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a b s t r a c t 

Thermodynamic stability provides the range of admissible properties of fluids and deformable solids. It 

also allows determination if a substance can exist in given conditions. When a fluid reaches its limit of 

thermodynamic stability, it should change phase. In deformable solids, instability may lead to failure, and 

cracks are formed, the bulk solid stays the same, but work from tension is converted to surface energy. In 

single-component fluids, thermodynamic stability leads to the dual conditions that the isothermal com- 

pressibility and the heat capacity be positive at constant volume. In solids, both in 2D and 3D, the bulk 

modulus K and the Lamé constant μ should be positive; these two conditions arise from the mechanical 

stability. The thermal stability requires that the heat capacity to be positive. 

The criteria of thermodynamic stability in fluids and deformable solids are often derived on different ap- 

proaches. In fluids, the derivations are based on a minimum of thermodynamic functions such as internal 

energy or Helmholtz free energy. In solids, various expressions are based on volumetric behavior, geo- 

metrical, dynamic, and energy expressions. We are not aware of generalized derivations for both fluids 

and solids. 

In this work, we derive the criteria of thermodynamics stability of fluids, and deformable solids in 1D, 2D, 

and 3D. The derivations are based on the minimum of the Helmholtz free energy. The motivation from 

this work is to set a basis for expansion to thermodynamic stability of fluid-solid systems in relation to 

effect of different fluids on failure of solids. 

© 2021 Published by Elsevier B.V. 
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. Introduction 

Thermodynamic stability provides the criteria for the stability 

f phase existence at specified conditions. There may exist basic 

ifferences between the thermodynamic stability of solids and flu- 

ds. In order to see the difference, the derivations should use the 

ame approach. Apparently, a generalized derivation for thermo- 

ynamic stability of fluids and deformable solids has not been at- 

empted in the past. 

Thermodynamic stability in fluids provides the limit at which a 

uid will undergo change between two fluid states, say from gas 

o liquid or from liquid to gas state. The conditions for stability 

an be derived from the global minimum of thermodynamic func- 

ions U , F , and G , which are internal energy, Helmholtz free energy,

nd Gibbs free energy, respectively. The minimum is subject to 

onstraints and variables of the thermodynamic functions. Alterna- 

ively, the maximum of entropy may be used. In single-component 

uids, a fluid may stay in the current phase state as long as its 
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sothermal compressibility and its heat capacity at constant vol- 

me are simultaneously positive. The condition of mechanical sta- 

ility applies at constant temperature path which requires only the 

ompressibility to be positive. The thermodynamic stability allows 

 fluid exists in a negative pressure. The thermodynamic stabil- 

ty conditions for two-component and multi-component fluids are 

ell established [1] . 

In elastic deformable solids, the thermodynamic stability and 

echanical stability have not been derived with the same rigor as 

n fluids. In general, due to the tensorial nature of stress and strain 

n solids, the derivations are not as simple as in fluids where pres- 

ure and volume are scalars and serve as the variables. In solids, 

ifferent expressions based on geometry have been used to de- 

ive the conditions of mechanical stability. As an example, the ex- 

ression for the shear deformation (also known-as the first Lamé

onstant), μ = E/ (2(1 + ν)) , is often used to find one of the two

imits of Poisson’s ratio. Often ν > −1 is derived as the lowest 

imit for the Poisson’s ratio. Therefore, materials with a negative 

oisson’s ratio are theoretically possible and have been presented 

2,3] . The physical meaning is that upon extension in one direc- 
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ion, there may be swelling in the other directions. The other pa- 

ameter in the above expression is E, the Young modulus. The ex- 

ression for volumetric strain e ν = [(1 − 2 ν)(σx + σy + σz )] /E is of- 

en used to obtain the upper limit for the Poisson’s ratio ν ≤ 0 . 5 .

he limit ν = 0 . 5 is for in-compressible materials. The above lim- 

ts, −1 < ν ≤ 0 . 5 is for 3D elastic solids. There is growing interest

n 2D deformable solids [4] . In such materials the limits on the 

oisson’s ratio are given by −1 < ν < 1 [5] . Both in 2D and 3D, it

s known that the Young modulus E should be positive. 

