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a b s t r a c t 

This work presents an efficient and accurate algorithm for multicomponent compressible single-phase flow in 

fractured media. The model covers 2D, 2.5D and 3D unstructured gridding and accounts for heterogeneity and 

anisotropy. The fracture cross-flow equilibrium approach (FCFE) is applied in triangular finite elements (FE) in 

2D and prism and tetrahedra (FE) in 2.5D and 3D, respectively. One can then simulate flow in fractured media 

with fractures in different orientations. Unstructured gridding with FCFE allows simulating realistic fractured 

porous media efficiently. In addition, FCFE in unstructured gridding alleviates the limitation of the number of 

intersecting fractures. In rectangular and hexahedron FE, the number is limited to 2 in 2D and 3 in 3D. To 

generate domains with complicated boundaries, we have developed a computer-aided design (CAD) interface. 

We demonstrate the efficiency and accuracy of our model by several numerical examples. Our examples include 

comparison with analytical solution and convergence rate. 
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. Introduction 

Modelling of compressible flow is of high interest in geochemical and

etroleum subsurface formations. A challenge in subsurface simulation

elates to flow in the fractures. Fractured porous media impose large

ange in spatial scales, permeabilities and fluxes, and generally have

omplex geometries. Using structured grids may not accurately describe

he complexity. Commercial simulators may not converge in the near-

ell region because structured grids are not well suited to model radial

ow near wells (Fung et al., 2013) . 

Numerous approximations are used for flow modelling in fractured

edia. These approximations are applied in single phase flow ( Sandve

t al., 2012; Ahmed et al., 2015; Hoteit and Firoozabadi, 2005 ) and

ulti-phase flow ( Bastian et al., 2000 ; Granet et al., 1998; Bogdanov

t al., 2003; Geiger et al., 2004, 2009; Abushaikhaa et al., 2015; Chen

t al., 2015 Nick and Matthäi, 2011; Matthäi et al., 2007a,b; Unsal et al.,

010 ). The approximations are divided into two broad categories: the

ual-continuum model and the discrete fracture-matrix model. The low

omputational cost of the dual-continuum models makes them attrac-

ive in modeling fracture networks (Warren and Root, 1963; Gilman

nd Kazemi, 1983) . The dual-porosity model has been extended to multi

ate transfer function (Di Donato et al., 2004; Geiger et al., 2013) . The

iscrete fracture-matrix (DFM) model is known for high accuracy and
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exibility in fracture representation ( Karimi-Fard et al., 2004; Kim and

eo, 2000; Reichenberger et al., 2006 ; Makedonska et al., 2015; Hy-

an et al., 2015; Hoteit and Firoozabadi, 2008; Zidane and Firoozabadi,

014, 2017 ). The DFM approach geometrically matches the fracture and

atrix grid-cells. When a lower dimension fractures representation is

sed, the fracture elements in DFM coincide with the matrix element

nterfaces. In addition to the classical DFM, Li and Lee (2008) proposed

he embedded discrete fracture model (EDFM), it was later adopted by

oinfar et al. (2014) . The EDFM is considered as a non-conforming DFM

odel. As a result, in EDFM, one could have more than four intersecting

ractures even when applied on structured grids. The EDFM is known

o have limitations to model low permeability fractures. Tene et al.,

2017) presented the projection based EDFM (pEDFM) to overcome the

imitations of the EDFM. 

In this work we have selected the DFM for its attractive features in

arge scale and sparse fracture systems. We assume that the fracture

perture is small compared to the matrix scale (Noorishad and Mehran,

982; Granet et al., 1998; Martin et al., 2005) ; therefore, the fractures

re represented by ( n -1)-dimensional elements in an n -dimensional do-

ain. 

The ease of implementation makes the finite difference (FD), and

he finite volume (FV) approaches the most commonly used numerical

ethods in structured and unstructured grids, respectively. The FD and

V approaches are usually accompanied with a two-point flux approxi-
gust 2018 
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Fig. 1. 2D and 3D grid generation, thick lines represent the fractures. 

m  

e  

E  

(  

b  

i  

t  

t  

2  

2  

M  

W  

p  

s  
ation (TPFA) to calculate the field fluxes. The FV method ( Aavatsmark

t al., 1998; Edwards, 2002; Edwards and Zheng, 2010 ; Lamine and

dwards, 2010, 2013 ) is more convenient to model oblique fractures

Karimi-Fard et al., 2004; Schmid et al., 2013) . However, the coupling

etween the lowest-order methods and TPFA produces excessive numer-

cal dispersion and suffers from grid sensitivity. To overcome the limi-

ations of TPFA, the multipoint flux approximation (MPFA) has been in-
69 
roduced (Aavatsmark, 2002; Kozdon et al., 2011; Huggenberger et al.,

015; Bastista et al., 2013; Nordbotten et al., 2007; Aavatsmark et al.,

008; Younes et al., 2013; Younes et al., 2015; Aavatsmark et al., 2010;

atringe et al., 2009; Salama et al., 2013; Wheeler and Yotov, 2006;

heeler et al., 2011, 2012) . The fluxes in MPFA are constructed from

ressures in the surrounding elements making MPFA attractive in un-

tructured grids. However, MPFA may produce unphysical oscillations
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Fig. 2. Multiple intersecting fractures. 

Table 1 

Relevant properties and initial conditions: Ex- 

ample 3. 

Injection gas [mole%] 100 C 1 
Initial fluid in the domain [mole%] 100 C 3 
Pressure [bar] 50 

Temperature [K] 397 

Porosity [-] 0.2 

Matrix permeability [md] 1 

Fracture permeability [md] 1.d5 

Fracture thickness [mm] 2 

Injection rate [PV/year] 1.0 

Table 2 

CPU time (min) with different number of fracture el- 

ements: Example 3. 

Scenario Fracture elements CPU time (min) 

Example 3–0 0 1.54 

Example 3–1 10 1.61 

Example 3–2 20 1.68 

Example 3–3 30 1.78 

Example 3–4 40 1.92 

Example 3–5 50 1.96 

Example 3–6 60 2.13 

Example 3–7 70 2.21 

Example 3–8 80 2.42 

Fig. 4. Centration vs. time at the production well: Example 1. 

Fig. 5. Domain with fractures: Example 2. 

Fig. 3. Domain and mesh (a), and tracer concentration (b): Example 1. 

70 
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Fig. 6. Relative L 1 (a) and L 2 (b) errors: Example 2. 

Table 3 

Relevant properties and initial conditions: Ex- 

ample 5. 

Injection gas [mole%] 100 CO 2 

Initial fluid in the domain [mole%] 100 C 3 
Pressure [bar] 50 

Temperature [K] 397 

Porosity [-] 0.2 

Matrix permeability [md] 1 

Fracture permeability [md] 1.d5 

Fracture thickness [mm] 1 

Injection rate [PV/year] 1.0 
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n the pressure field (Nordbotten et al., 2007; Aavatsmark et al., 2008;

ounes et al., 2014) . 

