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An efficient and accurate numerical model for multicomponent compressible single-phase flow in
fractured media is presented. The discrete-fracture approach is used to model the fractures where the
fracture entities are described explicitly in the computational domain. We use the concept of cross flow
equilibrium in the fractures. This will allow large matrix elements in the neighborhood of the fractures
and considerable speed up of the algorithm. We use an implicit finite volume (FV) scheme to solve the
species mass balance equation in the fractures. This step avoids the use of Courant–Freidricks–Levy
(CFL) condition and contributes to significant speed up of the code. The hybrid mixed finite element
method (MFE) is used to solve for the velocity in both the matrix and the fractures coupled with the dis-
continuous Galerkin (DG) method to solve the species transport equations in the matrix. Four numerical
examples are presented to demonstrate the robustness and efficiency of the proposed model. We show
that the combination of the fracture cross-flow equilibrium and the implicit composition calculation in
the fractures increase the computational speed 20–130 times in 2D. In 3D, one may expect even a higher
computational efficiency.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Modeling of compositional flow in subsurface fractured media is
of interest in geochemical and petroleum reservoir engineering (e.g.
gas injection, radioactive waste management). In reservoir simula-
tion, different approximations are used to model flow and transport
in the fracture network. Various authors have proposed a large
number of models. These models are mainly categorized into two
classes: the dual-continuum model and the discrete-fracture/dis-
crete matrix model (DFDM). The most accurate and physically real-
istic model is the DFDM approach where the fractures and the
matrix are both described explicitly in the computational domain
[1–9]. In order to capture the matrix/fracture discontinuities in con-
centration and/or saturation Nick and Matthäi [10] proposed a
method in which the mesh at the fracture/matrix interface is split
by adding extra nodes/degree of freedom and solve the equations
accordingly. This model requires fine grids which makes implemen-
tation in field scale fracture network expensive.

The dual-continuum models are widely used to simulate flow in
fractured media [11–17] because of low computational cost. The
dual-porosity model was first introduced in 1960 [11] and was later
in 1963 advanced further [12] to simulate single-phase flow in frac-
tured media. The model was then extended to multiphase flow
[13,14,18]. The flow domain is constituted by the connected frac-
ture network, and the matrix domain is constituted by the low per-
meability rock that provides the storage. In the dual-porosity
models, a transfer function that may vary spatially in the domain
is used to describe the exchange between the fracture network
and the rock matrix. An extension of the dual-porosity model was
made by Haggerty and Gorelick [19] employing a so-called multi-
rate mass transfer model at different transfer rates based on the
properties of permeable media. Di Donato et al. [20] applied the
multiple transfer functions in a single simulation grid block and
recently, Geiger et al. [21] extended this model to two-phase incom-
pressible flow. A hybrid model called a fracture-only model was
proposed by Unsal et al. [22] for incompressible flow using a dual-
porosity approach. A transfer function is used to account for the
fracture/matrix exchange, and the fractures are modeled using the
discrete-fracture approach. The fracture-only model is based on
the assumption that all the fractures are interconnected.

The mass transfer between the fractures and the matrix is
described by empirical functions that incorporate some ad-hoc
shape factors in all the dual-porosity models. The appropriate
shape factors are not well established for compositional and com-
pressible flow. In principle, it is possible to compute these transfer
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functions to describe fracture-matrix exchange (see e.g. [23]) but
as mentioned in [1], there is no theory to calculate the shape fac-
tors which determine the exchange between the two domains in
two-phase flow with capillary and gravity effects as well as in com-
positional compressible conditions. In case of diffusion flux, the
transfer function approach becomes even less accurate [24].

The control-volume finite element (CVFE) has been used to
solve two-phase flow equations in fractured media combined with
the Galerkin finite element (GFE) method [25–27]. The fracture
entities are embedded within the matrix control-volume in the
CVFE method. The calculation of the matrix–fracture flux is there-
fore avoided and practically there is no difficulty in computing the
fracture–fracture flux. However this approach has not been fully
examined for compositional modeling and for two-phase flow
including gravity and/or capillary pressure effect.

A simplification of the single-porosity model in the discrete
fracture approach as proposed in [28,29] assumes that the fracture
aperture is small compared to the matrix scale. The fractures are
represented by (n � 1)-dimensional elements in an n-dimensional
domain. Hoteit and Firrozabadi [30] used the cross-flow equilib-
rium (CFE) concept in the discrete fracture approach to model mul-
ticomponent compressible flow in fractured porous media. The CFE
approach assumes that the pressure in a fracture element is equal
to the pressure in the surrounding matrix elements (Fig. 1a and b).
This simplification is much more efficient than the single-porosity
model and overcomes the limitations of the dual-porosity models.
On the other hand, the CFE assumption requires that the matrix
grids next to fractures to be small so that the assumption of equal-
ity of pressure and composition in the neighborhood matrix ele-
ments and fractures is accurate. The size of the time step in the
explicit scheme is restricted by the Courant–Freidricks–Levy
(CFL) condition. The CFL condition forces the time step to be less
than the necessary time for flow to pass through one grid block.
The small elements near the fractures impose a severe CFL
Fig. 1. Physical (a,d) and computational (b,c,e, f) represen
condition on the time step in the explicit composition calculations.
Hoteit and Firoozabadi [31] found that for a fractured reservoir of
few kilometers length, the matrix grid-cell size next to the frac-
tures should be in the order of tens of centimeters. A new approach
was introduced by Hoteit and Firoozabadi [1] to overcome the lim-
itations of the CFE model and was applied for incompressible two-
phase flow in fractured media. In this approach there is a signifi-
cant increase in computational speed. The essence of the idea by
Hoteit and Firoozabadi [1] relates to the constant pressure across
the fracture width which is the same as the cross-flow equilibrium
across the fracture elements. Note that the cross-flow equilibrium
does not imply that convective velocity is zero along the fractures.

