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Abstract Diffusion coefficients of dense gases in liq-
uids can be measured by considering two-phase bi-
nary nonequilibrium fluid mixing in a closed cell with
a fixed volume. This process is based on convection
and diffusion in each phase. Numerical simulation of
the mixing often requires accurate algorithms. In this
paper, we design two efficient numerical methods for
simulating the mixing of two-phase binary fluids in one-
dimensional, highly permeable media. Mathematical
model for isothermal compositional two-phase flow in
porous media is established based on Darcy’s law, ma-
terial balance, local thermodynamic equilibrium for the
phases, and diffusion across the phases. The time-lag
and operator-splitting techniques are used to decom-
pose each convection–diffusion equation into two steps:
diffusion step and convection step. The Mixed finite
element (MFE) method is used for diffusion equation
because it can achieve a high-order and stable approx-
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imation of both the scalar variable and the diffusive
fluxes across grid–cell interfaces. We employ the char-
acteristic finite element method with moving mesh to
track the liquid–gas interface. Based on the above
schemes, we propose two methods: single-domain and
two-domain methods. The main difference between
two methods is that the two-domain method utilizes the
assumption of sharp interface between two fluid phases,
while the single-domain method allows fractional satu-
ration level. Two-domain method treats the gas domain
and the liquid domain separately. Because liquid–gas
interface moves with time, the two-domain method
needs work with a moving mesh. On the other hand, the
single-domain method allows the use of a fixed mesh.
We derive the formulas to compute the diffusive flux
for MFE in both methods. The single-domain method
is extended to multiple dimensions. Numerical results
indicate that both methods can accurately describe the
evolution of the pressure and liquid level.

Keywords Two-phase flow · Binary mixing ·
Multicomponent transport · Mixed finite element
methods · Conservation law

1 Introduction

Numerical modeling for single-phase and two-phase
flow in porous media has wide applications in hydrol-
ogy and petroleum reservoir engineering. Many inves-
tigators have focused on incompressible and immiscible
flow in porous media, for example [4, 6–8, 16, 22, 23, 32–
34]. Recently, two-phase nonequilibrium fluid mixing
is attracting more attention because of its applications
in a large number of problems. For example, in the
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petroleum industry, gas is injected into oil reservoirs to
maintain the reservoir pressure [15]. Once a substantial
amount of the injected gas dissolves in the oil phase,
fluid and surface properties, such as density, viscosity,
and surface tension, may change significantly. This may
cause the oil phase to flow faster through the reservoir,
and the production is increased [13, 14].

Multicomponent mixtures are often treated as pseu-
dobinaries in the petroleum literature [18, 30, 35, 36]
studying the mixing occurring when hydrocarbon liq-
uids are exposed to gases, such as methane and carbon
dioxide. To describe the mixing process accurately, we
require diffusion coefficients. However, conventional
methods to measure diffusion coefficients can not be
used at high pressures and temperatures [14]. The PVT
cell technique [18, 28–30] is currently an attractive
and powerful alternative for measuring high-pressure
diffusion coefficients. This technique allows two non-
equilibrium fluid phases to interact inside a closed cell
at the constant temperature. In the approach used in
[30], the cell with a fixed volume is closed; that is, no
gas and liquid is injected or extracted at the boundaries
of the cell. Thus, the total mass and volume in the cell
are kept constant, but the mass transfer occurs across
the interface of two fluid phases and inside each phase.
The pressure and liquid volume will change with time
which can be used to infer diffusion coefficients.

A numerical model has been developed in [14] to
describe nonequilibrium mass transport between the
gas and liquid phases of a binary mixture in a closed
PVT cell of fixed volume. In this paper, we consider the
case of porous media that are encountered in the pe-
troleum industry. Mathematical model for isothermal
compositional two-phase flow in porous media will be
obtained by Darcy’s law, material balance, thermody-
namic equilibrium between the phases, and diffusion
within and between phases. This model incorporates
diffusion and dispersion (within bulk phases) into com-
positional two-phase flow in porous media, and we
consider scenarios where diffusion and dispersion are
significant. Although our model itself can apply to
multiple dimensions, for simplification, we focus on the
one-dimensional, highly permeable porous media in
this paper.

Operator splitting technique [1, 9, 11, 20, 24, 32]
is widely used to reduce the original complex time-
dependent physical problem into simpler problems
based on the time-lag of dimension or physics. The
IMplicit–EXplicit method [2, 3, 12, 17, 21] treats some
terms implicitly and evaluates the others explicitly, and
as a result, it is more stable than the fully explicit
scheme and can convert the original equations into
an implementation-friendly form. Mathematical model

describing two-phase compositional flow in porous me-
dia is a time-dependent and nonlinear system of par-
tial differential equations. In order to design efficient
algorithm, we first apply the time-lag and operator-
splitting techniques to decompose each convection–
diffusion equation into two steps: diffusion step and
convection step. We apply an explicit temporal scheme
for the diffusion step, while in convection step, we treat
the molar density of each phase implicitly, but with
explicit treatment for other variables.

We propose two different methods: single-domain
and two-domain. In the two-domain approach, we
make assumption that the liquid and the gas have a
distinct interface. This assumption often happens in the
case of two-phase flow in one-dimensional, highly per-
meable media without capillarity. Different from two-
domain method, the single-domain method removes
this assumption to simulate two-phase flow with the
saturation between 0 and 1. Moreover, it can be read-
ily extended to multidimensional domain. We use the
characteristic finite element method with moving mesh
(for the two-domain method) or with fixed mesh (for
the single-domain method) to track the convection,
and employ the mixed finite element (MFE) method
for the diffusion equation. The characteristic finite ele-
ment method alleviates the Courant number restriction
and can use reasonably large time steps, along with
producing nonoscillatory solutions without numerical
diffusion. The MFE method approximates simultane-
ously the scalar variable (the mole fraction of com-
ponent) and the diffusive fluxes across the numerical
block interfaces and can achieve a high-order and stable
approximation of both variables.