The use of finite element (FE) method in unstructured gridding has

ained popularity since 1970 s in many disciplines in science and engi-

eering (Nejati et al., 2015; Moortgat and Firoozabadi, 2016) . In this

ork we adopt the combination of the mixed finite element (MFE)

ethod and the discontinuous Galerkin (DG) method. The MFE in its

ybridized form provides pressure at the cell center and the traces of

ressure at the cell interfaces. This ensures high accuracy in flux calcu-

ation in fractured reservoirs. The mass conservative DG method is used

o discretize the mass transport equation. DG is particularly attractive

n fractured reservoir simulation, because the approximation does not
71 
ave to be continuous between elements. By using DG in highly het-

rogeneous (fractured) media one can capture the discontinuity of con-

entration between the low permeable matrix and the high permeable

racture network. 

The cross-flow equilibrium (CFE) concept in the discrete fracture

pproach was introduced to model multicomponent compressible flow

n fractured porous media (Hoteit and Firoozabadi, 2005) . In CFE, the

ressure/concentration in a fracture element is assumed to be equal to

he pressure/concentration in the surrounding matrix elements. This as-

umption requires the matrix grids next to fractures to be small. The

mall grid-cells may impose restriction on the size of time step due

o the Courant–Freidricks–Levy (CFL) condition in explicit schemes.

ater Hoteit and Firoozabadi (2008) advanced the efficiency of flow

alculations in fractured media by the fracture cross-flow equilibrium

FCFE) approach in incompressible flow. In 2014, Zidane and Firooz-

badi (2014) have used the FCFE to model multicomponent compress-

ble flow in fractured porous media. In compositional extension it is

ssumed that both pressure and concentration are constant across the

racture width. Compared to CFE concept, the FCFE approach alleviates

he need for small elements in the matrix grid cells. In our previous ap-

lication the method was limited to structured grid-cells. In this work we

pply for the first time the FCFE approach in compressible flow in 2D,

.5D and in 3D for all commonly used finite elements (FE). Discretiza-

ion of the pressure equation in compressible multicomponent flow is

ore complicated than the incompressible flow as we will show in the
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Fig. 7. Domain and fracture network: Example 3. 
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iscretization section. Our model applies to quadrangular and triangu-

ar elements in 2D and to hexahedra, prism and tetrahedra elements in

D. In addition, we have developed for the first time a computer-aided

esign (CAD) interface coupled with our mesh generator. This allows
Fig. 8. Overall mole fraction of methane at 5% PVI (a), 25% PVI (b) and 

72 
he user to generate very complicated fractured domains in an efficient

ay. 

Unstructured grids offer several advantages over structured grids in

eservoir simulation. The advantages include the ease to simulate frac-

ured reservoirs in which fractures have different orientations. A trian-

ular finite element could be oriented in different directions such that

ne (or more) of its edges is (are) aligned with the fractures. One of the

hallenges is to generate unstructured triangular grids that some ele-

ents are aligned to the orientation of the different fractures. We high-

ight the two dominant methods in unstructured triangular grid genera-

ion and justify our choice for one of the two. In one, the advancing front

ethod, the cells that make up the interior of the mesh are modeled by

arching away from the boundaries of the domain (Anderson 1994) .

he other method is the Delaunay triangulation. The Delaunay tech-

ique triangulates a set of points in such a way that no extremely skewed

ells are generated. In the Delaunay triangulation one can have the

oints on the desired edges to be part of the field points generated a

riori when using the FCFE model. The details of the Delaunay triangu-

ation are presented in Anderson (1994) . In 2.5D one uses prism type

E extruded from 2D triangular elements as we will explain later. Prism

E provides a more realistic representation of the fractures compared

o hexahedron FE in DFM. In 3D we use fully unstructured tetrahedron

rids. Similarly to 2D, in 2.5D and 3D the fractures are also represented

y the interfaces of the FE. 

We provide a description of the proposed model in generating un-

tructured 2D and 3D grids in the next section. Then we present the

ifferential equations that describe multicomponent compressible flow

n fractured media and a brief overview on the discretization of the pres-
70% (c) (white lines represent streamlines at 70% PVI): Example 3. 
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Fig. 9. Meshes with reduced fracture elements (domain size 50 ×50 m 

2 ): Example 3. 
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ure and the species mass balance equations in the rock matrix and the

racture network. We provide several examples to highlight the features

f the model and conclude with few remarks. 

. Model description 

For completeness we briefly present the main features of our model

hich combines different spatial and temporal discretization schemes

n the matrix and in the fracture network to advance efficiency and ac-

uracy. The basis and test functions in the numerical discretization for

ifferent types of FEs are presented in Appendix A . The essences of the

odel are: 

• The hybridized mixed finite element method (MFE) is used to cal-

culate the fluxes in the matrix domain and the fracture network

(Durlofsky, 1994; Mosé et al., 1994; Darlow et al., 1984; Hoteit and

Firoozabdi, 2008; Younes et al., 2011; Zidane et al., 2012; Zidane

et al., 2014a; Zidane et al., 2014b; Zidane and Firoozabadi, 2014;

Zidane and Firoozabdi, 2015) . The MFE formulation can readily ac-

commodate full permeability tensors. 
73 
• The discontinuous Galerkin (DG) method is used to solve the mass

balance equations in the matrix. A slope limiter is used to remove

the nonphysical oscillations (Cockburn and Shu, 1989, 1998; Younes

et al., 2014, 2015; Chavent and Jaffré 1986; Hoteit et al., 2004;

Siegel et al., 1997) . 
• A finite volume approach is used to discretize the species mass bal-

ance equations in the fractures. 
• The traces of the pressure in the matrix and the fracture network are

implicitly updated at each time step. 
• The molar densities in the fracture network are implicitly updated

at each time step. 
• The molar densities in the matrix domain are explicitly updated at

each time step. The implicit pressure-explicit concentration (IMPEC)

approach in the matrix domain is found to be stable and efficient

in single-phase flow and also in multiphase compositional flow as

demonstrated in Moortgat and Firoozabadi (2016) and Zidane and

Firoozabdi (2017) . However, an IMPEC approach is not efficient

when used in the fractures. This is due to the small size of the frac-

ture elements that impose a severe restriction on the size of time
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Fig. 10. Overall mole fraction of methane at 70% PVI in domains with reduced fracture elements (domain size 50 ×50 m 

2 ): Example 3. 

74 
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Fig. 11. Domain and meshes; fractures are represented by thick black lines (domain size 1000 ×300 m 

2 ): Example 4. 
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Table 4 

Relevant properties and initial conditions: 

Example 7. 

Pressure [bar] 115 

Temperature [K] 397 

Porosity (zone1) [-] 0.1 

Porosity (zone2) [-] 0.2 

Matrix permeability [md] (zone1) 0.1 

Matrix permeability [md] (zone2) 10 

Fracture permeability [md] 1.d5 

Fracture thickness [mm] 1 

Injection rate [PV/year] 0.1 

i  

b  

l  

d  

f  

c  

t  

e  
step. Therefore we adopt an implicit time scheme in the fracture

network. The larger size of the matrix elements justifies the use of

an explicit discretization in the matrix domain instead of a fully im-

plicit scheme. 
• Unstructured triangular elements are used in 2D, and prism and

tetrahedron elements are used in 3D. 