In this work we propose a model based on the ideas for incom-
pressible flow suggested by Hoteit and Firoozabadi [1]. There are,
however, important differences due to fluid compressibility which
requires a pressure equation as we will discuss later. The pressure
is assumed to be equal along the fracture width. We refer to the
model as the fracture cross flow equilibrium (FCFE). The mass
transfer of the species between the fracture and the matrix and
inside the fracture network is provided by the hybridized mixed
finite element method (MFE). The MFE is more accurate than the
traditional finite element (FE) and control volume finite element
(CVFE) methods in flux calculation [32,33]. It also has low grid ori-
entation [34]. In addition to the grid-cell pressures, the MFE pro-
vides the pressures at the grid-cell interfaces which are used to
accurately approximate the velocity field even in highly heteroge-
neous fractured media [1,30,35–37]. Because of its powerful fea-
ture, the MFE is used in this work to discretize Darcy’s equation
for compressible flow. The species mass balance equation in the
matrix is discretized by the discontinuous Galerkin (DG) method
[38,39]. The DG method is mass conservative at the element level
and has low numerical dispersion. The use of the high-order
numerical scheme may produce nonphysical oscillations. To over-
come these oscillations, a multidimensional slope limiter is used to
tations in the CFE (a,b,c) and FCFE (d,e, f) approach.



Fig. 2. Multiple intersecting fractures.

Table 1
Relevant properties of porous media and initial conditions (C1 and C3 are in mole
fraction). Example 1.

Injection gas [–] 0.8 C1 0.2 C2

Initial fluid [–] 0.0 C1/C2 1.0 C3

Pressure [bar] 50
Temperature [K] 397
Porosity [–] 0.2
Permeability [md] 1
Injection rate [PV/year] 0.1
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reconstruct the concentration distribution over the simulation
domain [40,41]. The slope limiter imposes local constraints in a
geometric manner in such a way that the reconstructed solution
satisfies an appropriate maximum principle. With these con-
straints, the value of the variable (molar concentration in our
study) at any node should always remain between the minimum
and the maximum values of the cell averages of all elements con-
taining the node. Efficiency and robustness of the combined MFE
and DG model has been demonstrated in numerous publications
[see e.g. 42,43].

The species mass balance equation is linked to the pressure
equation by an implicit-pressure-explicit concentration (IMPEC)
approach. The IMPEC approach is more efficient than the fully-
implicit method [44]. The explicit method in the fractures imposes
a strong limitation on the time step due to the stringent CFL stabil-
ity constraint for the small elements in the fracture network. To
overcome the severe CFL constraint in the fracture network, we
use an implicit scheme in the fracture network where a finite vol-
ume (FV) approach is used to discretize the species mass balance
equation.

The rest of the manuscript is organized as follows: in the next
section we provide a description of the proposed model, followed
by the differential equations describing the multicomponent com-
pressible flow in fractured porous media. Then we present the dis-
cretization of the pressure and the species mass balance equations
in the rock matrix and in the fracture network. We present four
numerical examples to demonstrate the efficiency and accuracy
of the proposed algorithm. In addition to these examples we have
performed computations for a higher viscosity fluid saturating the
domain and a lower injection fluid viscosity. The results for this
fluid combination are similar to other fluids to be presented later.
2. Proposed model

Modeling of immiscible fluid flow in fractured porous media
has been studied extensively in the literature [45–47]. However,
the work on compositional compressible flow in fractured media
is limited. The CFE approach has been developed to accurately
model compositional, multicomponent, compressible flow in frac-
tured porous media. Hoteit and Firoozabadi [30] proposed a model
for compressible single-phase flow in fractured porous media
based on the CFE approach. In their work [30] the pressures are
updated iteratively and the species equations are solved explicitly.
The work in [30] has been extended from two-phase flow to three-
phase compositional flow in fractured media [48–51]. In the CFE
approach pressure at the fracture elements is set to be equal to
pressure at the adjacent matrix elements (Fig. 1a and b). This
approach is accurate when the matrix elements near the fractures
are small (Fig. 1c). When an IMPEC scheme is used the CFL con-
straint makes the simulation expensive. In this work we do not
use the CFE approach between the fracture and the adjacent matrix
grid cells. We assume a constant pressure across the fracture width
(Fig. 1d and e). The pressures and concentrations in the fracture
and in the adjacent matrix grid cells may not be the same. The pro-
posed model provides accurate calculation of the species concen-
tration; it alleviates the need for small elements in the matrix
grid cells near the fractures which reduces significantly the CFL
condition (Fig. 1f). To avoid the CFL constraint in the small fracture
elements a fully implicit scheme is used to compute the species
mass balance equation in the fracture network, as will be discussed
in the following sections.
3. Mathematical model

3.1. Governing equations in the matrix

The rock matrix and the discrete fractures have generally differ-
ent geometrical dimensions in the simulation domain (n � D for
the matrix domain and (n � 1) � D for the fracture network). The
governing equations are, therefore, treated separately. The super-
script m denotes the matrix; the superscript f denotes the frac-
tures. The mass balance of component i in a miscible and
compressible flow is given by the following system of equations
[30]:

;m @cm
i

@t
þr � ðcm

i vmÞ � f m
i ¼ 0; i ¼ 1 . . . nc in X� ð0; sÞ

ci ¼ zicXnc

i¼1

zi ¼ 1

ð1Þ

In the above equations, ; denotes the porosity, v the velocity
field, c the overall molar density; ci, zi and fi are the molar density,
the mole fraction and the sink/source term of component i in the
mixture, respectively. X is the 2-D computational domain and s
denotes the simulation time and nc is the number of components.
We neglect diffusion in Eq. (1).