The article is organized as the following. In Section 2,
we propose mathematical model for isothermal compo-
sitional two-phase flow in porous media with molecular
diffusion and mechanical dispersion. In Section 3, a
two-domain method is developed to solve the system
of a binary fluid in one-dimensional, highly perme-
able media. In Section 4, we propose a single-domain
method to solve the two-phase convection–diffusion
process in one-dimensional, highly permeable media
and extend it to two dimensional domain. In Section 5,
we provide two numerical examples to demonstrate the
efficiency of our methods. Finally, we draw conclusions.

2 Mathematical model

Modeling equations for isothermal compositional two-
phase flow in porous media consist of (1) Darcy’s law
for phase velocities in the two phases, (2) transport
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equations for each species, and (3) local thermody-
namic equilibrium at the interface between the phases.

Species transport equations In the past, the governing
equations modeling transport of multicomponents in
single-phase flow have been outlined in the literature,
such as [5]. In this paper, we propose the expression of
transport equations for two-phase compositional flow.
The equations that model the transport of species are
obtained from the material balance of each species:

φ
∂ (czi)

∂t
+ ∇ · (

Fconv,i + Fdiff,i
) = qi, i = 1, 2, · · · , nc,

Fconv,i =
∑

α=L,G

cαxi,αuα,

Fdiff,i = −
∑

α=L,G

Sαcα Di,α∇xi,α.

Here, we denote porosity by φ and the overall molar
density by c. We use α as the phase index, and i as the
component or species index; nc is the total number of
components in the system. zi is the overall mole fraction
of component i; xi,α is the mole fraction of component
i in phase α; and cα is the molar density of phase α. qi

is the source term, which can be used to represent well
flux. The bulk flow causes the convection of species; the
convection flux Fconv,i is summation of convection flux
of component i in both phases. The molecular diffusion
and mechanical dispersion together are modeled by the
diffusion–dispersion flux Fdiff,i. In this paper, however,
we neglect mechanical dispersion and focus only on
molecular diffusion. The linear relation between the
diffusion flux Fdiff,i and the gradient of mole fraction
above is known as Fick’s law.

Darcy’s law The phase flux/velocity (uα) is given by
Darcy’s law for multiphase flow:

uα = −krα

μα

K
(∇ p − ραg

)
, α = L, G,

where K is the absolute permeability of the porous
medium; krα , μα , and ρα are the relative permeability,
viscosity, and mass density of phase α, respectively; and
p denotes the pressure and g the gravitational vector.
We have neglected capillarity in this work. Relative
permeabilities are functions of saturations.

Fluid properties and phase equilibrium calculations
The phase and volumetric behaviors (including the
calculations of the fugacities) are modeled by using the
Peng–Robinson equation of state [27]. Viscosity of oil
and gas phases is a function of temperature, pressure,
and phase composition, and it is estimated based on the
methodology of Lohrentz et al. [25].

Binary f luid in 1-D highly permeable media In the rest
of this paper, we first restrict our attention to a binary
fluid in a one-dimensional, highly permeable medium,
and at the end of Section 4, we will consider multiple
dimensional cases. We also assume zero source term
qi = 0. The transport equation and Darcy’s law are
now simplified to the following system over x ∈ � =
[0, H], t ∈ [0, T f ]:

φ
∂ (czi)

∂t
+ ∂

∂x

×
⎛

⎝
∑

α=L,G

cαxi,αuα−
∑

α=L,G

Sαcα Di,α
∂xi,α

∂x

⎞

⎠=0, i=1, 2,

(2.1)

uα + krα K
μα

∂p
∂x

=0, α= L, G. (2.2)

All boundaries are considered impermeable, and
both Darcy velocity uα and diffusive fluxes must vanish
at the boundaries:

uα = 0, x ∈ ∂� = {0, H}, α = L, G,

cα Di,α∇xi,α = 0, x ∈ ∂� = {0, H}, i = 1, 2, α = L, G.

Initial conditions are imposed for the overall molar
density by c and the overall mole fraction zi:

c(x, t) = cinit(x), t = 0,

zi(x, t) = zi,init(x), t = 0.

Additional simplification can be made by taking the
advantage that the permeability K is sufficiently large.
Noting that the Darcy velocity is a finite number, and
the relative permeability and viscosity are all bounded,
but K is sufficiently large (infinity), we then con-
clude that

∂p
∂x

� 0,

or the pressure p is a constant with respect to the spatial
direction (varies as time changes). This fact will be used
below to design fast algorithm for this system.

We note that similar results can be obtained for the
fluid flow in open space. In this case, for example, the
flow is described by Navier–Stokes equations. As a
result, the system of a binary fluid in one-dimensional,
highly permeable media can be also used to model the
nonequilibrium mass transport between the gas and
liquid phases of a binary mixture in a closed PVT cell
of fixed volume.
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3 Two-domain mixed finite element method

In the section, we propose a two-domain method for
solving the system of a binary fluid in one-dimensional,
highly permeable media. We make assumption that the
liquid and the gas have a distinct interface; that is, we
assume that the saturation SL = 1 − SG has the value
of either one or zero, but not between. We note that
without capillarity, two-phase flow in one-dimensional,
highly permeable media often results in clear inter-
face between two phases. This assumption allows us
to define two domains: the gas region and the liquid
region.

�L := {x ∈ � : SL(x, t) = 1} ,

�G := {x ∈ � : SG(x, t) = 1} .

Clearly, �L and �G vary with time and � = �L ∪ �G.
We assume �L = (0, HI) and �G = (HI, H), where
HI = HI(t) is the location of liquid–gas interface.

Within the liquid region �L, the species transport
equation becomes as follows:

φ
∂

(
cLxi,L

)

∂t
+ ∂

∂x

(
cLxi,LuL − cL Di,L

∂

∂x
xi,L

)
= 0,

i = 1, 2.

Similarly, within the gas region �G, the species trans-
port equation becomes

φ
∂

(
cGxi,G

)

∂t
+ ∂

∂x

(
cGxi,GuG − cG Di,G

∂

∂x
xi,G

)
= 0,

i = 1, 2.