. Unstructured 2D, 2.5D and 3D grid generation 

Triangular elements allow simulating oblique fractures ( Fig. 1a )

ithout imposing approximations on the matrix elements (Reiter et al.,

012) . In FCFE, the set of points that define the domain and the locations

f the fractures should be provided a priori ( Fig. 1a, b ). The grids are

hen generated by starting from the domain and the fracture input data

oints ( Fig. 1 c). In rectangular domains and a small number of fractures

 Fig. 1 b) the set of points could be manually generated. However, this

echnique is not efficient when the domain boundaries are complex and

he number of fractures is high. To overcome this deficiency we have

eveloped an interface to read data points from a CAD (Computer-aided

esign) output. CAD software is usually used to create two and three di-

ensional graphical representations of physical objects. Using a CAD
75 
nterface makes it possible to generate very complex boundaries (as will

e shown in the examples) rapidly. In addition, the CAD software al-

ows reading pre-existing maps/domains that have “dwg, dws, dwt and

xf ” extensions and edit them by adding/removing boundary and/or

racture points. Unstructured prism FE is used in 2.5D. The prisms are

onstructed from triangular 2D surfaces ( Fig. 1 d). The 2D triangles are

hen extruded to as many layers as required ( Fig. 1 e) and extrude the

dges of the triangles to 2D planes in space. The technique can generate
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Fig. 12. Overall mole fraction of methane at 10% PVI with the different meshes (domain size 1000 ×300 m 

2 ): Example 4. 

Table 5 

Compositions of initial and injected fluids: Example 7. 

Component Initial [mole %] Injected [mole %] 

CO 2 0.00 100 

C 1 5 0 

C 2 6 0 

C 3 15 0 

C 4 9 0 

C 5 22 0 

C 6 19 0 

C 7 24 0 

s  

a  

f  

t  

e  

(  

e  

(

4

4

 

e  

d  
everal layers of a reservoir and assign different properties to each layer

s will be demonstrated later in the examples. The edge defining the
76 
racture in 2D by two nodes (e.g. n 2 - n 3 Fig. 1 e); the extruded nodes of

his edge ( n 5 - n 6 Fig. 1 f) are defined as fracture nodes in 3D. The pre-

xisting nodes and the extruded nodes define a fracture element in 3D

 Fig. 1 f). Tetrahedra are used in full 3D discretization and they are gen-

rated by dividing a hexahedra FE into 6 tetrahedra and by using Tetgen

see Fig. 1 g) (Si 2011) . 

. Mathematical model 

.1. Governing equations in the matrix 

The rock matrix and the discrete fractures in our model have differ-

nt geometrical dimensions in the simulation domain ( n- D for the matrix

omain and ( n- 1) - D for the fracture network). The governing equations
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Fig. 13. Overall mole fraction of methane at 60% PVI with the different meshes (white lines in the 1600 elements plot represent the streamlines; domain size 

1000 ×300 m 

2 ): Example 4. 
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re, therefore, treated separately. The superscript m denotes the matrix;

he superscript f denotes the fractures. The mass balance of component

 in miscible and compressible flow is given by the following equation:

𝑚 
𝜕𝑐 𝑚 
𝑖 

𝜕𝑡 
+ ∇ . 

(
𝑐 𝑚 
𝑖 
𝑣 𝑚 

)
− 𝑓 𝑚 

𝑖 
= 0 , 𝑖 = 1 ... 𝑛 𝑐 in Ω × ( 0 , 𝛕) (1)

In the above equation, ∅ denotes the porosity, v the velocity field,

 i = cz i the molar density of component i where c is the overall molar

ensity; z i and f i are the mole fraction and the sink/source term of com-

onent i in the mixture, respectively. Ω is the computational domain

nd 𝜏 denotes the simulation time and n c is the number of components.

The flow in porous media is described by Darcy’s law: 

 = − 

𝒌 

𝜇
( ∇ 𝑝 − 𝜌𝒈 ) (2)
77 
here k is the absolute permeability tensor, 𝜇 the dynamic viscosity, p

he pressure, 𝜌 the mass density and g the gravitational acceleration. 

The Peng–Robinson equation of state (EOS) (Peng and Robinson,

976) is used to describe the molar density c as a function of the

omposition, temperature and pressure as follows: 

 = 

𝑝 

𝑍𝑅𝑇 

 

3 − ( 1 − 𝐵 ) 𝑍 

2 + 

(
𝐴 − 3 𝐵 2 − 2 𝐵 

)
𝑍 − 

(
𝐴𝐵 − 𝐵 2 − 𝐵 3 

)
= 0 (3)

 is the compressibility factor, R the gas constant, T the temperature,

nd M i the molar mass of component i . To complete the system of equa-

ions, we use the volume balance approach from Acs et al. (1985) and

atts (1986) to compute the pressure field in compressible flow. The
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Fig. 14. Overall mole fraction of methane at the production well with different 

mesh refinements: Example 4. 
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xpression for the volume balance is given by: 

𝑚 𝐶 𝑚 
𝑡 

𝜕 𝑝 𝑚 

𝜕𝑡 
+ 

𝑛 𝑐 ∑
𝑖 =1 
𝑉 𝑚 
𝑖 

(
∇ . 
(
𝑐 𝑚 
𝑖 
𝑣 𝑚 

)
− 𝑓 𝑚 

𝑖 

)
= 0 (4)

here C t is the total compressibility, 𝑉 𝑖 is the total partial molar volume

f component i in the mixture (Firoozabadi 2015) . 

.2. Governing equations in the fractures 

The mass balance equations in the fractures integrated along the frac-

ure width 𝜀 in ( n- 1)-D are expressed by: 

𝑓 
𝜕𝑐 
𝑓 

𝑖 

𝜕𝑡 
+ ∇ . 

(
𝑐 
𝑓 

𝑖 
𝑣 𝑓 

)
− 𝑄̄ 

𝑓 

𝑖 
− 𝑓 

𝑓 

𝑖 
= 0 , 𝑖 = 1 ... 𝑛 𝑐 (5)

The term 𝑄̄ 

𝑓 

𝑖 
is the mass flux of component i across the matrix-

racture boundaries in the mixture. 

Similarly to the matrix domain, the pressure field in the fractures is

btained from: 

𝑓 𝐶 
𝑓 

𝑡 

𝜕 𝑝 𝑓 

𝜕𝑡 
+ 

𝑛 𝑐 ∑
𝑖 =1 
𝑉 
𝑓 

𝑖 

(
∇ . 

(
𝑐 
𝑓 

𝑖 
𝑣 𝑓 

)
− 𝑄̄ 

𝑓 

𝑖 
− 𝑓 

𝑓 

𝑖 

)
= 0 (6)

. Numerical discretization 

.1. Discretization of the flow equation 

The hybridized mixed finite element (MFE) method with the lowest

rder Raviart–Thomas (RT) basis space is used to discretize the volumet-

ic flow in the matrix and the fractures. The global system of equations

or the pressure is obtained by writing the continuity of fluxes and pres-

ures at all the interfaces of the matrix elements and the fractures ele-

ents. The number of unknowns equals the number of interfaces in the

atrix domain ( Tp m + p f ) plus the number of interfaces in the fracture

etwork ( Tp f ). 

