundary condition and qN

E is a Neumann
boundary condition. In this work, we assume an impermeable
boundary with zero flux (qm

K;E ¼ 0).
From Eqs. A-20 through A-22, we obtain the following system

of equations that relate pressure at the center of the matrix ele-
ments (Pm) and the traces of the pressure at the matrix interfaces
(Tpm) to the pressure at the center of the fracture elements (Pf ):

RT;m;m

RT;m; f

� �
½Pm� �

Mm;m

Mf ;m

Mm; f

Mf ; f

� �
Tpm

Pf

� �
¼

0

Qf

" #
:

� � � � � � � � � � � � � � � � � � � ðA-23Þ

The (n–1)-D representation of the fractures implies that the frac-
ture interfaces have a negligible volume compared with the size of
the fractures and the domain; hence, we assume no accumulation in
the fracture intersections. The continuity of fluxes and traces of the
pressure at the fracture interfaces could be expressed by

Xnt

i¼1

q f
ki;e
¼ 0

Tp f
ki;e
¼ Tp f

e ; i ¼ 1:::nt

:

8><
>: ðA-24Þ

On the basis of the discussed equations in all the fracture in-
terfaces, we obtain the system of equations that relate the
pressure at the fracture elements to the traces of pressures at the
fractures interfaces:

½RT; f �½P f � � ½Mf �½Tp f � ¼ ½0�: ðA-25Þ

The FV integration of the pressure equation over all the frac-
ture elements provides

½Df �½P f � � ½R̂f �½Tp f � ¼ ½G f þ Q f �: ðA-26Þ

In Eq. A-26, the term Q f represents the total volumetric flux
of gas and liquid phases of each fracture element with the adjacent
matrix elements. To reduce the computational cost in our calcula-
tions, we perform the following steps.

First, we eliminate the matrix/fracture flux by subtracting Eq.
A-26 from the second equation in Eq. A-23.

Next, to avoid the inversion of a large matrix at each timestep,
which could be costly, we use Eq. A-17 to find the expression of
Pm as a function of Tpm and P f , as follows:

Pm ¼ ½Dm��1½Gm þ R̂
mm

Tpm þ R̂
mf

P f �: ðA-27Þ

Global System of Pressure Equations. The global system of
equations for pressure is dependent on the continuity of the fluxes
and traces of the pressure at the interfaces of matrix elements and
the fracture elements separately. After writing the continuity
equations at the matrix and fracture interfaces and the volume-
balance equations in matrix and fracture elements, we obtain the
following global system of equations:

Am;m Am; f 0

Af ;m

0

Af ; f

RT; f
�R̂

f

Mf

2
4

3
5 Tpm

P f

Tp f

2
4

3
5 ¼ Vm

V f

0

2
4

3
5: ðA-28Þ

As shown, the global system of equations relates the traces of
pressure in the matrix elements to pressure and traces of the pres-
sure in the fracture elements. The dimensions and the elements
of matrices that appear in the above equations are shown in
Table A-1.

The matrices in Eq. A-28 are therefore

Am;m ¼ RT;m;mDm�1R̂
mm �Mm;m ; � � � � � � � � � � � � ðA-29aÞ

Am; f ¼ RT;m;mDm�1R̂
mf�Mm; f ; � � � � � � � � � � � � � ðA-29bÞ

Af ;m¼ �RT;m; f Dm�1R̂
mmþMf ;m; � � � � � � � � � � � � � ðA-29cÞ

Af ; f ¼ �RTm; f Dm�1R̂
mf þMf ; f þ Df ; � � � � � � � � � ðA-29dÞ

Vm ¼ �RT;m; f Dm�1Gm; � � � � � � � � � � � � � � � � � � ðA-29eÞ
Vf ¼ G f þ RT;m; f Dm�1Gm: � � � � � � � � � � � � � � � � ðA-29fÞ

Appendix B—Convergence Tests

Example B-1 and Effect of Mesh-Refinement and Upstreaming

Techniques. In this example, we study the effect of mesh refine-
ment and the upstreaming techniques. The normalized L2 error
norm is used as a measure of accuracy.

We conduct this study in a vertical domain of 500� 200 m
with two horizontal fractures that are each 300 m long, and one
fracture loop at the middle of the domain (Fig. B-1).
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Fig. B-1—Domain and wells: Example B-1.
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, ,
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,f fM f f

e eN N× ,
, ,
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M β E E′ ′
′ ∂

= ∑

Table A-1—Dimensions and elements in matrices in the pressure

equation.
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We consider injection of methane into the propane-saturated
domain (Table B-1). The injection well is inside the fracture
loop, and two production wells are at the top left and right corners
of the domain (Fig. B-1). The injector inside the fracture loop in a
vertical domain is a challenging example for models that use an
explicit time discretization of the mass-balance equation.