We first apply time splitting to decompose the above
convection–diffusion equation into two steps: diffusion
step and convection step. In diffusion step, we solve

φ
(

ck
Lxk+1/2

i,L − ck
Lxk

i,L

)

tk+1 − tk
− ∂

∂x

(
ck

L Dk
i,L

∂

∂x
xm

i,L

)
= 0,

i = 1, 2,

where the superscripts k, k + 1/2, and m indicate the
corresponding time steps; m can be chosen to be m =
k + 1/2 for implicit time stepping (backward Euler
scheme for time integration), or m = k for explicit time

stepping (forward Euler scheme for time integration).
For a binary system, xk

1,L = 1 − xk
2,L, so we need con-

sider only the first component in the simulation:

φ
(

ck
Lxk+1/2

1,L − ck
Lxk

1,L

)

tk+1 − tk
− ∂

∂x

(
ck

L Dk
1,L

∂

∂x
xm

1,L

)
= 0.

(3.1)

Exactly the same approach can be applied for the gas
region, so we will not repeat it here and below.

In convection step, we solve

φ
(

ck+1
L xk+1

1,L −ck+1/2
L xk+1/2

1,L

)

tk+1 − tk
− ∂

∂x

(
ck+1

L xk+1/2
1,L uk+1/2

L

)
=0,

(3.2)

uk+1
L + kk+1/2

rL K

μ
k+1/2
L

∂pk+1

∂x
= 0. (3.3)

Again, the same approach can be applied for the gas
region, which is skipped here for brevity.

Dif fusion step In this step, we attempt to solve Eq. 3.1
using mixed finite element method. We first rewrite
Eq. 3.1 in a weak formulation: to seek for xk+1/2

1,L ∈
W := L2(�L) and Fdiff ∈V := H0(div, �L)={

v∈ L2(�) :
dv
dx ∈ L2(�) and v|x=0 = 0

}
such that the following two

equations hold:

⎛

⎝
φ

(
ck

Lxk+1/2
1,L − ck

Lxk
1,L

)

tk+1 − tk
, w

⎞

⎠ +
∑

E

(Fdiff, w·n)∂ E

−
∑

E

(
Fdiff,

dw

dx

)

E
= 0, ∀w ∈ W,

((
ck

L Dk
1,L

)−1
Fdiff, v

)
+ (

xm
1,L, v · n

)
∂�

−
∑

E

(
xm

1,L,
dv

dx

)

E
= 0, ∀v ∈ V.

Here, E represents the element, which is a subinterval
in one dimension.

For finite dimensional approximation, we apply the
lowest-order Raviart–Thomas space (RT0). Let 0 =
Xk

0 < Xk
1 < Xk

2 < · · · < Xk
n = HI(tk) < Xk

n+1 < · · · <

Xk
N−1 < hk

N = H be the mesh at the time step k. Let
Wh ⊂ L2(�) be the piecewise-constant space and let
Vh ⊂ H0(div, �) be the conforming (thus continuous)
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piecewise linear space. The mixed finite element formu-
lation becomes as follows: to seek for xk+1/2

1,L ∈ W := Wh

and Fdiff ∈ Vh such that the following two equations
hold:

⎛

⎝
φ

(
ck

Lxk+1/2
1,L − ck

Lxk
1,L

)

tk+1 − tk
, w

⎞

⎠

+
∑

E

(Fdiff, w·n)∂ E = 0, ∀w ∈ Wh, (3.4)

((
ck

L Dk
1,L

)−1
Fdiff, v

)
+ (

xm
1,L, v·n)

∂�

−
∑

E

(
xm

1,L,
dv

dx

)

E
= 0, ∀v ∈ Vh. (3.5)

To reduce notation complexity, we denote the mixed
finite element solution and the exact weak solution
above using the same symbol set. Since w is constant
within each element, the term involving its derivative
vanishes in Eq. 3.4. If we choose explicit time stepping
(i.e., m = k), then Eq. 3.5 decouples from Eq. 3.4; that
is, we can calculate the diffusive flux first, then substi-
tute it into Eq. 3.4 to compute the mole fraction xk+1/2

1,L .
If we integrate the first term in Eq. 3.5 exactly, this
equation is still a system of simultaneous equations for
all velocities on element interfaces. We can also apply
trapezoid quadrature rule for the first term in Eq. 3.5
to decouple the system and to get explicit formulas for
each individual diffusive flux.

Mass transfer between two domains The above
diffusion step is performed for each domain (liquid or
gas region) individually. We still need to specify a right
boundary condition (or a top boundary condition for a
vertical domain) at x = HI for the diffusion in liquid
region and a left boundary condition (or a bottom
boundary condition for a vertical domain) at x = HI

for the diffusion in gas region. We assume that at the
gas–liquid interface, the composition is in two-phase
equilibrium. In a binary system, the composition at the
interface between two phases is uniquely determined
by thermodynamic equilibrium; that is, interfacial com-
position is only a function of temperature and pressure.
We denote the equilibrium composition by x∗

i,L and x∗
i,G.

First, let us consider Fickian diffusion alone across the
gas–liquid interface from the liquid side at time step
(k + 1):

Jk+1
i,L = −ck+1,n

L Dk+1,n
L

x∗
i,L − xk+1,n

i,L(
hk+1

n /2
) , i = 1, 2.

Similarly, Fickian diffusion across the gas–liquid inter-
face from the gas side at time step (k + 1) is

Jk+1
i,G = −ck+1,n+1

G Dk+1,n+1
G

xk+1,n+1
i,G − x∗

i,G(
hk+1

n+1/2
) , i = 1, 2.

In the above equations, the superscripts k + 1 and
n indicate the time step and spatial point index,
respectively.