 

 

 

 

𝐴 𝑚,𝑚 𝐴 𝑚,𝑓 0 
𝐴 𝑚,𝑓 𝐴 𝑓 ,𝑓 − ̄𝑅 

𝑓 

0 𝑅 

𝑇 ,𝑓 𝑀 

𝑓 

⎤ ⎥ ⎥ ⎦ 
⎡ ⎢ ⎢ ⎣ 
𝑻 𝒑 𝒎 

𝑷 𝒇 

𝑻 𝒑 𝒇 

⎤ ⎥ ⎥ ⎦ = 

⎡ ⎢ ⎢ ⎣ 
𝑉 𝑚 

𝑉 𝑓 

0 

⎤ ⎥ ⎥ ⎦ (7)

Derivation of Eq. (7) and the definition of all elements are given in

ppendix A . 
78 
.2. Discretization of the transport equations 

The DG method is used to discretize the species transport equations

n the matrix with an explicit time scheme. Multiplying the first ex-

ression in Eq. (1) by the shape function 𝜑 K,l and integrating over each

atrix element K we get: 

𝑛 𝑗 

𝑖 =1 

𝑑 𝑐 𝑚 
𝑖,𝐾 ,𝑗 

𝑑𝑡 
∫
𝐾 

∅𝑚 
𝐾 
𝜑 𝐾,𝑙 𝜑 𝐾,𝑗 = ∫

𝐾 

𝜑 𝐾,𝑙 𝑓 
𝑚 
𝑖 

+ 

𝑛 𝑗 ∑
𝑗=1 

𝑛 𝐸 ∑
𝐸=1 

𝑞 𝐾,𝐸 

( 

𝑐 𝑚 
𝑖,𝐾,𝑗 

∫
𝐾 

𝜑 𝐾,𝑗 𝑤 𝐾,𝐸 ∇ 𝜑 𝐾,𝑙 − 

𝑐 𝑚 
𝑖,𝐾,𝐸,𝑗 |𝐸 | ∫

𝐸 

𝜑 𝐾,𝑙 𝜑 𝐾,𝑗 

) 

(8) 

In the above equation for a matrix element K, 𝑐 𝑚 
𝑖,𝐾,𝑗 

is the molar den-

ity of component i at node j, n j is the number of nodes , 𝑐 𝑚 
𝑖,𝐾,𝐸,𝑗 

is the

pstream molar density of component i at node j of interface E, q K,E is

he volume flux across the interface E and n E is the total number of

nterfaces in matrix element K . 

The system of ordinary differential equations of order n j (per ele-

ent) is obtained by writing Eq. (8) over each element K in the matrix

omain coupled with a slope limiter stabilization to remove the non-

hysical oscillations. 

As opposed to the matrix elements, the mass balance equation in the

mall fracture elements is discretized with an implicit time scheme to

vercome the CFL restriction. To avoid the expensive DG approximation

n the fractures, a finite volume method is applied in the fractures as

ollows: 

𝑓 

𝑘 

𝑐 
𝑓 ,𝑛 +1 
𝑖,𝑘 

− 𝑐 
𝑓 ,𝑛 

𝑖,𝑘 

Δ𝑡 
+ 

𝑛 𝑒 ∑
𝑒 =1 
𝑐 
𝑓 ,𝑛 

𝑖,𝑒 
𝑞 
𝑓 ,𝑛 

𝑘,𝑒 
= 𝑄̄ 

𝑓 , 𝐾 1 
𝑖 

+ 𝑄̄ 

𝑓 , 𝐾 2 
𝑖 

+ 𝑓 
𝑓 ,𝑛 

𝑖,𝑘 
(9)

here 𝑐 
𝑓 ,𝑛 

𝑖,𝑒 
denotes the upstream value of the molar density. The term

̄
 

𝑓 , 𝐾 𝑗 

𝑖 
( j = 1, 2) represents the matrix/fracture exchange flux. The dis-

retization in the fractures and coupling the fracture network with the

atrix domain are presented in Appendix B . The above equation is writ-

en for all the fracture elements and the system of equations are lin-

arized and solved using the Newton–Raphson (NR) method. 

.3. Upstream technique for multiple intersecting fractures 

In structured grids, the maximum number of intersecting fracture

lements at one interface is four. In unstructured grids the maximum

umber of intersecting fracture elements may be higher; in principle

t depends on the mesh quality and the order of refinement near the

ractures. In two intersecting fractures, the upstream value is deduced

rom the flux direction. When n t fractures intersect at point O , and n u is

he number of fractures with fluxes in the upstream direction ( Fig. 2 ),

he upstream value at the intersection is given as follows (Zidane and

iroozabadi, 2014) : 

 

𝑓 

𝑖,𝑂 
= 

∑𝑛 𝑢 
𝑗=1 𝑐 

𝑓 

𝑖, 𝑘 𝑗 
𝑞 
𝑓 

𝑘 𝑗 ∑𝑛 𝑢 
𝑗=1 𝑞 

𝑓 

𝑘 𝑗 

. (10)

. Numerical examples 

We present in the following seven examples with different number

f fractures and different geometries. In addition to the examples, we

resent in Appendix C a pinch-out problem and a domain with oblique

racture in 3D in Appendix D . The implementation of a barrier in FCFE is

emonstrated in Appendix E , and one example with anisotropy is stud-

ed in Appendix F . An Intel Core-i5 PC, 3 GHZ CPU, 4 GBRAM is used

n all the runs. CPU time is for 1 pore volume injection (PVI) unless

pecified otherwise. 
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Fig. 15. Domain with locations of injection and production wells (a), and meshes (b and c) (thick black lines represent the fractures): Example 5. 
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.1. Example 1: Single fracture 

In this example we consider the single fracture problem from

hmed et al. (2015) . The domain is 1 m ×1 m with one oblique frac-

ure ( Fig. 3 a). The fracture thickness is 1 mm with 10 4 md permeability.

he permeability of the matrix is 1 md. The injector is located at one

orner and production at constant pressure is at the opposite corner.

he injection rate is 0.3171 PV/year. A Neumann boundary condition

ith zero flux is imposed on the domain boundary. We compare the

esults of our model to the control-volume distributed multipoint flux

pproximation model with lower dimensional fractures (or CVD-MPFA-

) (Ahmed et al., 2015) and the hybrid (Sandve et al., 2012) (CVD-

PFA-H) and to the equidimensional model where fractures are rep-

esented by the same dimension as the matrix elements. Note that Eq.