In 1D elastic materials [6] , the Spring constant k which has 

he same numerical value as the Young modulus E is positive 

 k > 0 ), and the line thermal expasion coefficient h is positive

 h > 0 ). Comprehensive derivations for stability of deformable me- 

ia have been presented by Kochmann and Drugan [5] . These au- 

hors classify the methods as energy and dynamic in both 2D and 

D. The conditions are derived such that μ > 0 and K > 0 , μ is

he first Lamé constant, and K is the bulk modulus. In terms of 

, and λ (second Lamé constant), the 3D criteria becomes μ > 0 

nd λ + (2 / 3) μ > 0 . In 2D the criteria are given by μ > 0 and

+ μ > 0 . The results by Kochman and Drugan are in agreement 

ith the derivations in this work. Landau and Lifshitz [7] have 

ormulated the expression for the Helmholtz free energy of a de- 

ormable isotropic solid and present the condition K > 0 and μ > 0 

or mechanical stability. The steps in the derivations are not pre- 

ented. Morris and Krenn [8] have also investigated the stability 

f elastic materials. The authors use the stability from the vari- 

tion principle δF [ δu (x ) ] ≥ 0 , where F is the Helmholtz energy, 

nd δu (x ) is the variational displacement. Morris and Krenn derive 

he mechanical stability condition in the form of ξi jkl δε i j δε kl ≥ 0 , 

here ξi jkl is the symmetric part of the moduli that governs the 

ariation in the Cauchy stress tensor. Final expressions are not 

rovided in terms of the Lamé constants or Poisson’s ratio. Dun- 

oody and Ogden [9] investigate thermodynamic stability of heat 

onducting 3D elastic materials. The authors investigate a time- 

ependent problem. They derive the mechanical stability condition 

or an isotropic body in terms of Lamé constants 3 λ + 2 μ > 0 , and

hermal conductivity k > 0 . The result in terms of thermal conduc- 

ivity relates to conduction heat flux which is different from ther- 

al stability that we are seeking in this work. A large number of 

ther authors in different contexts have discussed thermodynamic 

tability of solids. Mouhat and Coudert [10] present basic deriva- 

ions of mechanical stability of crystalline lattices. In cubic crystals, 

he Born stability criteria in three separate relations are presented 

n terms of the second order elastic constants. In the rhombohe- 

ral class, there are four criteria in terms of the elastic constants. 

he authors state that the criteria have not been presented in the 

iterature. In a classical work by Truesdell and Noll “The Non-linear 

ield Theories of Mechanics” [11] only the two expression for me- 

hanical stability for elastic material are presented in terms of μ
nd λ. There are no derivations. Chen et al. [12,13] have exam- 

ned mechanical stability based on the Born criteria for a tetrago- 

al structure relevant to TaSi (5/3) desilicides and Mo 5 Si 3 silicides. 

he focus is the influence of vacancy defects on elastic and elec- 

ronic properties from first-principles calculations 

The work by Landau and Lifshitz, and Kochmann and Drugan 

re perhaps, the most comprehensible in the literature on the me- 

hanical stability of isotropic deformable bodies. A direct mathe- 

atical derivation of thermodynamic stability analysis applicable 

o both fluids and deformable bodies along with details of deriva- 

ions has not appeared in the literature to the best of our knowl- 

dge. A unified thermodynamic derivation may set the stage for 

etter understanding. Deformable solids beyond the limit of ther- 

odynamics stability would lead to rupture and creation of new 

urfaces. This is the whole idea of the concept proposed by Griffith 

n 1921 [14,15] . He suggested that the work from tensile should be 

qual to the surface energy of the created fractures. In fluids be- 
2 
ond the limit of thermodynamic stability, one may have a phase 

hange. Despite the fact that solid failure and phase change in flu- 

ds may seem very different, the thermodynamic analysis show 

quivalency of the two processes. Generalized derivations of ther- 

odynamic stability analysis in fluids and deformable isotropic 

olids is the main motivation of our work. There is very interest- 

ng observation in relation to failure of solid materials which is 

ery different from instability in fluids. Failure of solids depends 

n contact with fluids. Let us consider a piece of shale rock and 

pply stress through different fluids. The breaking of the rock will 

epend on the type of fluid. When the shale rock is contact with 

ater, the break down pressure may be two times higher than car- 

on dioxide. The effect of different fluids on failure of rocks in re- 

ation to fracturing fluids has not been fully resolved. In a recent 

ork we have analyzed the effect of three different fluids in frac- 

uring of rocks [16] . Through Griffith’s idea, the effect of different 

uids is introduced and the potential energy of the rock is con- 

erted to the fluid-rock interfacial free energy of the created sur- 

ace. As a first step the thermodynamic stability of bulk rock is the 

ey. 