Since in the convection step, our mesh follows the
movement of gas–liquid interface, we account for the
bulk flow between gas–liquid interface in the diffusion
step through the boundary condition on Fdiff. The mass
balance across the gas–liquid interface (considering the
bulk flow across the interface) has the following form:

Fi,L−G = Jk+1
i,L + ck+1,n

L x∗
i,LvL = Jk+1

i,G + ck+1,n
G x∗

i,GvG,

i = 1, 2.

Summing this balance equation over the two compo-
nents yields

ck+1,n
L vL = ck+1,n

G vG.

Consequently, we have

Jk+1
i,L − Jk+1

i,G = −ck+1,n
G vG

(
x∗

i,L − x∗
i,G

)

= −ck+1,n
L vL

(
x∗

i,L − x∗
i,G

)
, i = 1, 2.

We then conclude

Fi,L−G = Jk+1
i,L + ck+1,n

L x∗
i,LvL

= Jk+1
i,L − Jk+1

i,L − Jk+1
i,G

x∗
i,L − x∗

i,G

x∗
i,L,

which can be used to specify the boundary condition for
Fdiff for the diffusion computational step on the gas–
liquid interface.

Convection step In this step, we solve the convection
part Eqs. 3.2–3.3 by assuming the absolute permeabil-
ity is sufficiently large. We can then assume that the
pressure is constant in space (but varies with time).
We use the characteristic finite element method with
moving mesh to track the convection. Let Xk+1

0 < · · · <

Xk+1
n = HI(tk+1) < · · · < Xk+1

N be the mesh at the time
step (k + 1). We define the element size

hk
i := Xk

i − Xk
i−1, i = 1, 2, · · · , N.

Let ck,i
L , pk and xk,i

1,L be the molar density of the
liquid phase at time step k in element i. Similar notation
applies to the gas phase. We note that pk does not have
a spatial subscript i because it is independent of the
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space. We use the following equation system to deter-
mine pk+1, hk+1

i , ck+1,i
L , xk+1,i

1,L , ck+1,i
G , and xk+1,i

1,G :

xk+1,i
1,L = xk,i

1,L, i = 1, 2, · · · , n, (3.6)

xk+1,i
1,G = xk,i

1,G, i = n + 1, n + 2, · · · , N, (3.7)

hk+1
i ck+1,i

L = hk
i ck,i

L , i = 1, 2, · · · , n, (3.8)

hk+1
i ck+1,i

G = hk
i ck,i

G , i = n + 1, n + 2, · · · , N, (3.9)

ck+1,i
L = cL

(
xk+1,i

1,L , pk+1
)

,

i = 1, 2, · · · , n, (3.10)

ck+1,i
G = cG

(
xk+1,i

1,G , pk+1
)

,

i = n + 1, n + 2, · · · , N, (3.11)

N∑

i=1

hk+1
i = H =

N∑

i=1

hk
i . (3.12)

The total number of equations above is (3N + 1). We
also have (3N + 1) unknowns: xk+1,i

1,L (i = 1, 2, · · · , n, ),
xk+1,i

1,G (i = n + 1, n + 2, · · · , N), hk+1
i (i = 1, 2, · · · , N),

ck+1,i
L (i = 1, 2, · · · , n, ), ck+1,i

G (i = n + 1, n + 2, · · · , N),
and pk+1. All the other unknowns can be expressed as
explicit functions of pk+1, so the system can be reduced
to a nonlinear equation of a single unknown, which can
be efficiently solved by Newton’s method.

We note that after the system undergoes convec-
tion, some elements reduce their sizes while other ele-
ments increase their sizes. This is problematic especially
for the element right besides the liquid–gas interface,
which might quickly reduce its size to zero, causing
computational pause due to CFL condition time step
limitation from diffusion step. A fix for this problem is
to merge the smallest element to its neighboring ele-
ment if its size is substantially smaller than its neighbor.
To keep the number of elements constant, we also split
the largest element into two whenever we merge two
elements into one.

4 Single-domain mixed finite element method

The two-domain method introduced previously tracks
the gas–liquid interface explicitly, and it thus can cap-
ture the interface sharply. However, this method is
difficult to extend to multidimensional domain because
it resolves the gas–liquid interface by a moving mesh
approach. Moreover, for truly porous media two-phase

flow with the saturation between 0 and 1, the previ-
ous two-domain method certainly does not apply. In
this section, we introduce another method to solve
the two-phase convection–diffusion process in one-
dimensional, highly permeable media. We do not need
to make assumption that the liquid and the gas have
a clear interface; that is, the saturation SL = 1 − SG

could have any value between one and zero.
Instead of solving liquid-phase and gas-phase species

transport equation separately, we solve the combined
two-phase species transport Eq. 2.1. We again apply
time splitting to decompose the convection–diffusion
equation into two steps: diffusion step and convection
step. We may consider only the first component in the
simulation for a binary system.

In diffusion step, we solve

φ
(

ckzk+1/2
1 − ckzk

1

)

tk+1 − tk
− ∂

∂x

⎛

⎝
∑

α=L,G

Sk
αck

α Dk
1,α

∂

∂x
xk

1,α

⎞

⎠=0,

(4.1)

where the superscripts k, and k + 1/2 indicate the cor-
responding time steps. We have chosen to use explicit
time stepping for convenience. However, implicit time
stepping can be formulated in a similar way.

In convection step, we solve

φ
(

ck+1zk+1
1 − ck+1/2zk+1/2

1

)

tk+1 − tk
− ∂

∂x

×
⎛

⎝
∑

α=L,G

ck+1
α xk+1/2

1,α uk+1/2
α

⎞

⎠ = 0, (4.2)

uk+1
α + kk+1/2

rα K

μ
k+1/2
α

∂pk+1

∂x
= 0. (4.3)

Dif fusion step The diffusion Eq. 4.1 can be also writ-
ten as follows:

φ
(

ckzk+1/2
1 − ckzk

1

)

tk+1 − tk
+ ∂ Fdiff

∂x
= 0,

Fdiff +
∑

α=L,G

Sk
αck

α Dk
1,α

∂xk
1,α

∂x
= 0.

