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Summary
Successful large-scale compositional reservoir simulations require robust and efficient phase-split calculations. In recent years, there 
has been progress in three-phase-split calculations. However, there may be convergence issues when the number of equilibrium phases 
increases to four. Part of the problem is from the poor initial guesses. In phase-split computations, the results from stability provide good 
initial guesses. Successive substitution (SS) is a key step in phase-split calculations. The method, if efficient, can provide good initial 
guesses for the final step, the Newton method that has a rapid rate of convergence. In this contribution, we present a robust algorithm with 
high efficiency and robustness in phase-split calculations in two, three, and four phases. We find that a key step is the SS. The conver-
gence may even be very slow away from the critical point and phase boundaries. A modified SS is used which may reduce the number of 
iterations many times. In the course of this investigation, we observe some regions often inside the phase envelopes (far from the phase 
boundary or critical points) with a very high number of SS iterations. The adoption of the improved SS iterations leads to a significant 
speedup of the multiphase-split computations. In some mixtures, the average reduction is more than 70%.

Introduction
In recent years, there has been an increasing interest in large-scale compositional simulations in various fields for oil recovery and CO2 
sequestration. In the injection of CO2, one needs a robust and efficient algorithm for the phase splitting of various species in different 
phases. The standard procedure to solve the problem consists of phase stability testing and multiphase-split calculations. Typically, we 
proceed in several steps. First, the stability of a mixture is assessed. If the mixture is unstable, then a new phase is added, and we move to 
multiphase-split computations where the state found in phase stability is used to construct an initial approximation. In phase-split compu-
tations, the usual approach is to proceed from the SS to the Newton-Raphson (NR) method. The closer the initial guess is to the true 
solution, the faster is the convergence to the true solution. The SS method is computationally less expensive than the NR method. A major 
strategy is having SS converge sufficiently close to a solution and only then switch to NR, which will finalize the computation. We start 
the computations with stability, and then after every phase-split computation, we examine the stability of one of the phases. If the phase 
is found unstable, we increase the number of phases and continue the phase-split calculation. The higher phase split is repeated until the 
phases are stable. Several mathematically challenging problems are to be addressed in the process of solving this complex problem.

There are a number of solutions to the phase stability testing. We have adopted the local minimization technique for the optimization 
of the tangent plane distance (TPD) function (Michelsen 1982a). A mixture is found unstable if there is a local minimum of the TPD 
function with a negative value. Multiple initial guesses are needed to ensure the correct assessment of stability. If the mixture is unstable 
with multiple negative local minima, we continue with the phase-split calculation using the initial estimate from stability with the lowest 
value of the TPD function. In three- and four-phase-split computations, when phase-split computations fail with the lowest TPD value, 
we may use the initial guess from the next lower TPD to reinitialize the corresponding two- or three-phase split.

The first step in the phase-split calculation is solving the Rachford-Rice (RR) equation(s). Depending on the number of phases, we use 
either the bisection method (Mikyška 2023) often combined with NR (in two phases) or the NR method with line search (Okuno et al. 
2010) in three and four phases. Then, we usually continue by using SS to obtain a sufficiently accurate solution. In our experience, the 
converged solution from SS is often close enough to the true solution and the subsequent NR method often converges in one or two 
iterations.

Despite extensive published reports on the phase-split calculations, there are few reports that provide the number of iterations in the 
form of a map with a number of iterations in SS or NR. Usually, central processing unit (CPU) times or the number of iterations in isolated 
cases are presented (Paterson et al. 2018; Imai et al. 2019; Chen et al. 2023).

Michelsen in his pioneering work (Michelsen 1982a, 1982b) presents an algorithm for phase-stability and phase-split computations. 
He suggests the stability computation as a first step for the phase-split computations. Then, he discusses the effect of stability on the phase-
split computations (SS and NR). The solution to the RR equation was presented earlier by Rachford and Rice (1952), where they use the 
bisection method. In three- and four-phase-split computations, a more advanced approach such as the NR method with line search (Okuno 
et al. 2010) or trust region method (Pan et al. 2021) will be required.

Various authors have used alternatives including the reduction methods (Petitfrere and Nichita 2015), globally convergent Newton 
optimization such as line search (Michelsen 1982b), and the trust region (Michelsen 1993; Petitfrere and Nichita 2014; Pan et al. 2019) 
as opposed to the classical Michelsen’s approach in which he suggests the SS followed by the NR (Michelsen 1982b). Petitfrere and 
Nichita (2014, 2015) and Pan et al. (2019) propose to use the trust-region methods in phase stability testing, multiphase equilibrium cal-
culations, and RR system solutions as a part of a sequential procedure, in which SS iterations are followed by NR iterations, and in case 
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of divergence, NR iterations are switched to the trust region method. In this work, we show that the same degree of robustness and effi-
ciency can be attained within the framework of the SS + NR approach in both three-phase and four-phase splits.