The flow in porous media is described by Darcy’s law:

v ¼ � k
l
ðrp� qgÞ ð2Þ

where k is the absolute permeability tensor, l the dynamic viscos-
ity, p the pressure, q the mass density and g the gravitational accel-
eration. In this work the effect of gravity is not considered. In a
forthcoming work we will extend the model to compositional
two-phase flow with gravity effect.
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Fig. 3. Methane composition (mole fraction) profile at different PVI from the MFE-DG and the MFE-FD methods in 40 � 40 mesh; white arrows represent the velocity field.
Example 1 (distances in meters).
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Fig. 4. Domain size of 50 � 50 m2 showing the 20 � 20 coarse mesh used with two
intersecting fractures. Example 2.

Table 2
Relevant properties of porous media and initial conditions (C1 and C3 are in mole
fraction). Example 2.

Injection gas 0.8 C1 0.2 C2

Initial fluid 0.0 C1/C2 1.0 C3

Pressure [bar]
50

Temperature [K]
397

Porosity [–]
0.2

Matrix permeability [md]
1

Fracture permeability [md]
1.d6

Fracture thickness [mm]
2

Injection rate [PV/year]
0.1
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The Peng–Robinson equation of state (EOS) [52] is used to
describe the molar density c as a function of the composition, tem-
perature and pressure as follows:

c ¼ p
ZRT

Z3 � ð1� BÞZ2 þ ðA� 3B2 � 2BÞZ � ðAB� B2 � B3Þ ¼ 0

q ¼
Xnc

i¼1

Mici

ð3Þ

Z is the compressibility factor, R the gas constant, T the temper-
ature, and Mi the molar mass of component i. The expressions for
the constants A and B could be found in [53]. To complete the sys-
tem of equations, we use the volume balance from [54,55] to com-
pute the pressure field for the compositional compressible flow.
Note that in incompressible flow there is no need for volume bal-
ance. The expression for volume balance is given by [54,55]:

;mCm
t
@pm

@t
þ
Xnc

i¼1

�Vm
i ðr:ðcm

i vmÞ � f m
i Þ ¼ 0 ð4Þ
where Ct is the compressibility, �Vi is the partial molar volume of
component i in the mixture; expressions for Ct and �Vi are provided
in Appendix A.

Eqs. (1) and (4) are subject to initial and boundary conditions as
follows:

pðx;0Þ ¼ p0ðxÞ; in X

pðx; tÞ ¼ pDðx; tÞ; on CD � ð0; sÞ
ziðx;0Þ ¼ z0

i ðxÞ; i ¼ 1 . . . nc in X

cziðx; tÞv � n ¼ qN
i ðx; tÞ; i ¼ 1 . . . nc on CN � ð0; sÞ

ð5Þ

where p0 and pD are the initial pressure and the imposed pressure
on the boundary CD, qN

i is the injection rate of component i across
the boundary CN and n and x denote the unit outward normal vec-
tor, and spatial coordinates, respectively.

3.2. Governing equations in the fractures

The mass balance equations in the fractures are integrated
along the fracture width e and in the (n � 1) � D are expressed by:

; f @c f
i

@t
þr � ðc f

i v
f Þ � �Q f

i � f f
i ¼ 0; i ¼ 1 . . . nc ð6Þ

In the above equation, the term �Q f
i is the volumetric flux across

the matrix-fracture boundaries Qf multiplied by the molar concen-
tration of component i in the mixture. Similarly to the matrix
domain, the pressure field in the fractures is obtained from:

; f C f
t
@p f

@t
þ
Xnc

i¼1

�V f
i r:ðc

f
i v

f Þ � c f
i Q f � f f

i

� �
¼ 0 ð7Þ

The calculation of the transfer flux is discussed in the following
section.
4. Discretization of the pressure equation

4.1. Discretization in the matrix

In this section we show how to treat the volumetric flux that
represents the exchange rate between the matrix and the fracture
network when solving the pressure equation. Here, we present for
the first time how to couple the pressure equation and the species
transport equation in a compressible flow in fractured media with-
out the need to calculate a transfer function and/or impose approx-
imations at the matrix- fracture interface.

The hybridized mixed finite element (MFE) method with the
lowest order Raviart–Thomas basis space is used to discretize the
volumetric flow in the matrix. Discretization of Eq. (2) with the
MFE yields the expression of the flux qm

K;E at the edge E of the matrix
element K (see Appendix B for details):

qm
K;E ¼ am

K;EPm
K �

X
E02@K

bm
K;E;E0Tpm

E0 ð8Þ

In the above equation, Pm
K represents the cell-average pressure,

and Tpm
E0 the face-average pressure in all the faces of element K.

Details of constants am
K;E and bm

K;E;E0 are provided in Appendix B.
The continuity of fluxes and pressures at all the interfaces are

imposed at each interface E between two adjacent matrix elements
K and K0. Three different possibilities could arise:

If the intersection between two matrix elements is a fracture
(fractures are represented in (n � 1) � D in an n � D domain) then
the following equalities apply:

Tpm
K;E ¼ Tpm

K 0 ;E ¼ P f
E

qm
K;E þ qm

K 0 ;E ¼ Q f
E

(
ð9Þ



FCFECFE

(a) 400 elements (b) 400 elements 

(c) 3600 elements (d) 800 elements 

Fig. 5. Methane composition (mole fraction) profile and streamlines at 0.7 PVI, from the CFE and FCFE approaches with different mesh refinements. Example 2 (distances in
meters).
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where Q f
E is the total flux across the two sides of the fracture E with

the matrix elements K and K0, and P f
E is the cell average pressure of

the fracture element E.
If the interface E between the two matrix elements K and K0 is

not a fracture and is not a boundary, then the continuity of pres-
sure and flux implies:

Tpm
K;E ¼ Tpm

K 0 ;E

qm
K;E þ qm

K 0 ;E ¼ 0

(
ð10Þ
Table 3
CPU time in seconds for different mesh refinements, at 0.7 PVI. Example 2.