In the following, we will present our derivations of thermo- 

ynamic stability of deformable isotropic linear elastic solids. The 

ame approach will be used for fluid stability. 

. Mechanics of elastic bodies 

The basic expression in relating the strain to displacement 

when the space derivatives of the deformation are small) is given 

y [17] 

 = 

1 

2 

[∇s + (∇s ) T 
]
. (1) 

here s is the displacement. Using Eq. (1) , the expression for the 

lement ε i j is given by 

 i j = 

1 

2 

[
∂s i 
∂x j 

+ 

∂s j 

∂x i 

]
. (2) 

he expression for work per unit volume for solid displacement is 

iven by 

 w = σ : d ε (3) 

here : represents the double dot product of two tensors. In Eq. 3 ,

he work done on the solid from the tension adds to the poten- 

ial energy of the solid and is considered positive. Eq. (3) can be 

ritten as, 

 w = 

n ∑ 

i =1 

n ∑ 

j= i 
σi j d ε i j , (4) 

here σi j and ε i j are the i j-th element of the tensor σ and ε , re- 

pectively. The dimension of the solid body is denoted by n . Eq. 

4) gives the expression for work per unit volume. Next, we write 

he expression for Hooke’s law in general form [18,19] 

( T , ε ) = ( T − T 0 ) B + C ε , (5) 

here T 0 is the temperature of the initial unloaded state, B is a 

econd order tensor with n 2 elements, and C is a fourth order ten- 

or with n 4 elements (81 in 3D and only one in 1D). Using Eq. (5) ,

he expression for the element σi j is given by 

i j ( T , ε ) = −b i j ( T − T 0 ) + 

n ∑ 

k =1 

n ∑ 

l=1 

C i jkl ε kl , (6) 

here b i j and C i jkl are the i j-th and i jkl-th element of tensor B 

nd C , respectively. In 1D, 

 = h (T − T 0 ) + k (x − x 0 ) (7) 
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here F is the force, h is the linear thermal expansion 

 = −k 

(
∂x 

∂T 

)
F 

, (8) 

 is the Spring constant, and x is displacement from the original 

osition x 0 . In higher dimensions ( n > 1 ), the expression for the

lement σi j in terms of Lamé constant λ and μ is given by (in 

sotropic medium) [20,21] 

i j ( T , ε ) = −β( T − T 0 ) δi j + λδi j 

n ∑ 

k =1 

ε kk + 2 με i j , (9) 

here δi j is the Kroneker delta function, β = α[ λ + (2 /n ) μ] , α is 

he coefficient of thermal expansion 

= 

1 

V 

(
∂V 

∂T 

)
σ

= − 1 

ρ

(
∂ρ

∂T 

)
σ

, (10) 

here ρ = m/V , m is the total mass, and V is the volume of the

ody. In the derivation of Eq. (10) one may use, 

d V 

V 

= 

n ∑ 

i =1 

d ε ii . (11) 

he inverse of Hooke’s law relating the strain to the stress is given 

y 

 i j ( T , σ) = 

β( T − T 0 ) 

nλ + 2 μ
δi j + 

1 

2 μ
σi j −

δi j λ

2 μ(nλ + 2 μ) 

n ∑ 

k =1 

σkk . (12) 

ased on Eq. (12) , the expressions for strain in 2D, and 3D are pro-

ided below. 