We note that Sα , cα , Di,α , and xi,α can be calculated from
the overall composition zi and pressure p using local
equilibrium. The weak formulation of Eq. 4.1 is to seek
for zk+1/2

1,L ∈W := L2(�L) and Fdiff ∈V := H0(div, �L)=
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{
v ∈ L2(�) : dv

dx ∈ L2(�) and v|x=0 = 0
}
, such that the

following two equations hold:
⎛

⎝
φ

(
ckzk+1/2

1 − ckzk
1

)

tk+1 − tk
, w

⎞

⎠ +
∑

E

(Fdiff, w · n)∂ E

−
∑

E

(
Fdiff,

dw

dx

)

E
= 0, ∀w ∈ W,

Fdiff = Sk
L FL,diff + Sk

G FG,diff,

((
ck
α Dk

1,α

)−1
Fα,diff, v

)
+ (

xk
1,α, v · n

)
∂�

−
∑

E

(
xk

1,α,
dv

dx

)

E
= 0, ∀v ∈ V, α = 1, 2.

The mixed finite element scheme is just to replace W
and V above by appropriate finite dimensional space
such as the Raviart–Thomas space. This scheme works
well in two-phase region, but it needs special treatment
in singe-phase region. For example, (ck

L Dk
1,L) is not well

defined in the gas single-phase region; however, FL,diff

is not needed in this region as it multiplies by Sk
L = 0

to get the desired Fdiff. Thus the number of equations
need to be reduced properly in a single-phase region.

Hybrid mixed finite element method might be more
convenient to apply in the current scenario. In hybrid
mixed finite element scheme, we introduce the over-
all composition unknown zk

1,L on element interfaces.
Considering a single element E, we can establish the
hybrid mixed finite element scheme using the lowest-
order Raviart–Thomas space:
⎛

⎝
φ

(
ckzk+1/2

1 − ckzk
1

)

tk+1 − tk
, w

⎞

⎠

E

+
∑

E

(Fdiff, w · n)∂ E = 0, ∀w ∈ Wh,

Fdiff = Sk
L FL,diff + Sk

G FG,diff,

(
(ck

α Dk
1,α)−1 Fα,diff, v

)
E + (

xk
1,α, v · n

)
∂ E

−
∑

E

(
xk

1,α,
dv

dx

)

E
= 0, ∀v ∈ Vh, α = 1, 2.

For a binary system, we can make further simplifica-
tion by noting that the individual phase composition
in two-phase region is constant, and thus it must have
zero Fickian diffusion in two-phase region. Without loss
of generality, we consider the diffusive flux F∂ E

diff on
the right-hand boundary of an element E. We use the

original variables ck
α , Dk

1,α , xk
1,α , zk

1 etc. to denote the
corresponding variables at the center of the element
(or they could also be viewed as the averaged values
over the element); and we denote the value on the
right-hand boundary of the element by ck,∂ E

α , Dk,∂ E
1,α ,

xk,∂ E
1,α , zk,∂ E

1 etc. The size of the element E is denoted
by hE. The equilibrium composition at the interface of
two phases is denoted by x∗

i,L and x∗
i,G. To derive our

formulas, we make an assumption that the diffusive flux
is constant across the region from the element center to
its right-hand boundary. Equivalently, we can employ
the trapezoid quadrature rule to approximate the inte-
gral

(
(ck

α Dk
1,α)−1 Fα,diff, v

)
E

, which leads to the following
explicit formula to compute the diffusive flux:

Fα,diff = −ck
α Dk

1,α

xk,∂ E
1,α − xk

1,α

hE/2
.

The formulas to compute the diffusive flux will be
considered in the following cases. If Sk,∂ E

L = 1 and Sk
L =

1, then there exists only liquid phase in the element and
its right-hand boundary, and thus we have the form as

F∂ E
diff = −ck

L Dk
1,L

zk,∂ E
1 − zk

1

hE/2
, if Sk,∂ E

L = 1 and Sk
L = 1.

Similarly,

F∂ E
diff = −ck

G Dk
1,G

zk,∂ E
1 − zk

1

hE/2
, if Sk,∂ E

L = 0 and Sk
L = 0.

If Sk,∂ E
L ∈ (0, 1) and Sk

L ∈ (0, 1), the individual phase
composition in two-phase region is constant for a binary
system; that is, xk,∂ E

1,α = xk
1,α = x∗

1,α . Therefore, it must
have zero Fickian diffusion:

F∂ E
diff = 0, if Sk,∂ E

L ∈ (0, 1) and Sk
L ∈ (0, 1).

If Sk,∂ E
L ∈ (0, 1) and Sk

L = 1, there exists only liquid
phase in the element, but its right-hand boundary is the
interface of two phases, so we have

F∂ E
diff =−ck

L Dk
1,L

x∗
1,L − zk

1

hE/2
, if Sk,∂ E

L ∈ (0, 1) and Sk
L =1.

Similarly,

F∂ E
diff =−ck

G Dk
1,G

x∗
1,G − zk

1

hE/2
, if Sk,∂ E

L ∈(0, 1) and Sk
L =0,

F∂ E
diff = −ck,∂ E

L Dk,∂ E
1,L

zk,∂ E
1 − x∗

1,L

hE/2
,

if Sk,∂ E
L = 1 and Sk

L ∈ (0, 1),
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F∂ E
diff = −ck,∂ E

G Dk,∂ E
1,G

zk,∂ E
1 − x∗

1,G

hE/2
,

if Sk,∂ E
L = 0 and Sk

L ∈ (0, 1).

If Sk,∂ E
L = 1 and Sk

L = 0, we need first to determine
the interface of two fluid phases. Since the diffusive flux
across a finite size of two-phase region must be zero
in a binary system, there must exist a sharp liquid–gas
interface (i.e., fine size of two-phase region does not
exist) under the the assumption of constant diffusive
flux within the half cell region. We use hc to denote
the distance from the element center to the liquid–gas
interface. By the assumption that the diffusive flux is
constant across the region from the element center to
its right-hand boundary, we have

F∂ E
diff = −ck,∂ E

L Dk,∂ E
1,L

zk,∂ E
1 − x∗

1,L

hE/2 − hc
= −ck

G Dk
1,G

x∗
1,G − zk

1

hc
.