Number of elements 400 800 3600

CFE 4 – 251
FCFE 3 9 –
If the interface E is at the domain’s boundary then:

Tpm
K;E ¼ TpD

E

qm
K;E ¼ qN

E

(
ð11Þ

where TpD
E is a Dirichlet boundary conditions, and qN

E is a Neumann
boundary condition. In this work, however, we assume an imper-
meable boundary and set qm

K;E to be zero at the boundary.
Writing Eqs. (9)–(11) for all interfaces E of the domain and

using the expression of the matrix fluxes given in Eq. (8) we con-
struct the system of pressure equations that relates the matrix
interfaces to the fracture elements:

RT;m;m

RT;m;f

" #
½Pm� � Mm;m

Mf ;m
Mm;f

Mf ;f

" #
Tpm

P f

" #
¼

0
Q f

� �
ð12Þ

where Pm contains the matrix cell-average pressures, Tpm contains
the matrix edge-average pressures and Pf contains the fracture cell-



Fig. 6. Domain of the fracture network, mesh not shown. Example 3 (distances in
meters).
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average pressures. At the right side, Qf denotes the volumetric flux
exchange between the matrix and all the fracture elements. Treat-
ment of this term will be discussed later. The matrices of Eq. (12)
are defined in Appendix B.

Integrating Eq. (4) by parts, we get the discretized form of the
pressure equation in a matrix element K by:

;mCm
t

Pnþ1;m
K � Pn;m

K

Dt
þ
Xnc

i¼1

�Vm
i

Z
@K

cm
i vmn@K �

Xnc

i¼1

�Vm
i

Z
K

f m
i ¼ 0 ð13Þ

Using the expression of the flux qm
K;E given in Eq. (8) and replac-

ing it in Eq. (13):

;mCm
t jKj

Dt
þ �am

K

� �
Pnþ1;m

K �
X

E

�bm
K;ETpnþ1;m

K;E ¼ Fm
i;K ð14Þ

The expressions for �am
K , and �bm

K;E are obtained by multiplying am
K

and bm
K;E by the partial molar volumes. The matrix form of Eq. (14) is

given by:

½ �Dm�½Pm� � ½�Rm;m �Rm;f � Tpm

P f

" #
¼ ½ Fm� ð15Þ

The matrices �Dm, �Rm;m and �Rm;f are readily derived from Eq. (14)
using the first expression in Eq. (9).

4.2. Discretization in the fractures

The discretization in the fractures is similar to the discretization
in the matrix domain. The difference is that the fractures are
Table 4
Relevant properties of porous media and initial conditions (C1 and C2 are in mole
fraction). Example 3.

Injection gas 1.0 C1

Initial fluid 1.0 C2

Pressure [bar] 50
Temperature [K] 397
Porosity [–] 0.2
Matrix permeability [md] 1
Fracture permeability [md] 1.d5
Fracture thickness [mm] 2
Injection rate [PV/year] 0.1
represented by (n � 1) � D in an n � D domain, hence the fracture
intersections are represented by single points in the 2-D domain.
Another difference is that the volumetric transfer flux appears in
the pressure equation in the fracture network. The volumetric
transfer flux across the fracture interface e in the MFE formulation
in a fracture element k is given by:

q f
k;e ¼ a f

k;eP f
k �

X
e02@k

b f
k;e;e0Tp f

e0 ð16Þ

The low dimensional order of the fracture representation allows
two fractures to have the same intersection (see Fig. 2). The inter-
section of multiple fractures in 2D is represented by a single point;
hence, it has no volume. The parameters a f

k;e and b f
k;e;e0 are similar to

those defined in Eq. (8). The zero accumulation at the multiple
fracture intersection and the continuity of the pressure impose:

Xnt

i¼1

q f
ki;e
¼ 0

Tp f
ki;e
¼ Tp f

e ; i ¼ 1 . . . nt

8>><
>>: ð17Þ

where nt represents the number of intersecting fractures (Fig. 2).
Replacing the expression for the flux in Eq. (17) and using the pres-
sure continuity at the intersections from the second expression in
Eq. (17) we obtain the system of equations in a matrix form with
unknowns as the fracture cell-average pressures and the fracture-
interface pressures as follows:

½RT; f �½P f � � ½M f �½Tp f � ¼ ½0� ð18Þ

Integrating the fracture pressure equation (Eq. (7)) for each
fracture element, we derive the following system in a matrix form:

½�D f �½P f � � ½�R f �½Tp f � ¼ ½ F f � þ ½Q f � ð19Þ

The matrices �D f , and �R f are similar to those in Eq. (15). Q f is the
matrix-fracture transfer flux previously defined.
4.3. Global system of equations

The coupling of the matrix and the fracture pressures is made
through the continuity of the pressure at the matrix grid cell inter-
faces and the fracture grid cell, and through the transfer flux that
appears in Eqs. (12) and (19). To avoid the calculation of the frac-
ture-matrix fluxes, we subtract Eq. (19) from the second expres-
sion in Eq. (12) and construct the equation for the global system
by combining Eqs. (12), (15), (18) and (19) to obtain:

�Dm ��Rm;m ��Rm; f 0
�RT;m;m Mm;m Mm; f 0
�RT;m; f Mm; f Mf ; f þ �D f ��R f

0 0 RT; f M f

2
6664

3
7775

Pm

Tpm

P f

Tp f

2
6664

3
7775 ¼

f m

0
f f

0

2
6664

3
7775 ð20Þ

With a simple Gaussian elimination we construct the final
system of equations:

Am;m Am; f 0
Am; f Af ; f ��R f

0 RT; f M f

2
64

3
75

Tpm

P f

Tp f

2
64

3
75 ¼

Vm

V f

0

2
64

3
75 ð21Þ

In the above equation the number of unknown pressures equals
the number of interfaces in the matrix domain (Tpm + p f) plus the
number of interfaces in the fracture network (Tp f). The system in
Eq. (21) is sparse and positive definite. The calculation of the
matrix grid-cell average pressures is made through a simple back
substitution using the first expression in Eq. (20).