 

(2 D ) 
i j 

= 

β( T − T 0 ) 

2(λ + μ) 
+ 

1 

2 μ
σi j − δi j 

λ

4 μ(λ + μ) 
(σ11 + σ22 ) , 

i, j = 1 , 2 , (13) 

 

(3 D ) 
i j 

= 

β( T − T 0 ) 

3 λ + 2 μ
+ 

1 

2 μ
σi j − δi j 

λ

2 μ(3 λ + 2 μ) 
(σ11 + σ22 + σ33 ) , 

i, j = 1 , 2 , 3 . (14) 

.1. Young modulus and Poisson’s ratio 

The Young modulus is defined by 

 = 

σii 

ε ii 
. (15) 

ote that the above definition is the ratio of stress on the i direc-

ion to strain on the same direction while the stress on the other 

irections (in 2D and 3D) are constant. That is, σ j j = 0 , j � = i . Com-

ining Eqs. (15) and (12) , and the condition stated above provides 

he expression for the Young modulus 

 = 

2 μ(nλ + 2 μ) 

(n − 1) λ + 2 μ
. (16) 

oisson’s ratio is defined by 

= − ε ii 
ε 11 

(17) 

oisson’s ratio and the Lamé constants are well defined in 2D and 

D. Let the stress on the direction other than i be equal to zero, 

.e., σ j j = 0 , j � = i . As a results, combining Eqs. (12) and (17) gives

he expression for Poisson’s ratio 

= 

λ

(n − 1) λ + 2 μ
. (18) 
i

3 
he expressions for Young modulus and Poisson’s ratio in terms of 

amé constants in 2D and in 3D are (from Eqs. (16) and (18) ), 

 

(2 D ) = 

4 μ(λ + μ) 

λ + 2 μ
, E (3 D ) = 

μ(3 λ + 2 μ) 

λ + μ
, (19) 

(2 D ) = 

λ

λ + 2 μ
, ν(3 D ) = 

λ

2 λ + 2 μ
. (20) 

oreover, using Eqs. (16) and (18) , the Lamé constants can be ex- 

ressed in terms of Young modulus and Poisson’s ratio: 

= 

Eν

(1 + ν) [ 1 − (n − 1) ν] 
, (21) 

= 

E 

2(1 + ν) 
. (22) 

n 2D, and 3D, Eq. (21) reads as 

(2 D ) = 

Eν

(1 + ν)(1 − ν) 
, λ(3 D ) = 

Eν

(1 + ν)(1 − 2 ν) 
. (23) 

ote that the relation μ = μ(E, ν) in Eq. (22) is independent of n . 

.2. Bulk modulus 

The bulk modulus K is the volumetric modulus, while E is the 

ine modulus. The bulk modulus is defined by 

 = −V 

(
∂ p 

∂V 

)
T 

. (24) 

here p = −δi j σi j , for all i, j = 1 , . . . , n . Using Eq. (11) , one can de-

ive 

 = 

1 

n 

(
∂ Tr σ

∂ Tr ε 

)
T 

, (25) 

here we have used Tr σ = 

∑ n 
i =1 σii , and Tr ε = 

∑ n 
i =1 ε ii . Using 

ooke’s law (9) , 

r σ( T , Tr ε ) = −nβ(T − T 0 ) + (nλ + 2 μ) Tr ε . (26) 

ombining Eqs. (25) and (26) one arrives at the general expression 

f bulk modulus 

 = λ + 

2 

n 

μ. (27) 

. Thermodynamics of stability 

The first law of thermodynamics is stated as 

 u = T d s + d w, (28) 

here u is the internal energy per unit volume, T is temperature 

nd s is the entropy per unit volume. Using Eq. (3) , the first law of

hermodynamics reads as 

 u = T d s + σ : d ε , (29) 

he Helmholtz free energy per volume f = f (T , ε ) can be obtained

rom the first Legendre transformation of u 

 f = −s d T + σ : d ε , (30) 

here s = s (T , ε ) is the entropy per volume. Since tensors σ and

 are symmetrical, the Helmholtz free energy per volume can be a 

unction of ε i j with i ≤ j. Therefore, 

 f = −s d T + 

n ∑ 

i =1 

σii d ε ii + 2 

∑ 

i< j 

σi j d ε i j , (31) 

.e., there are only 1 + n + n (n − 1) / 2 independent variables. 
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.1. Stability based on f