We believe in the simplicity of the conventional approach and its powerful features and adapt it in this work. We discuss the essential 
details in maps of independent computations for a large number of mixtures to give a clear picture of basic issues that may not have been 
discussed in the past for two-, three-, and four-phase-split computations. A clear picture will then evolve. In the past, an increase in the 
number of iterations has been reported close to the phase boundary and near the critical points (Petitfrere and Nichita 2014; Trangenstein 
1987). In this work, we have found a high number of iterations that are neither in the proximity of the phase boundaries nor near critical 
points.

We have introduced a modification to the conventional SS algorithm (Mehra et al. 1983; Heidemann and Michelsen 1995) to reduce 
the number of SS iterations significantly. Heidemann and Michelsen (1995) introduced a constant damping factor to update ‍K ‍ values 
which improves the stability of the algorithm. Mehra et al. (1983) introduced an update of this damping factor in each iteration and dis-
cussed the effect on the number of iterations in two-phase split. We extend this approach to three- and four-phase systems. Other acceler-
ation techniques have been suggested by Risnes (1981) and Perschke (1988), which will be covered later in this work.

Overall Phase-Split Algorithm
Our goal is to predict mixture splitting into multiple phases (number of phases and their composition). One provides pressure, tempera-
ture, and molar composition of a mixture, physical parameters of components in the mixture [we use the Peng-Robinson equation of state 
(Peng and Robinson 1976)]. Outputs are the number of phases, phase molar fractions, and composition of the phases. Fig. 1 shows the 
flow chart of a multiphase-split calculation. In most cases, ‍K ‍ values related to the lowest TPD are the best initial guess. However, occa-
sionally in three- or four-phase splits, the values converge to a nonphysical solution with a negative value of phase molar fractions. In this 
case, we return to two- or three-phase splits, respectively, and perform the phase-split calculations again with ‍K ‍ values corresponding to 
the next lower TPD value. The procedure is similar to that of Pan et al. (2019), but with a slight modification. First, we perform two-phase 
split with the K values corresponding to the lowest negative TPD in single-phase stability testing. If the three-phase split fails, another 
two-phase split is performed. We start the second two-phase split using the K values associated with the next lowest negative TPD in the 
two-phase stability testing. Two-phase stability testing and three-phase split (if required) then follow. Similarly, if the four-phase split 

Fig. 1—Flow chart of the computational algorithm.
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fails, another three-phase split is performed using the ‍K ‍ values associated with the next lowest negative TPD in the three-phase stability 
testing.

Phase Stability Testing
As stated above, the first step in the phase-split calculations is phase stability testing. We adopt the local minimization approach (Hoteit 
and Firoozabadi 2006), with multiple initial guesses (Li and Firoozabadi 2012) to ensure convergence to nontrivial minima. Additionally, 
we include other initial guesses for CO2 and H2O when they have a high concentration in some mixtures as suggested by Imai et al. 
(2019), Li and Li (2019), and Connolly et al. (2019):

	﻿‍
Kstabi (x�) =

�
KWilson
i , 1/KWilson

i , 3
q
KWilson
i , 3

q
1/KWilson

i ,Kideali ,Kpurei ,KCO2
i ,KH2O

�
i = 1, ..., n,

‍�
(1)

where ‍x�‍ is a vector of component mole fractions in the test phase, ‍i‍ is the component index, and ‍n‍ is the number of components. The 
Wilson equilibrium ratios are given by

	﻿‍
KWilson
i =

Pc,i
P

exp
�
5.37(1 + !i)

�
1 �

Tc,i
T

��
, i = 1, ..., n,

‍�
(2)

where ‍Tc‍, ‍Pc‍, and ‍!‍ are the critical temperature, critical pressure, and acentric factor, respectively. The ideal equilibrium ratios are given 
by (Imai et al. 2019):

	﻿‍ Kideali = 'i(x�), i = 1, ..., n,‍� (3)

where ‍x
�
i ‍ is the mole fraction and ‍'i(x�)‍ is the fugacity coefficient of component ‍i‍. Imai et al. (2019) have suggested the following initial 

guesses for high-content CO2 mixtures:

	﻿‍
KCO2
i =

0.95
x�
i
, KCO2

l =
0.05

(n � 1)x�
l
,
‍�

(4)

where ‍i‍ is the CO2 component and ‍l ¤ i‍ is the rest of the components. Li and Li (2019) have suggested the following expression for high-
H2O concentration mixtures:

	﻿‍
KH2O
i =

1 � 10�15

x�
i

, KH2O
l =

10�15

(n � 1)x�
l
,
‍�

(5)

where ‍i‍ is the H2O component and ‍l ¤ i‍ is the rest of the components. Connolly et al. (2019) have also suggested a similar expression 
with a different exponent (i.e., ‍10�3‍ instead of ‍10�15‍). Li and Firoozabadi (2012) suggested the following expression:

	﻿‍
Kpure
i =

0.99
x�
i
, Kpure

l =
0.01

(n � 1)x�
l
,
‍�

(6)

with ‍n‍ initial guesses where component ‍i‍ is treated as a pure component and ‍l ¤ i‍ is the rest of the components. In a local approach, if we 
detect a local minimum of the TPD function with a value less than ‍�10�7,‍ the mixture is unstable, and phase-split calculations can be 
conducted. Otherwise, we end the computation. The reduced molar Gibbs free energy TPD function (Firoozabadi 2016; Michelsen 1982a) 
is given by