(a) FCFE:400 elements (b) FCFE:900 elements 

 (c) CFE:400 elements  (d) CFE:1600 elements (1600-1) 

(e) CFE:1600 elements (1600-2) 

Fig. 7. Methane composition (mole fraction) profile at 0.05 PVI in different mesh refinements in the FCFE and CFE methods. Example 3 (distances in meters).
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(a) FCFE:400 elements (b) FCFE:900 elements 

(c) CFE:400 elements (d) CFE:1600 elements (1600-1) 

(e) CFE:1600 elements (1600-2) 

Fig. 8. Methane composition (mole fraction) profile at 0.1 PVI in different mesh refinements in the FCFE and CFE methods. Example 3 (distances in meters).
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 (a) FCFE:400 elements  (b) FCFE:900 elements 

  (c) CFE:400 elements  (d) CFE:1600 elements (1600-1) 

(e) CFE:1600 elements (1600-2) 

Fig. 9. Methane composition (mole fraction) profile at 0.2 PVI in different mesh refinements in the FCFE and CFE methods. Example 3 (distances in meters).
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(a) FCFE:400 elements (b) FCFE:900 elements 

 (c) CFE:400 elements  (d) CFE:1600 elements (1600-1) 

(e) CFE:1600 elements (1600-2) 

Fig. 10. Methane composition (mole fraction) profile at 0.4 PVI in different mesh refinements in the FCFE and CFE methods. Example 3 (distances in meters).
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Table 5
CPU time in seconds for different mesh refinements, at 1.0 PVI. Example 3.

Number of elements 400 900 1600-1 1600-2

CFE 6 – 38 221
FCFE 4 11 – –
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5. Discretization of the species transport equation

5.1. Discretization in the matrix

The DG method is used to discretize the species transport equa-
tion in the matrix. In the DG method, different orders of approxi-
mations could be used; in this work we use a bilinear
approximation on the element level. Coupled with the MFE
method, the DG provides accurate results and efficient in CPU time
[26,27,31–33,43]. An explicit approach is used to approximate the
transport equation in the matrix. Multiplying the first expression
in Eq. (1) by the shape function uK,l and integrating over each
matrix element K we get:

Xnj

i¼1

dcm
i;K;j

dt

Z
K
;m

K uK;luK;j ¼
Z

K
uK;l f

m
i

þ
Xnj

j¼1

XnE

E¼1

cm
i;K;j

Z
K
uK;jwK;EruK;l�

�cm
i;K;E;j

jEj

Z
E
uK;luK;j

� �

ð22Þ

In the above equation cm
i;K;j is the molar density of component i

at node j where nj is the number of nodes in the matrix element
K. �cm

i;K;E;j is the upstream molar density of component i at node j
of interface E, where nE is the total number of interfaces in a matrix
element K. The system of ordinary differential equations of order nj

is obtained by writing Eq. (22) over each element K in the matrix
domain. An explicit scheme for the species transport equation is
used, coupled with a slope limiter stabilization to overcome the
nonphysical oscillations.
Fig. 11. Methane composition at the production well as a function of PVI. Example 3.
5.2. Discretization in the fractures

The small volume of the fracture elements imposes a severe CFL
condition on the time step if an explicit scheme is used. To over-
come the CFL restriction and to avoid the expensive DG approxi-
mation in the fractures, a finite volume method with a first-order
implicit method is applied in the fractures. The numerical disper-
sion in the fracture that arises from the use of an implicit scheme
may not be significant since a higher-order spatial scheme (DG) is
used in the matrix domain. The species transport equation in the
fracture is written as:

; f
k

cf ;nþ1
i;k � cf ;n

i;k

t
þ
Xne

e¼1

�cf ;n
i;e qf ;n

k;e ¼ �Q f ;K1
i þ �Q f ;K2

i þ f f ;n
i;k ð23Þ

In the above equation �cf ;n
i;e denotes the upstream value of the

molar density. We will discuss how to calculate molar density in

multiple intersecting fractures in the next section. The term �Q
f ;Kj

i

(j = 1, 2) in the above equation is equal to the volumetric flux mul-
tiplied by the molar density of component i. The two terms repre-
sent the interaction of the adjacent two matrix elements K1 and K2

around the fracture element k and they are treated differently in

Eq. (23). When �Q
f ;Kj

i ( �Qf ;K1
i , �Q f ;K2

i or both) is an influx from the

matrix through the fractures, then �Q
f ;Kj

i is treated explicitly. Other-
wise it is treated implicitly. Eq. (23) is written for all the fracture
elements and the system of equations is linearized and solved
using the Newton–Raphson method. In all the calculations we have
performed in the Examples to be presented shortly, the number of
iterations vary from 1 to 2 (rarely 3) in every time step. If the New-
ton–Raphson method does not converge in a time step, we suggest
to cut the time step inside the fractures through the multiple iter-
ations, and the time step is kept intact in the matrix. There was not
need to cut the fracture time step in our calculations. We used the
iterative Pardiso_solver included in the Intel kernel library to solve
the linear system of equations from Eq. (23). Next we discuss how

to calculate the upstream value of ~cf ;n
i;e for multiple intersecting

fractures.
5.3. Upstream technique for multiple intersecting fractures

When there are only two intersecting fractures, the upstream
value is simply deduced from the flux direction. For multiple inter-
secting fractures we use a generalization of the upstream for two
intersecting fractures [1,26]. When nt fractures intersect at a single
point O, some of the fracture fluxes are in the upstream direction
(we denote the number by an integer nu) with respect to the inter-
section and the rest should be in the downstream direction in
order to satisfy zero accumulation at the intersection:

Xnu

j¼1

q f
kj
þ
Xnt

j¼nuþ1

q f
kj
¼
Xnt

j¼1

q f
kj
¼ 0 ð24Þ

The total mass balance of component i at the intersection point
O is expressed by:

Xnu

j¼1

c f
i;k

q f
kj
¼ �c f

i;O

Xnt

j¼nuþ1

q f
kj

ð25Þ

Substituting Eq. (24) in Eq. (25) we obtain the upstream value at
the intersection of nt fractures as follows:

c f
i;O ¼

Pnu
j¼1c f

i;k
qkjPnu

j¼1qkj

ð26Þ

Eq. (26) is a generalization of the upstream technique for two
intersections. Verification is made by (nt = 2) in Eqs. (24)–(26).
Note that the set of Eqs. (24)–(26) are used for each component i
in the mixture.



Table 6
Relevant properties of porous media of the fractured reservoir. Example 4a.

Matrix permeability [md] 1
Fracture permeability [md] 1.d6
Fracture thickness [mm] 0.1
Porosity [–] 0.2
Injection rate [PV/year] 0.5
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6. Numerical examples

In the following we present four numerical examples with the
number of species varying from 2 to 7 in structured grids to inves-
tigate the efficiency of the proposed approach. Extension to
unstructured gridding will be presented in a future publication.
In the first example the domain is unfractured to reconfirm that
the higher-order algorithm is superior to the classical FD (FV)
scheme; this efficiency has been demonstrated in [31,32]. In the
other examples our FCFE algorithm is compared to the CFE
approach. An Intel Core-i5 PC, 3 GHZ CPU, 4 GBRAM is used in all
the runs.

6.1. Example 1: unfractured media

In the first example we consider a homogenous 2D horizontal
domain of 50 � 50 m2 that is initially saturated with propane
(C3). A mixture of methane and ethane (C1/C2) is injected at the
bottom left corner to displace C3 to the opposite top right corner.
The relevant data of this example are shown in Table 1. In Fig. 3
we show a comparison of the MFE-DG to MFE-FD in a 40 � 40
(a)
FCFE-800 elements 

(b)
CFE-2600 elements 

(2600-2)

Fig. 12. Domain size of 500 � 200 m2 and mesh in the FCFE (a
rectangular mesh at different PV injections. Results show the high
numerical dispersion of the FD method compared to the higher-
order model. Even with very refined meshes of 80 � 80 and
200 � 200 (results not shown) the FD result remains diffusive com-
pared to the 40 � 40 MFE-DG solutions. For the same accuracy, the
higher-order method is 2–3 orders of magnitude faster than the FD
method.

6.2. Example 2: fractured media with two intersecting fractures

This example demonstrates the efficiency of our proposed
model in fractured media. We consider two intersecting fractures
in the 50 � 50 m2 horizontal domain (Fig. 4). Each fracture is
20 m long and the two fractures intersect at the center of the
domain. A mixture of methane and ethane (C1/C2) is injected at
one corner; production is from the opposite corner. Rock matrix
data, fluid composition and injection rate are the same as in Exam-
ple 1. Relevant data are provided in Table 2. In the CFE approach
with a coarse mesh of 400 elements, the composition profile
(Fig. 5a) shows that the matrix elements near the fractures are
completely saturated with the injected gas. With a coarse mesh
of 400 elements (Fig. 5b) the FCFE model gives accurate composi-
tion and the flow directions of the streamlines. Because the perme-
ability in the fractures is 106 times higher than the matrix
permeability, the fractures are the main flow channel to outlet.
In the CFE approach the coarse mesh cannot provide similar com-
position profile to the FCFE model unless the mesh is refined near
the fractures. Comparing the streamlines in Fig 5a and b one
observes that at the fractures intersection, the CFE approach does
not show a difference between the fracture network and the adja-
) and CFE (b) methods. Example 4 (distances in meters).



FCFE-400 ELEMENTS 

(a)

FCFE-800 ELEMENTS 

(b)

CFE-400  ELEMENTS 

(c)

CFE-800 ELEMENTS 

(d)
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(2600-2)

(e)

Fig. 13. Methane composition (mole fraction) profile at 0.05 PVI in the FCFE and CFE methods. Example 4a.
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cent matrix elements. In the CFE approach one needs to refine the
mesh to 3600 elements (Fig. 5c) to provide comparable results to
800 elements in the FCFE (Fig. 5d). In this simple fracture intersec-
tion, the FCFE model is more than 25 times faster than the CFE
approach (see Table 3).
6.3. Example 3: sugar cube fracture configuration

In this example we consider an intensely fractured network.
The domain size is 50 � 50 m2 (Fig. 6). The relevant data of the
example are shown in Table 4. In the FCFE model two different



FCFE-400 ELEMENTS 

(a)

FCFE-800 ELEMENTS 

(b)

CFE-400  ELEMENTS 

(c)

CFE-800  ELEMENTS 

(d)

CFE-2600  ELEMENTS 
(2600-2)

(e)