4 ) should be reduced to incompressible single-phase flow to make the

roblem the same as in Ahmed et al. (2015) . The tracer concentration

t the production well is recorded throughout the simulation and com-
 i  

79 
ared to the results of the three different models. As shown in Fig. 4 an

xcellent agreement is observed between our model (FCFE) and CVD-

PFA-L, and CVD-MPFA-H and the equidimensional model. In Fig. 3 b

e show the tracer concentration at 1.2 PVI. The contour profile is

imilar to the one by Ahmed et al. (2015) in the tracer incompressible

ow. 

.2. Example 2: Intersecting fractures 

We compare our model to the vertex approximate gradient (VAG)

nite volume scheme and the results to an example presented in

ing et al. (2016) . The importance of this example is the analytical solu-

ion provided by the authors (Xing et al., 2016) . Comparing our numer-

cal results to an exact solution demonstrates the accuracy of the model.

he domain of unit surface area contains four intersecting fractures that

e denote by f 1 , f 2 , f 3 and f 4 ( Fig. 5 ). The fracture to matrix permeabil-

ty ratio is 200 for f 1 and f 2 , and 400 for f 3 and f 4 . The fracture aperture
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Fig. 16. Overall mole fraction of CO2 at 10% PVI with 600 elements (a) and 2600 elements (b): Example 5. 
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model. 
s 0.01 for all fractures. Porosity is set to one in the whole domain. In

ig.6 we show the convergence of the relative L 1 and L 2 errors between

he analytical solution and the numerical solution of our model and the

odel of Xing et al. (2016) at different mesh refinements in the matrix

nd the fractures. As shown in Fig. 6 the error in our model is less than

he VAG model in both the matrix and the fractures even with lower

esh refinement in our model. The error difference between our model

nd VAG is more significant in the matrix domain than the fractures.

his is because of the accuracy of our higher-order DG results in the

atrix. 

.3. Example 3: CPU time 

In this example we consider a network of intersecting fractures as

hown in Fig. 7 . The properties of the domain are given in Table 1 . Lo-

ations of injection and production wells are the same as in Example

. The overall mole fraction of methane is shown in Fig. 8 at differ-
80 
nt PVIs. The total number of matrix elements is 1400. The fracture

etwork includes 80 (n-1)-D elements. Higher number of fracture ele-

ents implies a larger matrix to be inverted during the NR iterations

see Eq. (9 )). To evaluate the effect of the number of fracture elements

n the CPU time, we randomly remove 10 fracture elements from the

racture network. The order and/or location of the randomly removed

ractures does not affect the CPU cost. As a result, the new domain has

0 (n-1)-D fracture elements. This procedure is repeated 8 times by re-

ucing the number of fracture elements 10 at a time (see Fig. 9 a to g). In

he 8th reduction, the problem reduces to unfractured media ( Fig. 9 h).

e show in Table 2 the CPU time at 100% PVI for different cases with

ifferent number of fractures from 0 (unfractured media) to 80 frac-

ure elements (shown in Fig. 7 ). In Fig. 10 we show the overall mole

raction of methane at 70% PVI at different fracture reductions. The

mall increase in the CPU time from 1.54 min for unfractured media

o 2.42 min (80 fracture elements) demonstrates the efficiency of our
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Fig. 17. Overall mole fraction of CO2 at 50% PVI with 600 elements (a) and 2600 elements (b): Example 5. 
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.4. Example 4: 1-Km long domain 

In this example we consider a 1000 m ×300 m domain ( Fig. 11 )

ith a set of randomly distributed fractures with lengths from 220 m to

50 m. We run this example in five different mesh refinements ( Fig. 11 )

oing from a very coarse mesh of 75 elements to 1600 elements. The

roperties of the domain are the same as in Example 3 except a 1 mm

racture thickness is used. Injection well is located at one corner with

 constant rate of 1 PV/year, and production is performed at constant

ressure at the opposite corner. In Figs. 12 and 13 , we show the overall

ole fraction of methane at 10 and 60% PVI with all meshes. Results

how that even with the coarse mesh of 600 elements, the model pro-

uces comparable results to the relatively fine mesh of 1600 elements at

ow and high PVI. The high accuracy of our model is partly due to the

igher-order nodal discontinuous Galerkin method. In nodal DG, one

ode connects more information with the surrounding elements com-

ared to the lower-order FV method. In the latter, one grid-cell shares

he same average value with the surrounding three elements at the edges

d  

81 
f the triangular finite element. For a more qualitative study of the mesh

efinement we compare the overall mole fraction of methane at the pro-

uction well in all meshes ( Fig.14 ). A good agreement is observed start-

ng from a 300 elements compared to the 1600 mesh. The CPU time is

 min for 1600 refined mesh. We run a simulation with 3200 elements

or this problem (not shown) and results are in agreement with the re-

ults of 1600 element mesh. 

.5. Example 5: Non-regular boundaries 

In the previous examples we considered rectangular domains, al-

hough the discretization is based on unstructured grids. In such cases,

here there is no complexity in geometry, the use of our CAD interface

s not needed. When the geometry becomes more complex, the use of

ur CAD interface becomes essential for efficient mesh generation. In

his example we consider a complicated domain boundaries as shown

n Fig. 15 a. The domain is generated using the CAD interface that was

iscussed above. The domain includes a set of randomly distributed frac-
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Fig. 18. Domain with locations of injection and production wells (a), and mesh (b) (thick black lines represent the fractures; domain size is the same as Example 5 

with 100 m vertical extrusion): Example 6. 
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t  
ures with different lengths varying from 140 to 460 m. CO 2 is injected at

ne corner to displace propane to the opposite corner of the domain. The

ocations of the injection and production wells are shown in Fig. 15 a.

he relevant data of the domain is shown in Table 3 . Two different mesh

efinements are used: a coarse mesh of 600 elements and a fine mesh

f 2600 elements ( Fig. 15 b,c). The overall mole fraction of CO 2 at 10%

nd 50% PVI is shown in Figs. 16 and 17 , respectively, for both meshes.

here is good agreement. 

As shown in Fig. 15 , the largest elements in the computational do-

ain are located near the fracture network. This advantage of the FCFE

pproach results in: (i) lower total number of elements, and (ii) avoid-

ng the excessive CFL condition in and near the fractures. Away from

he fracture network the size of the elements reduces as a result of the

omplex boundaries and not as a requirement by the model. In a domain

ith complex boundaries, the small areas are discretized with smaller

nite elements. In this example these areas are located between 450 and

50 m (shown by dashed circles in Fig. 15 c). Having a coarser mesh in

hese areas is possible but will result in losing details of the meanders

t the boundaries. The CPU time for the refined mesh is 8 min. 
82 
.6. Example 6: 2.5D vertical extrusion of the 2D complex domain 

The CAD interface in our mesh generator help with the generation

f complicated 3D domains. In this example the domain of the previ-

us example is extruded in the z-direction with a thickness of 100 m

 Fig. 18 a). The properties of the domain in this example are the same as

n Example 5. Locations of the injection and production wells are shown

n Fig. 18 a. The mesh is based on the refined mesh of Example 5 (2600

lements, see Fig. 15 c). The 2D mesh is then extruded into 3 layers; 2

ayers of 25 m thickness and a third layer at the top of 50 m thickness.

he fractures that are represented by lines in 2D are now represented

y planes in 3D. The mesh of the domain with the fractures is shown in

ig. 18 b. Extruding a triangular finite element into a 3D space creates a

rism FE. The prism FE offers the same flexibility as the triangular FE

ffers in 2D. The prism could be rotated in a way that one (or more) of

he interfaces is (are) aligned with the desired locations of the fractures.

n Figs. 19 and 20 we show the overall mole fraction of CO 2 in the ma-

rix (Figs.19a, 20a) and in the fracture network ( Figs. 19 b, 20 b) at 10%
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Fig. 19. Overall mole fraction of CO 2 in matrix (a) and in fractures (b) at 10% PVI (domain size is the same as Example 5 with 100 m vertical extrusion): Example 6. 
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nd 50% PVI, respectively. The CPU time to 1 PVI in this example is

5 min. 