	﻿‍
TPD�(x) = 1 +

nX
i=1

xi[ln('i(x)) + ln xi � ln('i(x�)) � ln x�
i � 1],

‍�
(7)

where x is the trial phase composition. We use the local minimization algorithm through the quasi-Newton method with Broyden-
Fletcher-Godfarb-Shanno (BFGS) update (Hoteit and Firoozabadi 2006). The main difference from the conventional Newton method is 
in the computation of the Hessian matrix. The details of the approach can be found in Hoteit and Firoozabadi (2006). Based on some 
150,000 independent phase-split computations, the CPU time in stability calculations is close to the phase-split calculations in two-phase 
state. In three- and four-phase split, stability CPU time is less. The CPU time comparison is presented in Section S-1 of the Supplementary 
Material. In many problems in reservoir simulations, there is much less need for stability computations, and therefore phase-split compu-
tations will take up most of the computational time.

Solution of the RR System of Equations
In two phases, the RR equation can be solved by the simple bisection method, possibly followed by NR. In three and four phases, there 
are systems of two and three RR equations, respectively. Using the method from Okuno et al. (2010), this problem can be reformulated 
as a convex minimization problem:

	﻿‍
Minimize F =

nX
i=1

(�x�
i ln |ti|) s.t. ˛T

i v � hi,
‍�

(8)

where 
‍
x�
i =

pP
j=1

vjx�
j,i

‍
, ‍̨ i 2 Rn, ˛i,j = 1 � Kj+1,i, j = 1, ..., p � 1,‍ 

‍
ti = 1 � [

pX
j=2

(1 � Kj,i)vj],
‍
 ‍hi = minf1 � x�

i , minjf1 � Kj,ix�
i gg,‍ and 

‍Kj,i = xj,i/x1,i,‍ where ‍p‍ is the number of phases in the phase split and ‍v‍ is the molar fraction of the phases. The index 1 represents the 
reference phase. The ‍rF = 0‍ is the RR system of equations. Therefore, the solution of the RR system of equations is equivalent to finding 
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the stationary point of function ‍F ‍. The algorithm modifies the Newton step with the line search technique, and as a consequence, it is 
robust. The algorithm can be summed up in the following steps.

1.	 An initial estimate of ‍v‍ values is generated as a mean of vertices of an intersection of ‍S = fv,˛T
i v � hi, i = 1, ..., ng‍ and 

‍P = fv, vj � 0, j = 1, ..., pg‍.
2.	 Calculate the gradient of convex function ‍F ‍.
3.	 Calculate the Hessian matrix of ‍F ‍ and solve the system of equations to obtain Newton’s direction ‍d(k) = �(r2F(k))�1

rF(k)‍, where 
‍(k)‍ is the iteration number and

	﻿‍
rFj =

nX
i=1

(1 � Kj+1,i)x�
i

ti
j = 1, ..., p � 1,

‍�
(9)

	﻿‍
(r2F)j,m =

nX
i=1

(1 � Kj+1,i)(1 � Km+1,i)x�
i

t2i
j,m = 1, ..., p � 1.

‍�
(10)

4.	 Calculate the maximum feasible step size ‍�max = minif(hi � ˛T
i v(k))/(˛

T
i d

(k)) : ˛T
i d

(k) > 0g,‍ if ‍�max � 1‍, then ‍�max = 1‍.
5.	 Modify step size ‍�(k)‍ from the line search technique. ‍�max � �(k) � 0‍, i.e., find ‍�(k) = s�max‍ such that ‍g(s) = F(v + s�maxd)‍ is 

minimum as a function of ‍s 2 (0, 1)‍.
6.	 Update ‍v(k+1) = v(k) + �(k)d(k)‍.
7.	 Check whether the norm of the gradient is less than a specified tolerance. If yes, then stop, else increase ‍k ‍ and go back to Step 2. 

Using this approach, the system of the RR equations is solved in less than eight iterations (usually four to six) in all mixtures inves-
tigated in this work. This method is only used in the beginning of the phase-split calculation because, at that time, we do not have 
a good initial estimate of ‍v‍. Later in the algorithm, the conventional NR method can be used.

Phase-Split Calculations
From stability testing, the composition of the new phase provides the initial guess for phase-split calculations. In two-phase split, the 
initial guess is complete from the stability analysis. For three- and four-phase split, there is a need for an additional set of one or two initial 
guesses of ‍K ‍ values, respectively. These initial guesses can be from a previous phase-split calculation. For an initial guess for the second 
‍K ‍ value set in three-phase split, we use the ‍K ‍ values from two-phase split, and in the four-phase, we use the two sets of ‍K ‍ values from 
three-phase split. The initial guess for phase mole fractions ‍v‍ is computed from the RR system using the initial guess for ‍K ‍ values. 
Traditionally, the combination of SS and NR is used in phase-split calculations. To start SS, one needs an initial guess for phase fractions 
‍v‍, which is obtained by solving the RR system of equations. When we have initial guesses for our variables, we can move to SS (first-
order method). The SS has the following structure.