To study the effect of mesh refinement on accuracy, we calcu-
late the normalized L2 error norm in overall mole fraction of
methane at the production wells in three different meshes: Mesh-1
of 400 elements, Mesh-2 of 800 elements, and Mesh-3 of 1,600
elements (Fig. B-2). A more-refined mesh of 10,000 elements is
used as a reference solution. As shown in Fig. B-3, the highest
error for the coarse mesh is slightly less than 6% and shows a
decreasing trend to less than 1% at the end of the simulation. In

the 800 mesh, the error is always less than 4% and decreases to
less than 0.5% at the end of the simulation. In the 1,600 mesh, the
highest error is less than 1%. Note that methane reaches the pro-
duction wells at approximately 0.38 PVI; the error is zero before
breakthrough. We show the overall mole fraction of methane at
10% PVI in Fig. B-4, and the gas saturation at 80% PVI in
Fig. B-5. Results in overall mole fraction and gas saturation are
comparable for all meshes at low and high PVI.

In addition to effect of mesh refinement, we study the effect of
mobility calculated from arithmetic and harmonic averages. The
upstream mobility of a phase in one fracture element affects the
phase saturation on its adjacent matrix elements. We investigate
the gas saturation in the nearest matrix element on top of the hori-
zontal-fracture element shown in Fig. B-1. The normalized L2

error norm of gas saturation in this element is computed by use of
the two upstreaming techniques: the harmonic average and the
arithmetic average at different mesh refinements. The equidimen-
sional model with 10,000 elements is used as reference solution.
As shown in Fig. B-6, both techniques give an error of less than
0.4% and decrease to less than 0.05% with refinement.

Example B-2: Convergence Test. In this example, we perform a
convergence test in a domain with a single fracture (Hægland
et al. 2009; Sandve et al. 2012; Ahmed et al. 2015). A square do-
main of unit surface area containing a single fracture of aperture a
is shown in Fig. B-7. We set the matrix permeability to 1 md and
study three different fracture permeabilities: kf of 10–4, 1, and 104

md. We study the case where the fracture aperture is a¼ 10–3.
The largest difference between CVD-MPFA and the equidimen-
sional model has been reported for this case in two previous stud-
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Fig. B-2—Mesh refinements in the FCFE model: Example B-1.

Parameter Value 

Porosity 20%
Permeability (matrix) 1 md 
Permeability (fracture) 105 md 
Fracture thickness 1 mm 
Injection rate 0.1 PV/yr 
Temperature 311 K
Initial pressure at the bottom
   of the domain 

69 bar 

Injected fluid: C1 1 (mole fraction) 
Initial fluid in the domain: C3 1 (mole fraction) 

Table B-1—Relevant data: Example B-1.
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ies (Sandve et al. 2012; Ahmed et al. 2015). We use mesh refine-
ments varying from 10� 10 to 100� 100 elements. The normal-
ized error norms of pressure in our model are compared with
three different numerical methods: the equidimensional method;
the hybrid CVD-MPFA, which we will call CVD-MPFA-H; and

the lower-dimensional CVD-MPFA, which we will call CVD-
MPFA-L. The exact solution of the pressure for
the incompressible single-phase flow is given by (Hægland
et al. 2009):

pðx; yÞ

¼
kcosðxÞcoshðyÞ þ ð1� kÞcosðxÞcoshða=2Þ ; ðx; yÞ 2 Xm

cosðxÞcoshðyÞ; ðx; yÞ 2 Xf

;

�
� � � � � � � � � � � � � � � � � � � ðB-1Þ

for the source

Fðx; yÞ ¼
ð1� kÞcosðxÞcoshða=2Þ; ðx; yÞ 2 Xm

0; ðx; yÞ 2 Xf

;

�
� � � � � � � � � � � � � � � � � � � ðB-2Þ

where k is the fracture/matrix-permeability ratio and Xm and Xf

represent the matrix and fracture domains, respectively. In our
model, Eq. 10 should be reduced to incompressible single-phase
flow. Fig. B-8 shows the convergence of the three different mod-
els. At very-low permeability, where the fracture acts as a barrier,
the normalized error is the same as in the equidimensional model.
Convergence plots show that similar to CVD-MPFA-H and CVD-
MPFA-L, our FCFE model diverges from the equidimensional
model when k¼ 1. In the high fracture permeability (k¼ 104), the
difference becomes very small, consistent with Sandve et al.
(2012) and Ahmed et al. (2015). We have examined fracture

Methane Overall Mole Fraction Model
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Fig. B-4—Methane overall mole fraction at 10% PVI: Example B-1.

0.06

0.05

0.04

0.03

0.02

0.01

0.00
0.0 0.2 0.4 0.6

PVI

e c
,

0.8 1.0

FCFE-400

FCFE-800

FCFE-1600

Fig. B-3—Normalized error of methane overall mole fraction at
the production wells: Example B-1.
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Fig. B-5—Gas saturation at 80% PVI: Example B-1.
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Fig. B-6—Normalized error of gas saturation in a selected ma-
trix element: Example B-1.
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Fig. B-7—Domain with single fracture: Example B-2.
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aperture of a¼ 10–4 and 10–5 (results not shown) for the case of a
low-permeability fracture, and the FCFE converges in all cases.
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Fig. B-8—Normalized error of pressure vs. mesh refinement for different fracture permeabilities for Example B-2: (a) kf 5 1024, (b)
kf 5 1, and (c) kf 5 104 md.
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