According to [1,22,23] the state is locally stable, if the 

elmholtz free energy is concave in temperature and convex in the 

xtensive variables. Let us denote 

 = 

(
ε 11 , . . . , ε nn ; ε 12 , . . . , ε 1 n ; ε 23 , . . . , ε 2 n ; . . . , ε (n −1) n 

)T 

∈ R 

n + n (n −1) / 2 . (32) 

hen, the state is locally stable if the Hessian matrix H ε 

 ε ( y ) = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

∂ f 
∂ y 1 ∂ y 2 

∂ f 
∂y 1 y 2 

. . . 
∂ f 

∂y 1 y m 

∂ f 
∂y 2 y 1 

∂ f 
∂y 2 y 2 

. . . 
∂ f 

∂y 2 y m 

. . . 
. . . 

. . . 
. . . 

∂ f 
∂y m y 1 

∂ f 
∂y m y 2 

. . . 
∂ f 

∂y m y m 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

, (33) 

here y i is the i -th component of vector y , is positive definite,

nd 

∂ 2 f 

∂T 2 
< 0 . (34) 

he positive definiteness can be examined using the Sylvester cri- 

erion [24] or other method from linear algebra. In 1D, based on 

q. (7) , the expression for the Helmholtz free energy is 

 f = −s d T + F d x. (35) 

hen, the second derivative reads as 

∂ 2 f 

∂x 2 

)
T 

= k, (36) 

∂ 2 f 

∂T 2 

)
x 

= −
(

∂s 

∂T 

)
x 

. (37) 

n higher dimensions, combining Eqs. (9) and (31) results in 

∂ f 

∂ε ii 
= σii = −β + λ

n ∑ 

k =1 

ε kk + 2 με ii , i = 1 , . . . , n, (38) 

∂ f 

∂ε i j 

= 2 σi j = 4 με i j , i < j and i, j = 1 , . . . , n, (39) 

∂ f 

∂T 

)
ε 

= −s. (40) 

sing Eqs. (38) –(40) , the second derivatives of the Helmholtz free 

nergy f with respect to ε i j and T read as 

∂ 2 f 

∂ε ii 
= λ + 2 μ, i = 1 , . . . , n, (41) 

∂ 2 f 

∂ε ii ε j j 

= λ, i < j, i = 1 , . . . , n, (42) 

∂ 2 f 

∂ε 2 
i j 

= 4 μ, i < j, i, j = 1 , . . . , n, (43) 

∂ 2 f 

∂T 2 

)
ε 

= −
(

∂s 

∂T 

)
ε 

. (44) 

he other second derivatives are zero. 

Now, we present stability conditions in one, two, and three di- 

ensions. First, we present the thermal condition. In 1D, the con- 

avity argument in temperature results in condition 

∂ 2 f 

∂T 2 

)
= −

(
∂s 

∂T 

)
< 0 . (45) 
x x 

4 
sing the specific heat capacity at constant displacement c x de- 

ned by 

 x = T 

(
∂s 

∂T 

)
x 

, (46) 

he thermal stability condition (45) reads as 

 x > 0 . (47) 

n 2D and 3D, the concavity argument in temperature results in 

ondition 

∂ 2 f 

∂T 2 

)
ε 

= −
(

∂s 

∂T 

)
ε 

< 0 . (48) 

ince the specific heat capacity at constant strain c ε 

 ε = T 

(
∂s 

∂T 

)
ε 

, (49) 

he thermal stability condition (48) reads as 

 ε > 0 . (50) 

The mechanical stability arises from the convexity argument of 

he Helmholtz free energy in ε. In 1D, we readily obtain k > 0 .

n 2D, the strain variables are y = ( ε 11 , ε 22 , ε 12 ) 
T , and the Hessian 

atrix reads as 

 

(2 D ) 
ε (y ) = 

( 

λ + 2 μ λ 0 

λ λ + 2 μ 0 

0 0 4 μ

) 

. (51) 

sing the Sylvester criteria we get three conditions 

+ 2 μ> 0 , (52) 

 

λ + 2 μ) 
2 − λ2 > 0 , (53) 

 μ
[
( λ + 2 μ) 

2 − λ2 
]
> 0 . (54) 

n order to be positive definite, all three conditions must be sat- 

sfied. The solution is μ > 0 and λ + μ > 0 . In 3D, the strain vari-

bles are y = ( ε 11 , ε 22 , ε 33 , ε 12 , ε 13 , ε 23 ) 
T , and the Hessian matrix 

eads as 

 

(3 D ) 
ε (y ) = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

λ + 2 μ λ λ 0 0 0 

λ λ + 2 μ λ 0 0 0 

λ λ λ + 2 μ 0 0 0 

0 0 0 4 μ 0 0 

0 0 0 0 4 μ 0 

0 0 0 0 0 4 μ

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

. 