1.	 The initial guess for ‍K ‍ values is from the stability testing.
2.	 Solve the RR system of equations for ‍v‍.
3.	 Calculate mole fractions of every component in every phase and also the compressibility factors (using the equation of state with 

the new values of the mole fractions):

	﻿‍

x1,i =
x�
i

1 +
pP
j=2

vj(Kj,i � 1)
, xm,i = Km,1x1,i, m = 2, ..., p.

‍�

(11)

4.	 Calculate fugacity coefficients of all components in all phases.
5.	 Update equilibrium ratios ‍lnK(k+1)

j,i = lnK(k)
j,i � ln(f(k)j,i /f

(k)
1,i ), i 2 f1, ..., ng‍ and ‍j 2 f2, ..., pg‍.

6.	 Test convergence criteria. In our work, we stop the iterations if ‍max(| lnK(k) � lnK(k+1)|1, |v(k) � v(k+1)|1) < 10�7.‍ If the conver-
gence criterion is not met, Steps 2–6 are repeated until convergence or the maximum number of iterations is reached.

After the SS step converges, the NR method (Firoozabadi 2016) is used to finalize the solution to a precision of ‍10�8‍, i.e., 
‍max(| lnK(k) � lnK(k+1)|1, |v(k) � v(k+1)|1) < 10�8‍. Usually, only one or two iterations are needed as we already have a good initial 
guess from the SS method.

Improvement in the SS. As we will present later, there are unexpected regions where the SS has very slow convergence. We modify the 
SS by introducing a step size correction factor. A significant improvement in the speed of convergence can be achieved. Step 5 of SS is 
improved (Mehra et al. 1983) as follows:

	﻿‍
ln K(k+1)

j,i = lnK(k)
j,i �m(k)ln

f(k)j,i

f(k)1,i
,
‍�

(12)

where parameter ‍m(k)‍ (step size correction factor) has a significant effect on convergence speed. In the conventional SS method, ‍m(k) = 1.‍ 
When the parameter ‍m(k) > 1‍, on average, convergence speeds up. This is analogous behavior with successive overrelaxation variants of 
the Gauss-Seidel method for solving a linear system of equations (Shima et al. 1999). The major improvement is from taking a similar 
approach as in Mehra et al. (1983) in the two-phase split. The parameter ‍m(k)‍ is changed in each iteration. In the improved SS, we update 
the parameter ‍m(k)‍ as follows: ‍m

(k) = minfm(k)
j g, j = 2, ..., p‍, where

	﻿‍ m(k)
j = j[(g(k�1)

j )TU�1
j g(k�1)

j /((g(k�1)
j )TU�1

j (g(k�1)
j � g(k)j ))]m(k�1)

j j, j = 2, ..., p.‍� (13)

Here ‍g
(k)
j 2 Rn

‍, ‍g
(k)
j,i = f(k)j,i /f

(k)
1,i ,‍, ‍U

�1
j,i,l = (vjv1)(xj,ix1,i/x

�
i )(ıil + (xj,lx1,l)/(Djx�

l )),‍ ‍i, l = 1, .., n‍, 
‍
Dj = 1 �

nX
i=1

(xj,ix1,i/x�
i ),

‍
 ‍ı‍ is the Kroneker delta, 

and ‍m
(1)
j = 1‍. In two-phase split (‍j = 2‍), ‍m

(k) = m(k)
2 ‍. In three- and four-phase splits, we have multiple sets of ‍K‍ values. We compute ‍m

(k)
j ‍ 

D
ow

nloaded from
 http://onepetro.org/SJ/article-pdf/doi/10.2118/219490-PA/3385906/spe-219490-pa.pdf?casa_token=_vqXvKVj8EM

AAAAA:sF-gXO
zYU

N
I-2rkB2j_m

qw
FP89BW

AgN
7auvuvBxf9occTPtU

W
PypyN

ZG
tI7k4Vvgbw

gP-w
 by R

ice U
niversity user on 02 April 2024



2024 SPE Journal 5

for each of those vectors and then use the minimum as a universal factor. For instance, in the four-phase split, ‍m
(k) = minfm(k)

2 ,m(k)
3 ,m(k)

4 g‍. 
In some iterations, parameters ‍m

(k)
j ‍ may become large. In the case of ‍jm

(k)
j ln(f(k)j,i /f(k)1,i )j� L,‍ we use ‍m

(k)
j = 1,‍ where ‍L = 0.1‍ in two- and 

three-phase splits and ‍L = 0.01‍ in four-phase split. We have examined different caps for ‍m(k)‍ (i.e., 5, 2, and 1.2) in Sections S-2 and S-3 
of the Supplementary Material. The algorithm for limiting ‍m(k)‍ is as follows:

1. In the first iteration, ‍m
(1)
j = 1, j = 2, ..., p‍.

2. In subsequent iterations, calculate ‍m
(k)
j ‍ for ‍j = 2, ..., p‍ from Eq. 13.

3. If ‍jm
(k)
j ln f(k)j,i /f(k)1,i j� L‍ for any ‍j = 2, ..., p‍ then ‍m

(k)
j = 1‍.