Fig. 14. Methane composition (mole fraction) profile at 0.1 PVI in the FCFE and CFE methods. Example 4a.
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mesh refinements of 400 elements and 900 elements are used. In
the CFE model we use 400 elements, and two types of 1600 ele-
ments designated by 1600-1 and 1600-2. In the grid 1600-1, the
size of the matrix elements next to the fractures is set to 25 cm;
the size of the matrix elements next to the fractures is set to
5 cm in the grid 1600-2. The two models are compared at 5%,
10%, 20%, 40% and 80% PVI. In the FCFE model, the composition
profile results from the coarse mesh of 400 elements and the
refined mesh of 900 elements (Figs. 7–10) are similar. The results
are substantially different from those obtained with a more refined
mesh in the CFE approach. Even in a refined mesh with 1600 ele-
ments (mesh 1600-1) the CFE model cannot provide comparable
results to the coarse mesh of 400 elements in FCFE at PVI of 5%
and 10% (Figs. 7 and 8). When the size of the matrix elements near
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(d)
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Fig. 15. Methane composition (mole fraction) profile at 0.4 PVI in the FCFE and CFE methods. Example 4a.
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the fracture is reduced to 5 cm (mesh 1600-2), the CFE model starts
to give comparable results to the 900 elements with the FCFE
model. The CPU time of the FCFE model is 20 times less than the
CFE for comparable results (Table 5). Fig. 11 shows methane com-
position at the production well for different mesh refinements in
the two models as well as results from a refined mesh of 8142 ele-
ments. The refined mesh is used as a pseudo-analytical solution.
There is substantial difference between the breakthrough time of
CFE 1600-1 mesh and the fine mesh results.

6.4. Example 4a: fractured porous media with 2-component mixture

The computational domain in this example is 500 � 200 m2; it
includes a set of distributed intersecting fractures. The relevant
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Fig. 16. Methane composition (mole fraction) profile at 0.8 PVI in the FCFE and CFE methods. Example 4a.
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data of the example are shown in Table 6. Two mesh types are
used in the FCFE model with 400 elements and 800 elements.
In the CFE model we use four mesh refinements of 400, 800
and two types of 2600 elements that we denote by 2600-1 and
2600-2. In the 2600-1 grid, the size of the matrix elements near
the fractures varies from 1 to 2 m. In 2600-2 the size of the
matrix elements near the fractures varies from 0.3 to 0.4 m. The
mesh of 800 elements with the FCFE model and the 2600-2 with
the CFE model are shown in Fig. 12. The injection rate is set to 0.5
PV/year. The results for both models are compared at PV injec-
tions of 5%, 10%, 40%, 80% and 120%. In Figs. 13–17 we show
the results of the 400 and 800 elements of FCFE model and the
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(b)

CFE-400  ELEMENTS 
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Fig. 17. Methane composition (mole fraction) profile at 1.2 PVI in the FCFE and CFE methods. Example 4a.
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results of 400, 800 and 2600-2 of the CFE model. The CFE model
does not produce accurate results with 400 elements (Figs 13–
17). The 800 elements in the CFE model start to give comparable
results to the 400 elements in the FCFE model; however, even
with 800 elements the CFE results look more diffusive when com-
pared to the 400-FCFE elements. For comparable results to the
800 elements in FCFE one needs to refine the mesh in the CFE
model to 2600 elements and reduce the size of the matrix ele-
ments near the fractures. In the 2600-2 mesh of the CFE model,
the size of the matrix elements near the fractures are reduced
to 0.3 m in order to obtain comparable results to the 800 ele-
ments of the FCFE model (Figs. 13–17).



Fig. 18. Relative L2 norm error for different griddings. Example 4a.

Table 7
CPU time in seconds for different mesh refinements at 1.5 PVI. Example 4a.

Number of elements 400 800 2600-1 2600-2

CFE 8 124 1747 7260
FCFE 6 55 – –

Table 9
CPU time in seconds for different mesh refinements at 1.5 PVI. Example 4b.

Number of elements 400 800 2600-1 2600-2

CFE 10 153 2185 8840
FCFE 9 91 – –
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A relative second order L2 norm error is used to compare the
CFE and FCFE models to a fine grid with 8241 elements. The rela-
tive error is plotted as a function of PVI (Fig. 18) for a point near
the injection well to compare methane composition to the fine-
grid results. The over and under shoots of the 400-CFE and 800-
CFE plots is due to the fact that at low PVI and with large matrix
elements near the fractures the pressure and compositions are
not accurate compared to the refined (pseudo-analytical) values.
At high PVI the domain starts to be saturated by the injected meth-
ane and therefore the relative error goes to zero. The plots of the
800-FCFE and 2600-CFE show that the error with these gridding
is very low (2%) even at low PVI.

The FCFE model is about 130 times faster than the CFE approach
(Table 7) for the above gridding.
6.5. Example 4b: fractured porous media with 7-component mixture

This example is similar to example 4a except that the mixture
contains 7 components. Methane is injected into the domain that
is saturated with a 6-component mixture. The relevant data are
given in (Table 8). The high number of components requires higher
Table 8
Relevant data (Tc, Pc and Vc are respectively the critical temperature, critical pressure and

Component Tc (K) Pc (bar) Vc (m3/kg) Acentric factor Mw (g/mole)

CH4 190.56 45.99 0.00614614 0.011 16.04
C2H6 305.32 48.72 0.00483881 0.099 30.07
C3H8 369.83 42.48 0.00453554 0.153 44.10
C4H10 407.80 36.04 0.00445607 0.183 58.12
C5H12 460.40 33.80 0.00424118 0.227 72.15
CO2 304.1 3.8 0.0021 0.24 44
N2 126.2 33.9 0.0032 0.04 28
cost for the matrix inversions in the NR method. As a result, higher
CPU time is required in the FCFE approach compared to the two-
component example. In the 7 components, convergence is reached
in 91s whereas 55 s are required in the 2-component mixture with
the same mesh (800-FCFE). The impact of the number of compo-
nents on the CPU time in the CFE approach is less than in the FCFE
approach. As a result, 8840 s are needed in the 2600-2 mesh com-
pared to 7260 s with the same mesh in the two-component mix-
ture. Superiority of the FCFE in the multicomponent mixture is
preserved although to a lesser degree over the CFE approach. The
FCFE is two orders of magnitude faster than the CFE in the multi-
component example (Table 9).