(55) 

sing the Sylvester criteria we get six conditions 

+ 2 μ> 0 , (56) 

 

λ + 2 μ) 
2 − λ2 > 0 , (57) 

 

λ + 2 μ) 
3 + 2 λ3 − 3 λ2 ( λ + 2 μ) > 0 , (58) 

 μ
[
( λ + 2 μ) 

3 + 2 λ3 − 3 λ2 ( λ + 2 μ) 
]
> 0 , (59) 

6 μ2 
[
( λ + 2 μ) 

3 + 2 λ3 − 3 λ2 ( λ + 2 μ) 
]
> 0 , (60) 

4 μ3 
[
( λ + 2 μ) 

3 + 2 λ3 − 3 λ2 ( λ + 2 μ) 
]
> 0 . (61) 
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Table 1 

Stability conditions in different dimensions. 

Mechanical Thermal 

dimension λ, μ E, ν K, μ c ∗

1D - k > 0 - c x > 0 

2D μ > 0 , λ + μ > 0 E > 0 , −1 < ν < 1 μ > 0 , K > 0 c ε > 0 

3D μ > 0 , λ + (2 / 3) μ > 0 E > 0 , −1 < ν ≤ 0 . 5 μ > 0 , K > 0 c ε > 0 

I

T

3

e

s

T

(

N

E

T(

C

c

E

3

o

λ
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4

s

H

d

w
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d

w

s

s(
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−

w
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e(
S(
t

c

I

t

w

s

a

t

r

o

5

i

e

a

n order to be positive definite, all six conditions must be satisfied. 

he solution is μ > 0 and λ + 2 / 3 μ > 0 . 

Therefore, in 2D and 3D, the mechanical stability is given by 

μ > 0 , 

nλ + 2 μ > 0 . 
(62) 

.2. Stability in terms of Young modulus and Poisson’s ratio 

Using Eqs. (21) –(22) , the mechanical stability conditions can be 

xpressed in terms of the Young modulus and Poisson’s ratio. The 

tability condition μ > 0 and Eq. (22) gives 

E 

2(1 + ν) 
> 0 . (63) 

herefore, 

 

E > 0 and ν > −1 ) or ( E < 0 and ν < −1 ) . (64) 

ext, we analyze the second stability condition nλ + 2 μ > 0 . Using 

qs. (21) –(22) , the stability condition can be transformed to 

E 

(1 − (n − 1) ν) 
> 0 . (65) 

herefore, 

E > 0 and ν < 

1 

n − 1 

)
or 

(
E < 0 and ν > 

1 

n − 1 

)
, 

n = 2 and 3 . (66) 

ombining Eqs. (64) and (66) leads to the final form of the stability 

onditions in terms of the Young modulus and Poison’s ratio 

 > 0 and ν ∈ 

(
−1 ; 1 

n − 1 

)
, n = 2 and 3 . (67) 

.3. Stability in terms of Bulk modulus 

The mechanical stability conditions can be expressed in terms 

f Bulk modulus K and one other parameter. Using Eq. (27) , K = 

+ (2 /n ) μ, and the condition from Eq. (62) results in 

 > 0 and μ > 0 . (68) 

.4. Summary of the stability conditions 

In Table 1 , we summarize the stability conditions in the three 

asic dimensions. 