4. ‍m
(k) = minfm(k)

2 ,m(k)
3 ,m(k)

4 g‍.
We have carried out extensive stability and phase-split calculations in eight different fluid systems. In Examples 1–3, in some of the 

regions, there are four phases. The maximum number of phases in the rest of the examples is three.

Examples
In the following, we present the performance of the algorithm outlined above for a large group of examples from the literature. Mixtures 
are mainly hydrocarbons with various nonhydrocarbons such as ‍H2O,H2S, N2,‍ and ‍CO2.‍ In all the examples, we use the Peng-Robinson 
equation of state. We cover the ‍PT/cP‍ spaces (‍c‍ is the composition space). In all mixtures, our calculated phase envelopes are consistent 
with the literature. In the first example, we provide maps for both algorithms (conventional and improved SS). In the rest, we only present 
the results for the improved algorithm. A summary of the number of SS and NR iterations in phase split in two-, three-, and four-phase 
states is presented in Section S-4 of the Supplementary Material.

Example 1: Four-Phase Split. In the first example, phase stability and phase split of an eight-component mixture (BSB oil) from Imai 
et al. (2019) are investigated over a wide space. We conduct 10,000 independent phase stability and phase-split calculations. The physical 
properties of various components in the mixture are presented in Table 1, where ‍kil‍ is the interaction coefficient between components ‍i‍ (in 
the column) and ‍l ‍. The mixture composition is investigated in a ‍100 � 100‍ grid for the mixing molar fraction of ‍CO2‍ in the range of 0.4–
0.95, pressure ‍P‍ in the range of 75–95 bar and ‍T = 313.71 K‍. The total number of iterations and number of phases in both conventional 
and improved algorithms are depicted in Fig. 2. Fig. 2c clearly shows a very high number of iterations in SS, in excess of 1000, in the 
middle of the four-phase envelope. This observation is different from the literature in that the number of SS iterations increases close to 
the critical point and phase boundaries (Petitfrere and Nichita 2014; Trangenstein 1987). Figs. 3 and 4 present the number of iterations 
in the two-, three-, and four-phase-split calculations in both conventional and improved algorithms. Fig. 4 shows a high number of SS 
iterations far away from the phase envelope (in the middle of the four-phase envelope) and also in the region on the top left of the four-
phase boundary. There is a significant reduction in the number of SS iterations by modifying the algorithm as Fig. 4 reveals.

Component Tc (K) Pc (bar) ‍!‍ CO2 kil H2O kil ‍x
�
i ‍

‍H2O‍ 647.30 220.89 0.3440 0.095 0.0 0.3000

‍CO2‍ 304.20 73.76 0.2250 0.0 0.095 0.0236

‍C1‍ 160.00 46.00 0.0080 0.45 0.055 0.0603

‍C2�3‍ 344.20 44.99 0.1305 0.5 0.055 0.1052

‍C4�6‍ 463.22 34.00 0.2407 0.5 0.055 0.1170

‍C7�15‍ 605.75 21.75 0.6177 0.5 0.105 0.2313

‍C16�27‍ 751.02 16.54 0.9566 0.5 0.105 0.1128

‍C28+‍ 942.48 16.42 1.2683 0.5 0.105 0.00499

Table 1—Relevant physical parameters and data: Example 1.
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Fig. 3—Number of NR iterations in the (a) conventional algorithm in two-phase split, (b) conventional algorithm in three-phase 
split, (c) conventional algorithm in four-phase split, (d) improved algorithm in two-phase split, (e) improved algorithm in three-
phase split, and (f) improved algorithm in four-phase split. Example 1, BSB oil, eight-component mixture of H2S, CO2, and various 
hydrocarbons (Imai et al. 2019) at constant temperature T = 313.71 K.

Fig. 2—Phase diagram and the total number of iterations in the conventional and improved algorithm: (a) phase diagram from the 
conventional algorithm, (b) total number of NR iterations from the conventional algorithm, (c) total number of SS iterations from 
the conventional algorithm, (d) phase diagram from the improved algorithm, (e) total number of NR iterations from the improved 
algorithm, and (f) total number of SS iterations from the improved algorithm. Example 1, BSB oil, eight-component mixture of H2S, 
CO2, and various hydrocarbons (Imai et al. 2019) at constant temperature T = 313.71 K.
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Example 2: Four-Phase Split. In the second example, the stability and phase composition of a five-component mixture from Paterson 
et  al. (2018) is performed in 40,000 independent phase-split calculations. The physical properties of components in the mixture are 
presented in Table 2. The mixture is investigated in a ‍200 � 200‍ grid for the temperature ‍T ‍ in the range of 130–150 K and the pressure 
‍P‍ in the range of 1–10 bar. The phase state and the total number of iterations of the improved algorithm are presented in Fig. 5. In Fig. 6, 
we present the total number of iterations in two-, three-, and four-phase-split calculations from the improved algorithm.