.7. Example 7: Fractured sandwich reservoir 

In the last example we consider a multilayered fractured reservoir

ith 1 Km long, 0.3 Km width and 0.3 Km height ( Fig. 21 a to d). As

hown in Fig. 21 , the fractures have different orientations along the x

nd y axes. The reservoir consists of four overlapped layers; two lay-

rs have a permeability of 0.1 md and a porosity of 10% and two

ayers with 10 md and a porosity of 20%. The layers are arranged

s shown in Fig. 21 -e. The mesh and the location of the fractures are

hown in Fig. 21 -f. The properties of the domain are given in Table 4 .

he total number of elements in the matrix domain and the fracture

etwork are 6000 and 600, respectively. The composition of the ini-

ial oil is shown in Table 5 . CO 2 is uniformly injected at one verti-

al side and production is performed uniformly at the opposite verti-

al side of the domain. For reference, we show the overall mole frac-

ion of the injected CO 2 at 15, 25 and 80% PVI in both the matrix

omain and the fracture network ( Fig. 22 ). The high value of mole
83 
raction of the injected fluid at the top and the low value at the bot-

om, even at 80% PVI, are due to two factors: (i) the difference in ma-

rix permeability between top and bottom, and (ii) the effect of the

oundary meanders on flow. The CPU time in this example is about

8 min. 

. Summary and conclusions 

We have incorporated the FCFE concept in 2D, 2.5D and 3D unstruc-

ured grids to simulate multicomponent compressible flow in fractured

edia. Our grid generator is coupled with a CAD interface. Based on the

esults from the examples in the text and in the appendices we draw the

ollowing conclusions: 

• One can readily adapt the MFE formulation to simulate anisotropic

and heterogeneous media. The mixed finite element (MFE) formula-

tion can be readily adapted to account for full permeability tensors

to simulate anisotropic and heterogeneous media. 
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Fig. 20. Overall mole fraction of CO 2 in matrix (a) and in fractures (b) at 50% PVI (domain size is the same as Example 5 with 100 m vertical extrusion): Example 6. 
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• We demonstrate that the incorporation of the FCFE concept with

higher-order DG alleviates the need for mesh refinement in compli-

cated domains in unstructured gridding. 
• The prism and tetrahedra FE with FCFE in 3D allow simulation of

realistic fractured domains. The extrusion of prism FE from 2D tri-

angular elements makes the fracture entities in 3D to be represented

by planes. As a result one could have the fractures oriented with dif-

ferent angles along the three axes, and removes the limitation on the

number of intersecting fractures as opposed to hexahedron FE. 
• Accuracy of the algorithm is demonstrated by convergence of coarser

mesh to the results of a more refined mesh even in complicated ge-

ometries. 
• The use of a CAD interface is found to be a very efficient way to

generate complex geometries in 2D and 3D. 
• Unstructured tetrahedron FE allows simulation of domains that in-

clude sharp boundaries in physical properties as in the case of pinch-

out problems. 

Application of our CAD interface to fractures in fully unstructured

ridding is limited in this work to planar fracture shapes. When the
84 
racture shapes are more complex coupling with CAD is challenging.

his will be investigated in the future. 

The work covers single phase flow in 2D and in 3D. A full extension

o multiphase compositional flow adds more complexity to the formu-

ation and the computational time on unstructured 3D gridding. The

urface tension in compositional multiphase flow is low, which reduces

he effect of capillary pressure; however, more complexity arises when

alculating the matrix-fracture and fracture-fracture exchange flux in

ifferent phases; since phase fluxes could be in different directions from

atrix to fractures and vice versa. As opposed to single phase flow, in

ultiphase compositional flow, the implicit solution of the transport

quation in the fractures requires the calculation of derivatives of the

olar density of each component in each phase with respect to the total

olar density of each component. When applied in unstructured grid in

D and/or 3D, these derivatives should be calculated for all intersected

ractures. In single phase flow this derivative is always one. Full cou-

ling of the CAD to unstructured tetrahedron FE and adding multiphase

ompositional flow to unstructured 2D and 3D grids is in progress for

uture publication. 
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Fig. 21. Domain and 3D mesh (fractures are represented by thick black lines) domain dimensions (a), x-z projection (b), x-y projection (c), y-z projection 

(d), permeability layers (e) and mesh (f): Example 7. 

85 
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Fig. 22. Overall mole fraction of CO 2 at different PVIs in the matrix domain (left) and the fracture network (right), (domain size 1000 ×300 ×300 m3): Example 7. 

A

 

v  

a

A

 

t

 

m

 

 

 

g[
 

cknowledgement 

This work was supported by the member companies of the Reser-

oir Engineering Research Institute (RERI) whose support is gratefully

cknowledged. 

ppendix A. Discretization of the pressure equation 

In this appendix we show how to obtain the global system of equa-

ions to solve for the pressure. 
86 
The continuity of the fluxes and the pressure at the interfaces in the

atrix domain leads to: [ 
𝑅 

𝑇 ,𝑚,𝑚 

𝑅 

𝑇 ,𝑚,𝑓 

] [
𝑷 𝒎 

]
− 

[ 
𝑀 

𝑚,𝑚 

𝑀 

𝑓 ,𝑚 

𝑀 

𝑚,𝑓 

𝑀 

𝑓 ,𝑓 

] [ 
𝑻 𝒑 𝒎 

𝑷 𝒇 

] 
= 

[ 
0 
𝑸 

𝒇 

] 
(11)

And in the fracture network: [
𝑅 

𝑇 ,𝑓 
][
𝑷 𝒇 

]
− 

[
𝑀 

𝑓 
][
𝑻 𝒑 𝒇 

]
= [ 0 ] (12)

Integration of the pressure equation ( Eq. 6 in the text) in the matrix

ives: 

𝐷̄ 

𝑚 
][
𝑷 𝒎 

]
− 

[
𝑅̄ 

𝑚,𝑚 𝑅̄ 

𝑚,𝑓 
][ 𝑻 𝒑 𝒎 

𝑷 𝒇 

] 
= 

[
𝐹 𝑚 

]
(13)



A. Zidane, A. Firoozabadi Advances in Water Resources 121 (2018) 68–96 

Table A1 

Elements in matrices of the pressure equations. 