. Thermodynamic stability of fluids 

We will also use the Helmholtz free energy to derive the 

tability condition for fluids. For a single-component fluid, the 

elmholtz free energy is given by 

 f = −s d T − pd v , (69) 

hich is obtained from Eq. (31) by 

= −pI , (70) 
5 
 v = 

3 ∑ 

i =1 

d ε ii , (71) 

here I is the unit tensor. We will use the same method as in 

olids to get the well-known stability conditions for fluids [1] . The 

econd derivative of f with respect to v is, 

∂ 2 f 

∂v 2 

)
T 

= −
(

∂ p 

∂v 

)
T 

. (72) 

sing the convexity argument, we get the condition (
∂ p 

∂v 

)
T 

> 0 , (73) 

hich is the mechanical stability condition. The thermal condition 

s derived from the concavity argument of the Helmholtz free en- 

rgy in temperature. Therefore, the thermal condition reads as 

∂ 2 f 

∂T 2 

)
v 

= −
(

∂s 

∂T 

)
v 

< 0 . (74) 

ince 

∂s 

∂T 

)
v 

= 

c v 

T 
, (75) 

he condition (74) implies 

 v > 0 . (76) 

n our review of the literature on thermodynamic stability of elas- 

ic solids we observed the focus has been on mechanical stability 

ithout consideration of thermal stability. The criterion of thermal 

tability of isotropic deformable solids is given by Eq. (47) for 1D, 

nd by Eq. (50) for 2D and 3D materials. One application relates 

o geothermal energy and calculation of energy transfer from hot 

ock by a working fluid for geothemal energy production as state 

f stress changes. 

. Concluding remarks 

We have derived the criteria of thermodynamic stability of flu- 

ds and deformable and isotropic materials using Helmholtz free 

nergy in a unified manner. The main conclusions from our work 

re: 

1. The Helmholtz free energy can be used to derive the criteria of 

mechanical and thermal stability of both fluids and deformable 

isotropic solids based on Sylvester’s approach to establish ma- 

trix definiteness. 

2. The concavity of Helmholtz free energy in temperature can pro- 

vide thermal stability. In fluids and in deformable solids the 

convexity with respect to strain, and volume, respectively, pro- 

vides mechanical stability. Well known criteria of thermody- 

namic stability in 1D, 2D, and 3D in deformable solids, and flu- 

ids are then readily established. 

3. The derivations in solids are more general and can be used to 

derive the expressions in fluids. From fluids one may not extend 
the derivations for deformable solids 
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Despite simplicity the derivations are rigorous; they will set the 

tage for investigation of effect of different fluids on failure of de- 

ormable materials. Fracturing of rocks by fluids such as CO 2 and 

ater is a clear example of high industrial importance. The idea 

ntroduced by Griffith is in support of effect of different fluids on 

ailure of elastic bodies [14–16,25] . 
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ion. Ji ří Mikyška: Supervision, Funding acquisition. 

cknowledgment 

The authors thanks Czech Science Foundation for financial sup- 

ort (the project Multiphase flow, transport, and structural changes 

elated to water freezing and thawing in the subsurface, project no. 

1-09093S) 

upplementary material 

Supplementary material associated with this article can be 

ound, in the online version, at 10.1016/j.fluid.2021.113219 

eferences 

[1] A. Firoozabadi , Thermodynamics and Applications in Hydrocarbon Energy Pro- 

duction, McGraw-Hill Education, New York, 2016 . 
[2] R. Lakes, Foam structures with a negative Poisson’s ratio, Science 235 (4792) 

(1987) 1038–1040, doi: 10.1126/science.235.4792.1038 . 
[3] R. Lakes, K.W. Wojciechowski, Negative compressibility, negative poisson’s ra- 

tio, and stability, Physica status solidi (b) 245 (3) (2008) 545–551, doi: 10.1002/ 

pssb.200777708 . 
[4] K.N. Kudin, G.E. Scuseria, B.I. Yakobson, C2f, BN, And c nanoshell elasticity 

from ab initio computations, Physical Review B 64 (23) (2001), doi: 10.1103/ 
physrevb.64.235406 . 