Fig. 4—Number of SS iterations in the (a) conventional algorithm in two-phase split, (b) conventional algorithm in three-phase 
split, (c) conventional algorithm in four-phase split, (d) improved algorithm in two-phase split, (e) improved algorithm in three-
phase split, (f)  improved algorithm in four-phase split. Example 1, BSB oil, eight-component mixture of H2S, CO2, and various 
hydrocarbons (Imai et al. 2019) at constant temperature T = 313.71 K.

Components Tc (K) Pc (bar) ‍!‍ CO2 kil H2S kil ‍x
�
i ‍

Methane (C1) 190.56 45.99 0.0115 0.12 0.08 0.66

Ethane (C2) 305.32 48.72 0.0995 0.15 0.07 0.03

Propane (C3) 369.83 42.479 0.1523 0.15 0.07 0.01

Carbon dioxide (CO2) 304.12 73.37 0.225 0.0 0.12 0.05

Hydrogen sulfide (H2S) 373.1 90.0 0.10 0.12 0.0 0.25

Table 2—Relevant physical parameters and data: Example 2.

Example 3: Four-Phase Split. In the third example, the stability and phase composition of an eight-component mixture (JEMA oil plus 
water and carbon dioxide) from Imai et al. (2019) are performed with a total of 10,000 independent phase-split calculations. The physical 
properties of components in the mixture are presented in Table 3. The mixture is investigated in a ‍100 � 100‍ grid for the mixing molar 
fraction of ‍CO2‍ in the range of 0.4–0.9 and pressure ‍P‍ in the range of 80–90 bar and temperature of 316.48 K. Total numbers of iterations 
and number of phases are shown in Fig. 7. In Fig. 8, we present SS iterations in two-, three-, and four-phase-split calculations. In this 
mixture, we observe a higher number of iterations in three- and four-phase splits. In three-phase split, the region with a higher number 
of SS iterations is along the line in the middle of the four-phase envelope (see Fig. 8e). In four-phase split (Fig. 8f), the region with a 
high number of SS iterations is on the top left of the four-phase envelope. Fig. 7c shows a high number of iterations in the SS even in the 
improved algorithm similar to Fig. 2c.
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Fig. 5—Phase diagram and the total number of iterations in the improved algorithm: (a) number of phases, (b) total number of NR 
iterations, and (c) total number of SS iterations. Example 2, six-component mixture of C1, C2, C3, H2S, and CO2 (Paterson et al. 
2018).

Fig. 6—Number of iterations in the improved algorithm: (a) NR in two-phase split, (b) NR in three-phase split, (c) NR in four-phase 
split, (d) SS in two-phase split, (e) SS in three-phase split, and (f) SS in four-phase split. Example 2, six-component mixture of C1, 
C2, C3, H2S, and CO2 (Paterson et al. 2018).

Fig. 7—Phase diagram and the total number of iterations in the improved algorithm: (a) number of phases, (b) total number of 
NR iterations, and (c) total number of SS iterations. Example 3, JEMA oil, eight-component mixture of H2S, CO2, and various 
hydrocarbons (Imai et al. 2019) at constant temperature T = 316.48 K.
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Component Tc (K) Pc (bar) ‍!‍ CO2 kil H2O kil ‍x
�
i ‍

‍H2O‍ 647.30 220.89 0.3440 0.095 0.0 0.3000

‍CO2‍ 304.20 73.76 0.2250 0.0 0.095 0.0134

‍C1‍ 166.67 46.00 0.0080 0.05 0.45 0.0485

‍C2�3‍ 338.81 45.53 0.1260 0.05 0.5 0.1219

‍C4�6‍ 466.12 33.68 0.2439 0.05 0.5 0.1361

‍C7�16‍ 611.11 20.95 0.6386 0.09 0.5 0.2197

‍C17�29‍ 777.78 15.88 1.0002 0.09 0.5 0.1084

‍C30+‍ 972.22 15.84 1.2812 0.09 0.5 0.0519

Table 3—Relevant physical parameters and data: Example 3.

Example 4: Three-Phase Split. The stability and phase composition of a seven-component mixture (NWE oil) from Chen et al. (2023) 
is performed with a total of 10,000 independent phase-split calculations. The physical properties of components are presented in Table 4. 
The mixture is investigated in a ‍100 � 100‍ grid for the mixing molar fraction in the range of 0–1 (of ‍0.95 mol CO2‍ and ‍0.05 mol C1‍) and 
pressure ‍P‍ in the range of 40–180 bar and ‍T = 301.48 K‍. The total number of iterations and the number of phases are presented in Fig. 9. 
In Fig. 10, we present the number of iterations to conduct two- and three-phase-split calculations. We observe a similar iteration behavior 
to Examples 1–3, with the exception of two-phase split (Fig. 10c) in the middle of the three-phase envelope and in the three-phase split 
(Fig. 10d) on the top of the three-phase envelope.