Matrix Elements 

𝛼K,E 

∑
𝐸 ′
𝛽𝐾,𝐸 ,𝐸 ′

𝛽K,E, E ′ ( 𝐵 −1 
𝐾 
) 𝐸 ,𝐸 ′

B K,E, E ′ ∫𝑘 𝑤 𝐾,𝐸 𝐊 −1 𝑤 𝐾,𝐸 ′
R T,m, m 𝛼𝑚 

𝐾,𝐸 

R T,m, f 𝛼𝑚 
𝐾,𝐸 

M 

m,m 
∑

𝐸 ′𝜀𝜕𝐾 

𝛽𝑚 
𝐾,𝐸 ,𝐸 ′

M 

m,f 
∑

𝐸 ′𝜀𝜕𝐾 

𝛽𝑚 
𝐾,𝐸 ,𝐸 ′

M 

f,f 
∑

𝐸 ′𝜀𝜕𝐾 

𝛽𝑚 
𝐾,𝐸 ,𝐸 ′

A m,m 𝑅 𝑇 ,𝑚,𝑚 𝐷 𝑚 −1 𝑅̂ 𝑚𝑚 − 𝑀 

𝑚,𝑚 

A m,f 𝑅 𝑇 ,𝑚,𝑚 𝐷 𝑚 −1 𝑅̂ 𝑚𝑓 − 𝑀 

𝑚,𝑓 

A f,m − 𝑅 𝑇 ,𝑚,𝑓 𝐷 𝑚 −1 𝑅̂ 𝑚𝑚 + 𝑀 

𝑓,𝑚 

A f,f − 𝑅 𝑇𝑚,𝑓 𝐷 𝑚 −1 𝑅̂ 𝑚𝑓 + 𝑀 

𝑓,𝑓 + 𝐷 𝑓 

V m − R T,m, f D m − 1 G m 

V f G f + R T,m, f D m − 1 G m 

D m 
𝜙𝐶 𝑡 |𝐾|

Δ𝑡 
+ 𝛼𝑚 

𝐾,𝐸 

G m 
𝜙𝐶 𝑡 |𝐾|

Δ𝑡 
𝑝 𝑛 
𝐾 
+ 
∑
𝑖 

𝑉 𝑖 |𝐾|𝐹 𝑖 
Table A2 

Basis functions for DG and RT in different FEs. 

The basis functions for DG ( 𝜑 ) and RT ( w ) for different FEs are given 

below: 

Reference element DG RT 

𝜑 1 = 1 − x − y 𝒘 𝟏 = 
( 
𝑥 

𝑦 − 1 

) 
𝜑 2 = x 𝒘 𝟐 = 

( 
𝑥 

𝑦 

) 
𝜑 3 = y 𝒘 𝟑 = 

( 
𝑥 − 1 
𝑦 

) 

𝜑 1 = (1 − x − y )(1 − z ) 𝒘 𝟏 = 
⎛ ⎜ ⎜ ⎝ 
𝑥 

𝑦 − 1 
0 

⎞ ⎟ ⎟ ⎠ 
𝜑 2 = x (1 − z ) 

𝜑 3 = y (1 − z ) 𝒘 𝟐 = 
⎛ ⎜ ⎜ ⎝ 
𝑥 

𝑦 − 1 
0 

⎞ ⎟ ⎟ ⎠ 
𝜑 4 = (1 − x − y ) z 𝒘 𝟑 = 

⎛ ⎜ ⎜ ⎝ 
𝑥 

𝑦 

0 

⎞ ⎟ ⎟ ⎠ 
𝜑 5 = xz 𝒘 𝟒 = 2 

⎛ ⎜ ⎜ ⎝ 
0 
0 
𝑧 

⎞ ⎟ ⎟ ⎠ 
𝜑 6 = yz 𝒘 𝟓 = 2 

⎛ ⎜ ⎜ ⎝ 
0 
0 

𝑧 − 1 

⎞ ⎟ ⎟ ⎠ 
𝜑 1 = 1 − x − y − z 𝒘 𝟏 = 2 

⎛ ⎜ ⎜ ⎝ 
𝑥 

𝑦 − 1 
𝑧 

⎞ ⎟ ⎟ ⎠ 
𝜑 2 = x 𝒘 𝟐 = 2 

⎛ ⎜ ⎜ ⎝ 
𝑥 − 1 
𝑦 

𝑧 

⎞ ⎟ ⎟ ⎠ 
𝜑 3 = y 𝒘 𝟑 = 2 

⎛ ⎜ ⎜ ⎝ 
𝑥 

𝑦 

𝑧 

⎞ ⎟ ⎟ ⎠ 
𝜑 4 = z 𝒘 𝟒 = 2 

⎛ ⎜ ⎜ ⎝ 
𝑥 

𝑦 

𝑧 − 1 

⎞ ⎟ ⎟ ⎠ 
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And in the fractures 

𝐷̄ 

𝑓 
][
𝑃 𝑓 

]
− 

[
𝑅̄ 

𝑓 
][
𝑻 𝒑 𝒇 

]
= 

[
𝐹 𝑓 

]
+ 

[
𝑸 

𝒇 
]

(14)
87 
Combining the above equations and using the Gaussian elimination

o reduce the size of the global system we get: 

 

 

 

 

𝐴 𝑚,𝑚 𝐴 𝑚,𝑓 0 
𝐴 𝑚,𝑓 𝐴 𝑓 ,𝑓 − ̄𝑅 

𝑓 

0 𝑅 

𝑇 ,𝑓 𝑀 

𝑓 

⎤ ⎥ ⎥ ⎦ 
⎡ ⎢ ⎢ ⎣ 
𝑻 𝒑 𝒎 

𝑷 𝒇 

𝑻 𝒑 𝒇 

⎤ ⎥ ⎥ ⎦ = 

⎡ ⎢ ⎢ ⎣ 
𝑉 𝑚 

𝑉 𝑓 

0 

⎤ ⎥ ⎥ ⎦ (15) 

The elements of the matrices in the above equations are given in

able A1 . The coefficient w K,E in Table A1 are the Raviart–Thomas ba-

is functions and K is the permeability tensor (see Zidane and Firooz-

badi, 2014 ). In Table A1 E represents the edge where the parameters

 𝛼K,E , 𝛽K,E, E ′ ) are evaluated and E ′ represents the adjacent edges of E in

he element K . 

ppendix B. Matrix and fractures discretization variables and 

xchange fluxes 

We adopt a lower dimensional representation of the fractures com-

ared to the matrix dimension. This is justified because of small frac-

ure aperture compared to the matrix domain. Each fracture element ex-

hanges fluxes with two matrix elements. The two fluxes ( ̄𝑄 

𝑓 , 𝐾 1 
𝑖 

+ 𝑄̄ 

𝑓 , 𝐾 2 
𝑖 

)

elong to the interfaces of the matrix grid cells. If the fracture element

s at the boundary of the domain, the interaction in this case is lim-

ted to one matrix element. Therefore, three different scenarios could

e observed regarding the matrix-fracture flux. The first case is when

he two matrix elements are feeding the fracture element (represented

y fracture f 1 in Fig. B1 ). The second case is when the fracture is feed-

ng the adjacent two matrix elements (represented by fracture f 2 in

ig. B1 ). The last case when one matrix element is feeding the frac-

ure and the latter is feeding the adjacent matrix element (fracture f 3 in

ig. B1 ). 