[5] D.M. Kochmann, W.J. Drugan, Analytical stability conditions for elastic com- 
posite materials with a non-positive-definite phase, Proceedings of the Royal 

Society A: Mathematical, Physical and Engineering Sciences 468 (2144) (2012) 

2230–2254, doi: 10.1098/rspa.2011.0546 . 
6 
[6] M. Liu, V.I. Artyukhov, B.I. Yakobson, Mechanochemistry of one-dimensional 
boron: structural and electronic transitions, J. Am. Chem. Soc. 139 (5) (2017) 

2111–2117, doi: 10.1021/jacs.6b12750 . 
[7] L.D. Landau , E.M. Lifshitz , Course of theoretical physics, theory of elasticity, 

volume 7, 3, Pergamon Press, 1986 . 
[8] J.W. Morris, C.R. Krenn, The internal stability of an elastic solid, Philos. Mag. A 

80 (12) (20 0 0) 2827–2840, doi: 10.1080/01418610 0 08223897 . 
[9] J. Dunwoody, R.W. Ogden, On the thermodynamic stability of elastic heat- 

conducting solids subject to a deformation—temperature constraint, Math- 

ematics and Mechanics of Solids 7 (3) (2002) 285–306, doi: 10.1177/ 
108128602027736 . 

[10] F. Mouhat, F.-X. Coudert, Necessary and sufficient elastic stability conditions 
in various crystal systems, Physical Review B 90 (22) (2014), doi: 10.1103/ 

physrevb.90.224104 . 
[11] C. Truesdell , W. Noll , The Non-linear Field Theories of Mechanics, 3, Springer 

Berlin Heidelberg, Berlin, Heidelberg, 2003 . 

12] J. Chen, X. Zhang, C. Ying, H. Ma, J. Li, F. Wang, H. Guo, The influence of
vacancy defects on elastic and electronic properties of TaSi (5/3) desilicides 

from a first-principles calculations, Ceram Int 46 (8) (2020) 10992–10999, 
doi: 10.1016/j.ceramint.2020.01.115 . 

[13] J. Chen, X. Zhang, L. Yang, F. Wang, The vacancy defects and oxygen atoms 
occupation effects on mechanical and electronic properties of Mo5Si3 silicides, 

Commun Theor Phys 73 (4) (2021) 045702, doi: 10.1088/1572-9494/abe367 . 

[14] A .A . Griffith, VI. the phenomena of rupture and flow in solids, Philosophical
Transactions of the Royal Society of London. Series A, Containing Papers of 

a Mathematical or Physical Character 221 (582–593) (1921) 163–198, doi: 10. 
1098/rsta.1921.0 0 06 . 

[15] A .A . Griffith , The theory of rupture, in: First International Congress for Applied
Mechanics, 1924, pp. 55–63 . 

[16] Y. Feng , K. Haugen , A. Firoozabadi , Phase-field simulation of hydraulic fractur- 

ing by CO 2 , water and nitrogen in 2D and comparison with laboratory data, 
submitted to Journal of Geophysical Research: Solid Earth (2021) . 

[17] W. Slaughter , The Linearized Theory of Elasticity, Birkhäuser, Boston, 2002 . 
[18] F. Maršík , Termodynamika kontinua, Academia, Praha, 1999 . 

[19] W. Nowacki, Problems of thermoelasticity, Prog. Aerosp. Sci. 10 (1970) 1–63, 
doi: 10.1016/0376-0421(70)90 0 03-5 . 

20] F. Maršík, Consequences of thermodynamical conditions of stability for ther- 

moviscous fluids and thermoviscoelastic solids, Acta Physica Hungarica 66 
(1989) 198–2020, doi: 10.1007/BF03155792 . 

21] R.M. Christensen , Theory of Viscoelasticity, Academic Press, New York, 1982 . 
22] H.B. Callen, Thermodynamics and an Introduction to Thermostatistics; 2nd ed, 

Wiley, New York, NY, 1985. URL https://cds.cern.ch/record/450289 
23] V.A. Lubarda, On the Gibbs conditions of stable equilibrium, convexity and the 

second-order variations of thermodynamic potentials in nonlinear thermoelas- 

ticity, Int J Solids Struct 45 (1) (2008) 48–63, doi: 10.1016/j.ijsolstr.2007.07.010 . 
24] R. Horn , Matrix analysis, Cambridge University Press, Cambridge New York, 

2012 . 
25] T. Wu, A. Firoozabadi, Calculation of solid–fluid interfacial free energy with 

consideration of solid deformation by molecular dynamics simulations, The 
Journal of Physical Chemistry A 125 (26) (2021) 5841–5848, doi: 10.1021/acs. 

jpca.1c00735 . 