Example 5: Three-Phase Split. In the fifth example, the stability and phase composition of a four-component mixture (BSB oil) from 
Chen et al. (2023) is performed with a total of 10,000 independent phase-split calculations. The physical properties of components in the 
mixture are presented in Table 5. The mixture is investigated in a ‍100 � 100‍ grid for the mixing molar fraction of ‍CO2‍ (‍0.95 mol CO2‍ and 
‍0.05 mol C1‍) in the range of 0–1 and pressure ‍P‍ in the range of 20–160 bar and temperature ‍T = 313.71 K‍. The total number of iterations 
and the number of phases are presented in Fig. 11. In Fig. 12, we present iterations in two- and three-phase-split calculations. The high 

Fig. 8—Number of iterations in the improved algorithm: (a) NR in two-phase split, (b) NR in three-phase split, (c) NR in four-phase 
split, (d) SS in two-phase split, (e) SS in three-phase split, and (f) SS in four-phase split. Example 3, JEMA oil, eight-component 
mixture of H2S, CO2, and various hydrocarbons (Imai et al. 2019) at constant temperature T = 316.48 K.
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number of iterations is in two-phase split (Fig. 12c) in the middle of the three-phase envelope, the same as in Example 3 (Fig. 10), but in 
three-phase split (Fig. 12d), the high number of iterations is in the left side of the three-phase envelope.

Substance Tc (K)
Pc 

(bar) ‍!‍ CO2 kil ‍x
�
i ‍

‍CO2‍ 304.20 73.76 0.225 0.0 0.0169

‍C1‍ 160.00 46.00 0.008 0.055 0.1752

‍PC1‍ 529.03 27.32 0.481 0.081 0.6478

‍PC2‍ 795.33 17.31 1.042 0.090 0.2324

Table 5—Relevant physical parameters and data: 
Example 5.

In addition to the five examples above, we have also investigated the phase split in three other mixtures which are presented in Sections 
S-5, S-6, and S-7 of the Supplementary Material. Next, we present a detailed analysis of the SS and demonstrate the effectiveness of our 
modification.

Excessive Number of SS Iterations
In the past, it has been reported that the SS procedure may not converge to the minimum of Gibbs free energy (Heidemann and Michelsen 
1995). The SS may even diverge when the initial guesses are close to the solution (Heidemann and Michelsen 1995). The report of very 
slow convergence and divergence is very limited over a wide range of ‍PT ‍ and ‍Pc‍ spaces. In this work, we investigate a broad range of 
spaces. We observe a large number of iterations in the middle of the phase envelope away from the critical point and phase boundaries. 
The results in Petitfrere and Nichita (2014) also indicate increased iterations of both NR and trust region methods in two- and 

Component Tc (K)
Pc 

(bar) ‍!‍ CO2 kil ‍x
�
i ‍

‍CO2‍ 304.20 73.76 0.225 0.0 0.0169

‍C1‍ 174.444 46.00 0.008 0.085 0.1752

‍C2�3‍ 347.263 44.69 0.133 0.085 0.2244

‍C4�6‍ 459.74 34.18 0.236 0.085 0.1673

‍C7�14‍ 595.135 21.87 0.598 0.104 0.2422

‍C15�25‍ 729.981 16.04 0.912 0.104 0.1216

‍C26+‍ 910.183 15.21 1.244 0.104 0.0524

Table 4—Relevant physical parameters and data: Example 
4.

Fig. 9—Phase diagram and the total number of iterations in the improved algorithm: (a) number of phases, (b) total number of NR 
iterations, and (c) total number of SS iterations. Example 4, NWE oil, seven-component mixture of CO2 and various hydrocarbons 
(Chen et al. 2023) at constant temperature T = 301.48 K.
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three-phase-split calculations in some regions, far from the critical point and the phase boundary. The number of iterations in the NR and 
trust region methods by Petitfrere and Nichita (2014) ranges from 4 to about 50. The trust region method, a Newton-type method, has a 
higher CPU cost than the NR method in every iteration. Our results indicate that, with the improved implementation of the SS method, 
NR converges in one or two iterations in the vast majority of cases. In the following, we include examples with large numbers of iterations 
and show the effectiveness of our proposal on increasing the computational speed in multiphase-split calculations.

Fig. 10—Number of iterations in the improved algorithm: (a) NR in two-phase split, (b) NR in three-phase split, (c) SS in two-phase 
split, and (d) SS in three-phase split. Example 4, NWE oil, seven-component mixture of CO2, and various hydrocarbons (Chen et al. 
2023) at constant temperature T = 301.48 K.