The effect of the three scenarios in the numerical discretization fol-

ows. In the first case (fracture f 1 ), both fluxes ( ̄𝑄 

𝑓 , 𝐾 1 
𝑖 

, 𝑄̄ 

𝑓 , 𝐾 2 
𝑖 

) are treated

xplicitly in the temporal scheme. In the second case (fracture f 2 ), both

uxes ( ̄𝑄 

𝑓 , 𝐾 3 
𝑖 

, 𝑄̄ 

𝑓 , 𝐾 4 
𝑖 

) are treated implicitly. In the last case, one flux is

reated implicitly ( ̄𝑄 

𝑓 , 𝐾 4 
𝑖 

) and one flux is treated explicitly ( ̄𝑄 

𝑓 , 𝐾 5 
𝑖 

). In the

mplicit treatment, the flux is added to the updated Netwon–Raphson

NR) iteration, and in the explicit treatment the flux is added to the

esidual function in the NR iteration. The flow and transport variables

re represented by different symbols in Fig. B1 . 

ppendix C. Pinch-out problem 

Subsurface formations are generally complex. Structured grid cells

nd/or grids that are based on the concept of pillars, may not describe

omplex formations. Description of pinch-outs is a clear example of the

imitations of Cartesian grids. In our algorithm, to simulate complex sys-

ems, the unstructured tetrahedra are natural choices. We show in Fig.

1 a domain of 30 Km long, 20 Km wide and 10 Km height. We consider

 pinched-out impermeable layer in the domain. The exact location of

he impermeable layer is shown in Fig. C1 . 

We inject of CO 2 along one vertical side of the domain and pro-

uction is performed at the opposite vertical side. All properties of the

roblem are the same as in Example 7. For reference we show in Fig.

4 the overall mole fraction of CO 2 at different PVIs. For simplicity we

onsider a no-gravity scenario. The CPU time to 1 PVI is 8 min with a

otal of 4500 elements. 

ppendix D. Oblique fracture 

The modeling of unstructured tetrahedra is not limited to pinch-out

roblems. One important application is the modelling of oblique frac-

ures. In this appendix we show the application of FCFE in unstructured
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Fig. B1. Physical domain of one fracture (a); flow discretization of domain with five intersecting fractures (b), transport discretization of domain with five intersecting 

fractures (c) (thick lines represent fracture elements). 
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etrahedra. We consider the oblique fracture shown in Fig. D1 in a do-

ain of 12 Km long, 5 Km wide and 5 Km height. To model such oblique

ractures, the use of unstructured tetrahedra is a necessity. The applica-

ion of CAD to unstructured tetrahedra with fractures is limited to planar

racture shapes. When the fracture shapes become more complex cou-

ling CAD with unstructured tetrahedra is more challenging. This will

e investigated in future. 

CO 2 is injected at one vertical side and production is at the opposite

ertical side of the domain. All properties of the problem are the same

s in Example 7. For reference we show the overall mole fraction of CO 2 

t different PVIs in Fig. D2 . The CPU time for 1 PVI is 13 min with a total

f 5500 elements. 

ppendix E. Impermeable fault 

All examples so far demonstrate the applicability of the FCFE in

igh permeability fractures. The FCFE concept can be readily applied

o simulate flow in a domain with barriers as we present in this exam-

le. We consider a 10 ×10 Km 

2 domain and 4 Km height as shown in

ig. E1 . The domain has a flow barrier shown in the thick black line

 Fig. E1 ) near the injection well corner. CO 2 is injected at one corner

o displace propane toward the production well at the opposite cor-

er at a rate of 0.1 PV/year. The reservoir temperature is at 311 K

nd the pressure is 69 bar, permeability is 1 md and the porosity is

0%. 

Implementation of flow barriers in FCFE is straightforward. This is

ue to the fact that the FCFE elements are aligned with the interfaces of

he matrix elements. By imposing a zero flux for interfaces with barrier

ndex, the flux is redistributed along the rest of matrix interfaces. The

ass balance is always guaranteed. This is applied for the two matrix
88 
lements adjacent to the ( n -1)- D element with a barrier index. For ref-

rence we show the overall mole fraction of injected CO 2 at different

VIs in Fig. E2 . With a number of grids of 1500 elements, the CPU time

s 5 min. 

ppendix F. Anisotropy and heterogeneity 

In this example we consider a 100 m ×50 m domain initially sat-

rated with propane (C 3 ). CO 2 is injected at one corner to displace

ropane toward the production well at the opposite corner at a rate

f 1 PV/year. The reservoir temperature is at 311 K and the pressure is

9 bar. We study three different setups that we denote by Examples Fa,

b and Fc. In the first two setups we choose two permeability tensors

uch that the first has a higher permeability within the diagonal from

he injection to the production well (K1), with an anisotropy ratio of

40:4 at an angle of 27°; in (K2) the angle is − 27°: 

 1 = 

( 

112 55 
55 32 

) 

; 𝑲 2 = 

( 

112 −55 
−55 32 

) 

(1)

In the third setup we consider heterogeneous media by assigning a

andom permeability value to each grid-cell ( Fig. F1 ). Porosity is set to

0% in all setups. The overall mole fraction of CO 2 in the three domains

s shown at different pore volume injections (PVIs) in Fig. F2 . The effect

f the orientation of the shear is apparent between the first two setups.

nisotropy significantly affects the oil recovery. In the first setup where

he shear is aligned with the flow direction, breakthrough occurs at 40%

VI ( Fig. F3 ). In the second setup breakthrough is delayed until 70%

VI. The result is more than 50% difference in oil recovery compared

o the first setup ( Fig. F3 ). The CPU time is 3 min with a total of 3000

lements. 
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Fig. C1. Discretization with tetrahedra (a); permeable layer of the domain (b) and side view of the impermeable layer (c) (dimensions not to scale). 
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Fig. C2. Overall mole fraction of CO 2 at 10% (a), 40% (b) and 70% (c) PVI (domain size 30 ×20 ×10 Km 

3 ). 

Fig. D1. Domain with oblique fracture (thick black area). 
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Fig. D2. Overall mole fraction of CO 2 at 35% (a), 45%(b), 55%(c) and 80% (d) PVI (domain size 12 ×5 ×5 Km 

3 ). 
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Fig. E1. Domain and barrier shown in thick black line; perspective view (a), and top projection (b). 
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Fig. E2. Overall mole fraction of CO 2 at 10% (a), 20% (b) and 70% (c) PVI (domain size 10 ×10 ×4 Km 

3 ). 
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Fig. F1. Random permeability distribution throughout the domain. 

Fig. F2. Overall mole fraction of CO 2 at different PVIs (domain size 100 ×50 m 

2 ). 
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Fig. F3. Oil recovery (fraction) in the three different setups. 
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