We then obtain

hc = hE/2

1+ck,∂ E
L Dk,∂ E

1,L

(
zk,∂ E

1 −x∗
1,L

)
/
(
ck

G Dk
1,G

(
x∗

1,G−zk
1

)) .

Consequently, the diffusive flux is expressed as follows:

F∂ E
diff = −ck,∂ E

L Dk,∂ E
1,L

zk,∂ E
1 − x∗

1,L

hE/2
− ck

G Dk
1,G

x∗
1,G − zk

1

hE/2
,

if Sk,∂ E
L = 1 and Sk

L = 0.

We can analogously derive

F∂ E
diff = −ck,∂ E

G Dk,∂ E
1,G

zk,∂ E
1 − x∗

1,G

hE/2
− ck

L Dk
1,L

x∗
1,L − zk

1

hE/2
,

if Sk,∂ E
L = 0 and Sk

L = 1.

We note that unlike the two-domain method in
previous section, no special treatment is necessary for
the mass transfer between the liquid region and the
gas region because every element in this method can
potentially hold liquid-phase, gas-phase, or two-phase
mixture.

Convection step In this step, we solve the convection
part Eqs. 4.2–4.3 by assuming the absolute permeability
is sufficiently large. Like before, we assume that the
pressure is constant in space (varies with time). We use
the characteristic finite element method with moving
mesh to track the convection. Using the same notation
as we did in the previous section, we formulate the

following equation system to determine pk+1, ĥi, ĉk+1,i,
and ẑk+1,i

1 :

ẑk+1,i
1,L = zk,i

1,L, i = 1, 2, · · · , N,

ĥîck+1,i = hk
i ck,i, i = 1, 2, · · · , N,

ĉk+1,i = c
(

ẑk+1,i
1 , pk+1

)
, i = 1, 2, · · · , N,

N∑

i=1

ĥi = H =
N∑

i=1

hi.

The total number of equations above is (3N + 1), which
is the same as the number of unknowns. After elimina-
tion, the system can be reduced to a nonlinear equa-
tion of a single unknown (the pressure), which can be
efficiently solved by Newton’s method.

After obtaining ĉk+1,i and ẑk+1,i
1 in the mesh formed

by ĥi (let us call it Êh), we project them back to the
original mesh formed by hi (let us call it Eh):

∫

E
ck+1,idx =

∑

Ê∈Êh

∫

E∩Ê
ĉk+1,idx, ∀E ∈ Eh,

∫

E
ck+1,izk+1,i

1 dx =
∑

Ê∈Êh

∫

E∩Ê
ĉk+1,i ẑk+1,i

1 dx, ∀E ∈ Eh.

The computed values ck+1,i and zk+1,i
1 will be used

for the calculation in the next time step while ĥi is
discarded.

Extension to two dimensional domain The single-
domain scheme can be conveniently extended to mul-
tiple spatial dimension since it uses a fixed mesh. The
main difference between one-dimensional method and
its multiple dimensional extension is to construct the
approaches for computing the pressure and updating
the mole fractions by convection. For simplification, we
consider a two-dimensional domain with rectangular
mesh. We assume that the mole fractions zk+1/2

i have
been calculated by the diffusion equation similar to
one-dimensional case. The pressure equation [37, 38]
is described as

φc f
∂p
∂t

− (v1 − v2)∇ · (cLx1,LλL + cGx1,GλG)K∇ p

− v2∇ · (cLλL + cGλG)K∇ p = (v1 − v2)∇
· (cLSL DL∇x1,L + cGSG DG∇x1,G),

Table 1 Relevant data for
1-D experiment

Parameters Values

H 0.2194 m
T 310.95
K h0 0.0768 m
P0 10.2 MPa
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Table 2 Component data used in the PR-EOS for 1-D
experiment

Tc (K) Pc (MPa) ω s

C1 190.6 4.54 0.008 −0.154
nC5 469.7 3.37 0.251 −0.042

where λα = krα
μα

, c f is the total fluid compressibility, and
vi is the total partial molar volume of the ith compo-
nent. The details of c f and vi is found in [10]. Using
the lowest-order Raviart–Thomas space on a single

element E, we can establish the hybrid mixed finite
element scheme for pressure equation: for any w ∈
Wh, v ∈ Vh, such that

(
φck

f
pk+1 − pk

tk+1 − tk
, w

)

E
+ ((

vk
1 − vk

2

) ∇ · ua, w
)

E

+ (
vk

2∇ · ub , w
)

E

= ((
vk

1 − vk
2

) ∇ · F, w
)

E , (4.4)

Fig. 1 Influence of the mesh
on the simulated pressure and
liquid level using the
two-domain method
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((
ck

Lxk
1,Lλk

L + ck
Gxk

1,Gλk
G

)−1
K−1ua, v

)

E

= (
pk+1, ∇ · v

)
E − (

pk+1, v · n
)
∂ E , (4.5)

((
ck

Lλk
L + ck

Gλk
G

)−1
K−1ub , v

)

E

= (
pk+1, ∇ · v

)
E − (

pk+1, v · n
)
∂ E , (4.6)

F = FL + FG, (4.7)

((
ck

LSk
L DL

)−1
FL, v

)

E
=(

xk
1,L,∇·v)

E−(
xk

1,L, v ·n)
∂ E ,

(4.8)

((
ck

GSk
G DG

)−1
FG, v

)

E
=(

xk
1,G, ∇ · v

)
E
−(

xk
1,G, v · n

)
∂ E

.