In addition to the above examples, we have also made a run
with the domain in Example 4 saturated with normal dodecane.
Propane is then injected at the same rate as in Example 4. The tem-
perature and pressure are fixed at 313 K and 100 bar, respectively.
The viscosity of dodecane is 15 times higher than propane at the
selected conditions. Results and performance of the CFE and FCFE
approaches are comparable to Example 4a.

7. Conclusions

We have introduced an efficient numerical model based on the
concept of fracture cross flow equilibrium (FCFE) in the higher-
order MFE-DG algorithm to simulate multicomponent compress-
ible flow in fractured media. The features of the proposed model
are:

� A constant pressure is assumed along the fracture width. As a
result one can have large matrix grid-cells next to the fractures.
� The large matrix grid-cells near the fractures allow large time

steps in the matrix which reduces the CPU cost.
� We use an implicit scheme for species transport in the fracture

network. The implicit scheme palliates the restriction on the
time step size from the CFL condition.

Compared to the CFE approach, the proposed model is found to
be 20–130 times faster in the 2-D examples we have selected. We
expect a larger difference between the FCFE and CFE methods in 3-
D and in more complex domains because the very small size of
fracture intersections compared to other grid fracture elements.
In 3-D the severe CFL constraint for small fracture intersection ele-
ments will make the FCFE model much more efficient. Implemen-
tation of the proposed approach to two-and three-phase flows,
with gravity in 2-D and 3-D, and with adsorption effect are being
currently investigated.
critical mass volume and Mw is the molar weight). Example 4b.

Shift Parameter Injected gas (mole fraction) Initial fluid (mole fraction)

�0.154 1.0 0.0
�0.1002 0.0 0.24
�0.08501 0.0 0.13
�0.07935 0.0 0.18
�0.0435 0.0 0.11

0.06 0.0 0.19
�0.289 0.0 0.14



Table B1
Dimensions and expressions of the matrices in Eq. (12).

Matrix Dimensions Expression

RT,m,m Nm
K � Nm

E RT;m;m
K;E ¼ am

K;E

RT,m,f
Nm

K � Nf
k RT;m;f

K;E ¼ am
K;E

Mm,m Nm
E � Nm

E Mm;m
E;E0 ¼

P
E0@Kbm

K;E;E0

Mm,f
Nf

k � Nf
k Mm;f

E;E0 ¼
P

E0@K bm
K;E;E0

Mf,f
Nf

e � Nf
e Mf ;f

E;E0 ¼
P

E0@K bm
K;E;E0
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Appendix A

The single-phase compressibility can be calculated from
[see e.g. 53].

Ct ¼
VEOS

V
1
P
� 1

Z
@Z
@P

� �
T;n

" #
ðA:1Þ

V and VEOS are the molar volumes with and without the volume
shifts, respectively. The partial molar volume of component i is
given by [see e.g. 53]:

�Vi ¼
NRT

P
@Z
@ni

� �
T;P;n – i

þ VEOS þ si ðA:2Þ

N is the total number of moles, VEOS = ZRT/P, and si is the volume
shift of component i.

Appendix B

For completeness we present briefly the MFE discretization;
further details can be found in [1,37]. In the MFE, the velocity over
each cell is expressed with respect to the fluxes across the edges.
The Raviart–Thomas basis functions on a rectangular gird element
K that has a width dx and a height dy and a surface area |K| = dxdy

are given by:

wK;E1 ¼
1

dxdy

xþ dx
2

0

 !
ðB:1Þ

wK;E2 ¼
1

dxdy

x� dx
2

0

 !
ðB:2Þ

wK;E3 ¼
1

dxdy

0
y� dy

2

 !
ðB:3Þ

wK;E4 ¼
1

dxdy

0
y� dy

2

 !
ðB:4Þ

where Ei denotes the edge i of the element K as follows: 1 = Right,
2 = Left, 3 = Top, 4 = Bottom.

The above vector functions are linearly independent and they
satisfy the following properties:

r �wK;E ¼
1
jKj ðB:5Þ

wK;E � nE0 ¼
1
jEj if E ¼ E0

0 else

(
ðB:6Þ

The velocity field can be written with respect to the basis func-
tions wK,E as follows

v ¼
X

E

qK;EWK;E ðB:7Þ

where qK;E denotes the flux across the edge E of the element K.
Inverting the mobility tensor K (K = k/l), Darcy’s equation

becomes

K�1v ¼ �ðrp� qgÞ ðB:8Þ
where k is the absolute permeability and l the dynamic viscosity.
By multiplying Eq. (B.7) by the test function wK,E and integrating

we get:Z
K

wK;EK�1v ¼ �
Z

K
wK;Eðrp� qgÞ ðB:9Þ

Using Eqs. (B.5)–(B.7) in (B.9) yield:

X
E0

qK;E0

Z
K

WK;EK�1wK;E0 ¼ PK � TpK;E0 ðB:10Þ

where PK is the cell average pressure and TpK;E0 is the edge average
pressure. Inverting the integral term at the left hand side we get:

qK;E ¼ aK;EPK �
X

E0
bK;E;E0 TpK;E0 ðB:11Þ

where

aK;E ¼
X

E0
bK;E;E0

bK;E;E0 ¼ ðB�1
K ÞE;E0 ; BK;E;E0¼

Z
K

WK;EK�1WK;E0

We define the following notation in the matrix and fractures:
Nm

K : Number of grid-cells in the matrix.
Nm

E : Number of non-fracture interfaces in mesh.
N f

k : Number of grid-cells in the fracture network.
N f

e : Number of fracture–fracture interfaces in the fracture
network.

The matrices in Eq. (12) are defined in the Table B1.
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