Fig. 11—Phase diagram and the total number of iterations in the improved algorithm: (a) number of phases, (b) cumulative number 
of NR iterations, and (c) cumulative number of SS iterations. Example 5, BSB oil, four-component mixture of CO2, C1, PC1, and PC2 
(Chen et al. 2023) at constant temperature T = 313.71 K.
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JEMA Sample. One of the high iteration cases is Example 3, JEMA mixture at ‍P = 82 bar‍ and molar mixing fraction of ‍CO2‍ of 0.65. 
Under these conditions, the mixture is in three-phase state. Figs. 13 and 14 show the evolution of ‍K ‍ values and ‍�G‍ in the SS iterations. 
Fig. 13a shows that convergence is fast once the step size parameter ‍m(k)‍ is applied in Eq. 12 from Eq. 13. There is a significant reduction 
in the number of iterations to reach the assigned convergence criteria. Fig. 15 shows that the fluctuations in the Gibbs free energy decrease 
become less pronounced as we reduce the step size from the predictions in Eq. 13. The maximum step size in Eq. 13 is 20. We use step 
sizes from 1 to 20 in the calculations in Fig. 15a. An observation relates to the nonmonotonous change of phase molar fraction ‍v1‍ (1 is 
the phase index) and the compressibility factor of Phase 1 and selected equilibrium ratios (‍K ‍ values). The effect of different approaches 
to limit parameter ‍m(k)‍ on convergence is shown in Fig. 15.

Oil Sample 1. Oil Sample 1 at ‍P = 240 bar‍ and ‍T = 629 K‍ of Example 6 has high SS iterations in two-phase state. Fig. 16 shows the 
evolution of several quantities during the SS iterations. Note the nonmonotonous behavior in some of the variables. The effect of different 
restrictions to limit parameter ‍m(k)‍ on convergence is shown in Fig. 17. The start of acceleration based on the criteria is early. Despite a 
relatively pronounced fluctuation, there is very rapid convergence based on the step size from Eq. 13. As we limit the step size parameter 
to a larger extent, there is less fluctuation, but the convergence becomes slow.

Fig. 12—Number of iterations in the improved algorithm: (a) NR in two-phase split, (b) NR in three-phase split, (c) SS in two-phase 
split, and (d) SS in three-phase split. Example 5, BSB oil, four-component mixture of CO2, C1, PC1, and PC2 (Chen et al. 2023) at 
constant temperature T = 313.71 K.
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Fig. 13—Evolution of various functions and parameters in three-phase split in the conventional and modified SS iterations: 
(a) Gibbs free energy change, (b) vapor-phase molar fraction ‍v1‍, (c) heavy liquid-phase molar fraction ‍v2‍, (d) light liquid-phase 
compressibility, (e) vapor-phase compressibility, and (f) heavy liquid-phase compressibility. Example 3, JEMA mixture at P = 82 
bar and molar mixing fraction of 0.65 for CO2.

Fig. 14—Evolution of equilibrium ratios in three-phase split in the conventional and modified SS iterations: (a) vapor-phase H2O 
component, (b) heavy liquid-phase H2O component, (c) vapor-phase CO2 component, and (d) heavy liquid-phase CO2 component. 
Example 3, JEMA mixture at P = 2 bar and mixing fraction of 0.65 for CO2.
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Fig. 15—Evolution of the Gibbs free energy decrease with limited step size in the conventional and modified SS iterations: 
(a) without further restriction, (b) maximum increase in step size restricted by a factor of 5, (c) maximum increase in step size 
restricted by a factor of 2, and (d) maximum step size increase restricted by a factor of 1.2. Example 3, JEMA mixture at P = 82 bar 
and mixing molar fraction of 0.65 for CO2.

Fig. 16—Evolution of various functions and parameters in two-phase split in the conventional and modified SS iterations: 
(a) Gibbs free energy change, (b) vapor-phase compressibility, (c) liquid-phase compressibility, (d) liquid-phase molar fraction v, 
(e) equilibrium ratio of CO2 component, and (f) equilibrium ratio of iC4 component. Example 6, Oil Sample 1 mixture at P = 240 bar 
and T = 629 K.
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Two other examples of slow convergence and the speedup from the step size factor from Eq. 13 are presented in Sections S-2 and S-3 
of the Supplementary Material.

Conclusions
A fully robust algorithm is introduced to perform two-, three-, and four-phase-split calculations efficiently. Eight different mixtures over 
a wide range of pressure, temperature, and composition space are investigated in some 150,000 independent phase stability and phase-
split calculations. There is convergence in all calculations. The focus of the work is on phase-split calculations. In our work, we adapt the 
conventional approach of phase stability followed by phase-split calculations. In phase split into two, three, and four phases, the SS pro-
vides the initial guess for the NR method. In our algorithm, NR usually converges in one or two iterations in two-, three-, and four-phase 
splits. Although the SS iterations always converge, the convergence can be very slow, in some cases in thousands of iterations. In the past, 
slow convergence has been reported widely in the critical region and close to phase boundaries. Four-phase-split calculations have been 
reported to have more issues than two- and three-phase-split calculations. In this work, we find that, in the middle of the phase envelope, 
there may also be a region of very slow convergence in the SS method. We extend the acceleration of SS presented in the past from two 
to three and four phases. We also examine the Gibbs free energy change toward the minimum. A criterion is presented to speed up the SS. 
There is a significant reduction in the number of iterations in two-, three-, and four-phase-split calculations. In 150,000 independent 
phase-split computations, we observe robustness and efficiency.
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