(4.9)

Fig. 2 Influence of the mesh
on the simulated pressure and
liquid level using the
single-domain method
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Similar to Eq. 3.5, we can also apply trapezoid quad-
rature rule for the first term of Eqs. 4.5, 4.6, 4.8, and 4.9
to decouple the system and to get explicit formulas for
each individual flux. We use piecewise-constant approx-
imation for the compositions, and then Eq. 4.4 becomes
(

φck
f
∂p
∂t

, w

)

E
+ (

vk
1 − vk

2

) |E (ua · n, w)∂ E

+ vk
2 |E (ub · n, w)∂ E

= (
vk

1 − vk
2

) |E (F · n, w)∂ E .

As a result, we can obtain the discretization equation
of pressure. After obtaining the pressure, we define the
total molar flux [26] as

uk+1 = − (
ck

Lλk
L + ck

Gλk
G

)
K∇ pk+1.

Let

f k
i = ck

Lxk
i,Lλk

L + ck
Gxk

i,Gλk
G

ck
Lλk

L + ck
Gλk

G

.

Fig. 3 Molar density
simulated on a mesh of 20
cells
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We now consider the convection equation to update
zi. Based on the operator splitting, the convection equa-
tion becomes

φ
ck

(
zk+1

i − zk+1/2
i

)

tk+1 − tk
+ uk+1 · ∇ f k

i = 0. (4.10)

Integrating Eq. 4.10 over a single element E, we obtain

∫

E
φ

ck
(

zk+1
i − zk+1/2

i

)

tk+1 − tk
+

∫

E
uk+1 · ∇ f k

i = 0.

Green’s theorem gives us

∫

E
uL · ∇ fi =

∫

∂ E
u · n fi −

∫

E
fi∇ · u.

Let the elements E1
γ and E2

γ share the edge γ with nγ

exterior to E1
γ ; that is, γ = E1

γ

⋂
E2

γ , then we define

f ∗
i |γ =

{
fi|E1

γ
, if u · nγ ≥ 0,

fi|E2
γ
, if u · nγ < 0.

Fig. 4 Molar density
simulated on a mesh of 40
cells
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We take the upwind values of fi on the edges ∂ E of
element E as

∫

∂ E
u · n fi 


∫

∂ E
u · n f ∗

i .

Since fi is constant in each element, we have

∫

E
fi∇ · u = fi|E

∫

E
∇ · u = fi|E

∫

∂ E
u · n.

Consequently, we reach

∫

E
φ

ck
(

zk+1
i − zk+1/2

i

)

tk+1 − tk
+

∫

∂ E
uk+1 · n f k∗

i

− f k
i |E

∫

∂ E
uk+1 · n = 0,

which is used to explicitly compute the values of zk+1
i .

Finally, the fugacities and mixture properties are cal-
culated by using the Peng–Robinson equation of state [27].

Fig. 5 Molar density
simulated on a mesh of 80
cells
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5 Numerical examples

5.1 1-D mixing dynamics: methane–pentane mixture

In this subsection, we simulate the mixing of methane–
pentane mixture under the same condition as reported
in [14]. One of the more comprehensive models of
PVT cell experiments is tested on a methane–pentane
mixture in [30]. The cell is initially saturated by pure

components as vapor methane and liquid pentane. The
evolution of pressure and liquid level for the same
experiment has been simulated in [14] as a verification
of their model. In this paper, we use the proposed
numerical models to simulate the evolution of pressure,
liquid level, composition, and molar density.

The PVT conditions are chosen to match those pro-
vided in [30]. The temperature (T) is constant both in
the entire domain and with time. The height (H) of

Fig. 6 Mole fraction of
methane simulated on a mesh
of 20 cells
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the tested domain, and the initial values of liquid level
(h0) and pressure (P0) are listed in Table 1. Provided in
Table 2 are the component data used for calculating fu-
gacity and mixture properties from the Peng–Robinson
equation of state (PR-EOS) [27]. These input parame-
ters for the PR-EOS include critical temperatures (Tc),
critical pressures (Pc), and acentric factors (ω), which
are from NIST Chemistry WebBook (http://webbook.
nist.gov/chemistry). In addition, volume shift parame-

ters (s) are from Jhaveri and Youngren [19]. When mix-
ture properties are calculated, the binary interaction
coefficient 0.054 is used in the PR-EOS. We use con-
stant diffusion coefficients that are DL =1.3×10−8 m2 s−1

and DG = 1.0 × 10−7 m2 s−1, respectively [14].
For purpose of simplification, we use the explicit

schemes for diffusion equations in the two methods
proposed in this paper. In this case, the proposed
methods suffer from the Courant number restriction

Fig. 7 Mole fraction of
methane simulated on a mesh
of 40 cells
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on the time steps. As a result, the two-domain method
needs to take very small time steps when the length of
some elements becomes small, but the single-domain
method can alleviate this restriction because of using
fixed mesh. Therefore, the single-domain method can
use much larger time step than the two-domain method
(three or four times larger); the former is also more
CPU efficient mainly due to allowed larger time step.
In the future work, we will employ the implicit schemes

for diffusion equations of the proposed numerical mod-
els to reduce Courant number restriction, and we will
investigate the influence of this temporal treatment.

Figures 1 and 2 illustrate how the accuracy of sim-
ulated pressure drop and liquid level is influenced by
the spatial mesh used for the two-domain and single-
domain methods. The simulated results indicate that
a mesh of ten (or more) grid cells can accurately sim-
ulate the pressure evolution, while a mesh of 20 (or

Fig. 8 Mole fraction of
methane simulated on a mesh
of 80 cells
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more) grid cells accurately simulates the liquid level
evolution, using either the two-domain or the single-
domain method. On the other hand, a finer mesh is
required for accurate resolution of the spatial profiles
of quantities (such as molar density, mole fractions,
saturations). With the same initial mesh, the single-
domain method seems slightly less accurate than the
two-domain method in predicting the evolution of the

pressure and liquid level. This is probably because
the single-domain method introduces more numerical
diffusion in its solution (without capturing the satura-
tion profile sharply or using much larger time steps).

Figures 3, 4, and 5 show molar density simulated
by the two-domain and single-domain methods on
different meshes. Figures 6, 7, and 8 show mole fraction
of methane simulated by the two methods on different

Fig. 9 Saturation of liquid
phase simulated on a mesh of
20 cells
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(a) Two-domain method
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meshes. Molar density changes with the composition,
which is determined by mass transfer occurring on the
interface between two fluid phases by dissolution and
evaporation, and in each fluid phase by the diffusion
and convection. The processes occurring on the inter-
face of two phases are generally much faster than the
diffusive and convective time scales in either phase,
and as a result, the overshoot of molar density happens
around two-phase interface. For a binary system, the

composition at the interface between two phases is
uniquely determined by thermodynamic equilibrium;
that is, interfacial composition depends only on temper-
ature and pressure. In the problem, we keep the tem-
perature constant. As shown in Figs. 6, 7, and 8, more
gaseous methane dissolves in the liquid phase during
the mixing process, and thus the pressure (constant
in the entire domina) decreases with time, which is
observed in Figs. 1 and 2.

Fig. 10 Saturation of liquid
phase simulated on a mesh of
40 cells
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(a) Two-domain method
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Fig. 11 Saturation of liquid
phase simulated on a mesh of
80 cells
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(b) Single-domain method

Figures 9, 10, and 11 show the saturation of liquid
phase simulated by two methods on different meshes.
The two-domain method produces saturation profiles
with a sharp front, while the single-domain method in-
troduces artificial two-phase region between the liquid-
phase region and the gas-phase region. However, the
artificial two-phase region is narrow (only a single ele-
ment wide), and its width tends to decrease when using
a finer mesh. Moreover, one can postprocess the result

of saturation from the single-domain method to recover
the sharp-jump saturation if needed.

Table 3 Component data used in the PR-EOS for 2-D
experiment

Tc (K) Pc (MPa) ω s

CO2 304.1 7.375 0.239 0.1137
nC10 617.7 2.11 0.489 0.0865
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Fig. 12 Gas saturation at 5.0e+4 s

5.2 2-D displacement

In this example, we simulate the displacement of nor-
mal decane (nC10) by carbon dioxide (CO2) in a two-
dimensional domain. The void space of the medium is
initially fully saturated with nC10, and then we flood the
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Fig. 13 Gas saturation at 2.0e+5 s
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Fig. 14 Gas saturation at 5.0e+5 s

system by CO2 on the lower half of the left boundary
and produce outflow on the lower half of the right
boundary. The other boundaries are impermeable. We
use the proposed numerical models to simulate the
evolution of mixture composition.
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Fig. 15 Gas saturation at 8.3e+5 s
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Fig. 16 CO2 mole fraction at 5.0e+4 s

The domain is 0.16m × 0.16m × 1m. The tempera-
ture is 313.1 K, a constant over the entire domain and
with time. The initial pressure is 4.01 MPa in the entire
domain. Provided in Table 3 are the component data
used for calculating fugacity and mixture properties
from the PR-EOS. The data are chosen from those pro-
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Fig. 17 CO2 mole fraction at 2.0e+5 s
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Fig. 18 CO2 mole fraction at 5.0e+5 s

vided in [31]. The inflow and outflow velocities are 2e −
7 and 1.5e − 7 m/s. The effect of gravity is neglected.
Diffusion coefficients are chosen to be constant: DG =
1.5e − 7 m2/s and DL = 5.6e − 9 m2/s. The domain
is homogeneous with the permeability being 109 md.
The viscosities of gas and liquid phases are 0.1 and
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Fig. 19 CO2 mole fraction at 8.3e+5 s
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Fig. 20 Molar density at 5.0e+4 s

1.0 cp, respectively. The cubic relative permeability is
employed.

An explicit scheme is used for convection and
diffusion equations, and a small time step size of 100 s
is used. We note that the pressure is almost constant
in the entire domain at any given time (but varying
with time) when the permeability is very large. Figures
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Fig. 21 Molar density at 2.0e+5 s
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Fig. 22 Molar density at 5.0e+5 s

12, 13, 14, and 15 show gas saturation profiles. Mole
fraction of CO2 and mixture molar density are shown
in Figs. 16, 17, 18, and 19, and Figs. 20, 21, 22, and 23,
respectively. Like the 1-D example, we also observe
sharp moving fronts of saturation, mole fraction, and
molar density simulated by the algorithm. The convec-
tion is dominated near the injection boundary, and the
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fluid composition changes not only with convection and
diffusion but also with mass transfer occurring on the
interface between two fluid phases.

6 Conclusions

We have developed a mathematical model for isother-
mal compositional two-phase flow in porous media. In
each time step, we apply time splitting to decompose
the original equation into two steps: diffusion step
and convection step. Then we propose two deferent
methods: single-domain and two-domain methods. In
the two-domain method, based on the assumption that
there exists a distinct interface between the liquid and
gas phases, we divide the entire computational domain
into two subdomains: the gas region and the liquid
region, and then we use the characteristic finite ele-
ment method with moving mesh to track the interface
between two subdomains, which varies with time. We
employ the mixed finite element method for diffusion
equation. The single-domain method allows the satu-
ration to vary between 0 and 1, and employs a fixed
mesh. We derive the formulas to compute the diffusive
flux for MFE. The single-domain method is extended
to multiple dimensional domain.

Numerical results indicate that both two-domain and
single-domain methods can accurately describe the evo-
lution of the pressure and liquid level. We notice that
with the same initial mesh, the single-domain method
allows much larger time steps than the two-domain
method, and is more efficient in CPU time.

Finally, we give a remark on the two methods pro-
posed in this work. The two-domain method requires
the mesh moving to capture the liquid–gas interface,
while the single-domain method does not. In two or
three spatial dimensional domains, it is difficult to cap-
ture the liquid–gas interface because of its complexity
and irregularity. Therefore, the extension to multiple
dimension is nontrivial for the two-domain method. In
the two-domain method the refinement close to the
interface is both complicated and CPU time intensive,
but it is needed for this method. On the other hand, in
the single-domain approach we do not need fine grids.
All the grids can be the same size. In future, we will
continue this effort and investigate the implicit schemes
for diffusion equations.
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